Matemática Discreta. Lógica de Predicados. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Matemática Discreta. Lógica de Predicados. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG"

Transcrição

1 Matemática Discreta Lógica de Predicados Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto

2 Quantificadores Como expressar a sentença Para todo número inteiro x, o valor de x é positivo. usando lógica proposicional? Esta sentença contém duas características distintas das anteriores: quantificadores, e predicados.

3 Quantificadores Quantificadores Quantificadores são expressões como para todo, para cada, para algum, que dizem de alguma forma quantos objetos têm uma certa propriedade.

4 Quantificador Universal x Lê-se: para todo x, para cada x, todo x. ( x)(x > 0) representa a senteça: Para todo número inteiro x, o valor de x é positivo.

5 Quantificador Universal ( x)(x > 0) O quantificador e sua variável sempre aparecem entre parênteses. Em seguida, outro par de parênteses contém a propriedade, ou predicado, referente àquela variável. Quando o predicado não foi definido, escreve-se: ( x)p(x).

6 Quantificador Universal ( x)(x > 0) O valor-verdade da expressão depende do domínio da variável. Se o domínio são os números inteiros positivos, então a expressão acima é verdadeira. Se o domínio são todos os números inteiros, então a expressão acima é falsa.

7 Quantificador Universal ( x)p(x) O valor-verdade da expressão depende do domínio da variável. Se o domínio são todos os livros da biblioteca da UTFPR - Ponta Grossa e o predicado, P(x), diz que x tem capa vermelha, então a expressão é falsa.

8 Quantificador Universal Dê o valor-verdade da expressão ( x)p(x) em cada uma das interpretações: P(x) é a propriedade de que x é amarelo e o domínio é o conjunto de todas as flores. falso P(x) é a propriedade de que x é uma planta e o domínio é o conjunto de todas as flores. verdadeiro P(x) é a propriedade de que x é positivo ou negativo e o domínio é o conjunto dos números inteiros. falso

9 Quantificador Universal Dê o valor-verdade da expressão ( x)p(x) em cada uma das interpretações: P(x) é a propriedade de que x é amarelo e o domínio é o conjunto de todas as flores. falso P(x) é a propriedade de que x é uma planta e o domínio é o conjunto de todas as flores. verdadeiro P(x) é a propriedade de que x é positivo ou negativo e o domínio é o conjunto dos números inteiros. falso

10 Quantificador Existencial x Lê-se: para algum x, existe um x, pelo menos um x. ( x)(x > 0) representa a senteça: Algum número inteiro x é positivo.

11 Quantificador Existencial ( x)(x > 0) Da mesma forma, o valor-verdade da expressão depende do domínio da variável. Se o domínio contém um número positivo, então a expressão é verdadeira. Caso contrário, é falsa.

12 Quantificador Existencial ( x)p(x) O valor-verdade da expressão depende do domínio da variável. Se o domínio são todos os livros da biblioteca da UTFPR - Ponta Grossa e o predicado diz x tem capa vermelha, então a expressão é verdadeira. (Deve existir algum livro com capa vermelha na biblioteca!)

13 Quantificadores - Interpretação Exemplo: A expressão ( x)( y)q(x, y) deve ser lida da seguinte forma: Para cada x existe um y tal que a propriedade Q(x, y) é satisfeita. Dê o valor verdade da expressão ( x)( y)q(x, y) para a seguinte interpretação: Q(x, y) é a propriedade de que x < y e o domínio é o conjunto de todos os inteiros. verdadeiro

14 Quantificadores - Interpretação Exemplo: A expressão ( x)( y)q(x, y) deve ser lida da seguinte forma: Para cada x existe um y tal que a propriedade Q(x, y) é satisfeita. Dê o valor verdade da expressão ( x)( y)q(x, y) para a seguinte interpretação: Q(x, y) é a propriedade de que x < y e o domínio é o conjunto de todos os inteiros. verdadeiro

15 Quantificadores - Interpretação Dê o valor verdade da expressão ( x)( y)q(x, y) para a seguinte interpretação: Q(x, y) é a propriedade de que x < y e o domínio é o conjunto de todos os inteiros. falso Conclusão: a ordem dos quantificadores faz diferença.

16 Quantificadores - Interpretação Dê o valor verdade da expressão ( x)( y)q(x, y) para a seguinte interpretação: Q(x, y) é a propriedade de que x < y e o domínio é o conjunto de todos os inteiros. falso Conclusão: a ordem dos quantificadores faz diferença.

17 Quantificadores - Interpretação Constantes podem fazer parte do predicado. Exemplo: o valor-verdade da expressão ( x)q(x, 5) quando Q(x, y) é a propriedade de que x < y e o domínio de x é o conjunto de todos os inteiros é...falso Exemplo: o valor-verdade da expressão ( y)q(5, y) quando Q(x, y) é a propriedade de que x < y e o domínio de y é o conjunto de todos os inteiros é...verdade

18 Quantificadores - Interpretação Constantes podem fazer parte do predicado. Exemplo: o valor-verdade da expressão ( x)q(x, 5) quando Q(x, y) é a propriedade de que x < y e o domínio de x é o conjunto de todos os inteiros é falso. Exemplo: o valor-verdade da expressão ( y)q(5, y) quando Q(x, y) é a propriedade de que x < y e o domínio de y é o conjunto de todos os inteiros é verdade.

19 Predicados bem formados Expressões devem obedecer regras de sintaxe para serem predicados bem formados: P(x)( x) ( y) não é um predicado bem formado. P(x) Q(y) (não é predicado, não tem quantificadores). ( x)(p(x) Q(x)) é predicado bem formado e o escopo de x é P(x) Q(x).

20 Predicados bem formados ( x)(( y)(p(x, y) Q(x, y)) R(x)) é predicado bem formado. o escopo do quantificador x é ( y)[p(x, y) Q(x, y)] R(x); o escopo do quantificador y é P(x, y) Q(x, y).

21 Predicados bem formados ( x)s(x) ( y)t (y) é predicado bem formado.

22 Variáveis livres Se uma variável aparece em alguma fórmula bem formada e não faz parte de nenhum quantificador, então é uma variável livre. Exemplo: y é uma variável livre em ( x)[q(x, y) ( y)r(x, y)], porque y ocorre pela primeira vez sem estar acompanhado de um quantificador. Nem sempre expressões que contêm variáveis livres têm valor-verdade definido. (Lembre que sem valor-verdade definido não é sentença lógica!)

23 Variáveis livres Exemplo: Considere o domínio de todos os números inteiros. P(x) : x > 0 Qual o valor verdade de P(y) P(5)? Qual o valor verdade de P(y) P(5)?

24 Variáveis livres Exemplo: Considere o domínio de todos os números inteiros. P(x) : x > 0 Qual o valor verdade de P(y) P(5)? indefinido Qual o valor verdade de P(y) P(5)? verdade Nos dois casos, y é uma variável livre, não está associada a um quantificador.

25 Escopo dos quantificadores Exemplo Para a fórmula bem formada: ( x)( y)[s(x, y) L(y, a)]. O escopo de ( y) é S(x, y) L(y, a). O escopo de ( x) é ( y)[s(x, y) L(y, a). Considere a interpretação onde o domínio são todas as cidades brasileiras; S(x, y) é a propriedade de que x e y estão no mesmo estado; e L(y, z) é a propriedade de que y e z começam com a mesma letra; e a é uma constante com o valor Americana. Qual o valor-verdade nessa interpretação da wff?

26 Tradução Muitas frases podem ser escritas por predicados lógicos. Considere a frase: Todo papagaio é feio. É o mesmo que dizer: Para qualquer coisa, se essa coisa é um papagaio, então é feio.

27 Tradução Muitas frases podem ser escritas por predicados lógicos. Considere a frase: Todo papagaio é feio. É o mesmo que dizer: Para qualquer coisa, se essa coisa é um papagaio, então é feia. Sejam P(x) : x é um papagaio e F (x) : x é feia. Simbolicamente: ( x)(p(x) F (x)).

28 Tradução Dica da Gersting: o quantificador universal e o conectivo de implicação quase sempre estão juntos. Poderíamos substituir, neste contexto, ( x)(p(x) F (x)) por ( x)(p(x) F (x))? Não! nem tudo no mundo é papagaio feio!

29 Tradução Dica da Gersting: o quantificador universal e o conectivo de implicação quase sempre estão juntos. Poderíamos substituir, neste contexto, ( x)(p(x) F (x)) por ( x)(p(x) F (x))? Não! nem tudo no mundo é papagaio feio!

30 Tradução Considere a frase: Existe um papagaio feio. É o mesmo que dizer: Existe uma coisa, que é um papagaio e é feia. Sejam P(x) : x é um papagaio e F (x) : x é feia. Simbolicamente: ( x)(p(x) F (x)).

31 Tradução Dica da Gersting: o quantificador existencial e o conectivo quase sempre estão juntos. Poderíamos substituir, neste contexto, ( x)(p(x) F (x)) por ( x)(p(x) F (x))?

32 Tradução Poderíamos substituir, neste contexto, ( x)(p(x) F (x)) por ( x)(p(x) F (x))? O que precisa acontecer para que nosso predicado seja verdade? Se não existirem papagaios é verdade. Mas existem... Então, para ser verdade, se existe um papagaio, ele tem que ser feio. Mas isso não é (sempre) verdade! Então essa tradução está mal feita.

33 Tradução A palavra só é bastante problemática. Sua posição na frase, muda completamente o significado da mesma: Só João ama Maria. João só ama Maria. João ama só Maria.

34 Tradução Reescrevendo: Só João ama Maria. é João. João só ama Maria. amar Maria. João ama só Maria. Maria. Se alguma coisa ama Maria, então essa coisa Se João faz alguma coisa, então essa coisa é Se João ama alguma coisa, então essa coisa é

35 Tradução Prática: Considere: S(x) : x é um estudante, I (x) : x é inteligente, e M(x) : x gosta de música. Escreva predicados bem formados para as seguintes sentenças (o domínio são todas as pessoas): 1 Todos os estudantes são inteligentes. 2 Alguns estudantes inteligentes gostam de música. 3 Todos que gostam de música são estudantes estúpidos. 4 Só estudantes inteligentes gostam de música.

36 GERSTING, Judith L. Mathematical Structures for Computer Science 5th Ed.

Cálculo de Predicados. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março

Cálculo de Predicados. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março Matemática Discreta Cálculo de Predicados Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Quantificadores Como expressar a proposição Para todo número inteiro x, o valor de x é positivo. usando

Leia mais

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Exercícios Use lógica proposicional para provar os seguintes argumentos: a) A B C B A C b) A B C B C A c) A B B A C C Exercícios Use lógica

Leia mais

Quantificadores, Predicados e Validade

Quantificadores, Predicados e Validade Quantificadores, Predicados e Validade Quantificadores e Predicados Fbfs proposicionais tem uma possibilidade limitada de expressão. Exemplo: Para todo x, x > 0 Ela não pode ser simbolizada adequadamente

Leia mais

Matemática Discreta - 03

Matemática Discreta - 03 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 03 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

AULA 5 QUANTIFICADORES, PREDICADOS E VALIDADE

AULA 5 QUANTIFICADORES, PREDICADOS E VALIDADE Disciplina: Matemática Computacional Prof. Diana de Barros Teles AULA 5 QUANTIFICADORES, PREDICADOS E VALIDADE Quantificadores: são frases do tipo para todo, ou para cada, ou para algum, isso é, frases

Leia mais

Lógica para computação - Linguagem da Lógica de Predicados

Lógica para computação - Linguagem da Lógica de Predicados DAINF - Departamento de Informática Lógica para computação - Linguagem da Lógica de Predicados Prof. Alex Kutzke ( http://alex.kutzke.com.br/courses ) 13 de Outubro de 2015 Razões para uma nova linguagem

Leia mais

Teoria dos Conjuntos. Matemática Discreta. Teoria dos Conjuntos - Parte I. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG.

Teoria dos Conjuntos. Matemática Discreta. Teoria dos Conjuntos - Parte I. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. Matemática Discreta Teoria dos Conjuntos - Parte I Profa. Sheila Morais de Almeida DAINF-UTFPR-PG abril - 2017 Letras maiúsculas: conjuntos. Letras minúsculas: elementos do conjunto. Pertinência: o símbolo

Leia mais

1 TEORIA DOS CONJUNTOS

1 TEORIA DOS CONJUNTOS 1 TEORIA DOS CONJUNTOS Definição de Conjunto: um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada. Em outras palavras,

Leia mais

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG Matemática Discreta Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Tautologias Tautologia é uma fórmula proposicional que é verdadeira para todos os possíveis valores-verdade

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Correção dos Exercícios (Rosen 47) Prioridade dos Quantificadores (Rosen 38) Ligando Variáveis (Rosen 38) Predicados com duas variáveis. Equivalências lógicas (Rosen 39) Negando

Leia mais

Elementos de Lógica Matemática p. 1/2

Elementos de Lógica Matemática p. 1/2 Elementos de Lógica Matemática Uma Breve Iniciação Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Elementos de Lógica Matemática p. 1/2 Vamos aprender a falar aramaico? ǫ > 0 ( δ

Leia mais

Conteúdo. Correção Exercícios Revisão para Prova

Conteúdo. Correção Exercícios Revisão para Prova Conteúdo Correção Exercícios Revisão para Prova Rosen 58 1) Transcreva as proposições abaixo para o português, em que o domínio para cada variável consista nos números reais. a) x y (x

Leia mais

INTRODUÇÃO À LÓGICA MATEMÁTICA

INTRODUÇÃO À LÓGICA MATEMÁTICA INTRODUÇÃO À LÓGICA MATEMÁTICA Matemática Aplicada a Computação rofessor Rossini A M Bezerra Lógica é o estudo dos princípios e métodos usados para distinguir sentenças verdadeiras de falsas. Definição

Leia mais

Fundamentos 1. Lógica de Predicados

Fundamentos 1. Lógica de Predicados Fundamentos 1 Lógica de Predicados Predicados e Quantificadores Estudamos até agora a lógica proposicional Predicados e Quantificadores Estudamos até agora a lógica proposicional A lógica proposicional

Leia mais

Cálculo de Predicados

Cálculo de Predicados Matemática Discreta - Departamento de Matemática - EST-IPV - 2003/2004 - II Cálculo de Predicados 1. Predicados e quantificadores Consideremos as afirmações seguintes: x é par (1) x é tão alto como y (2)

Leia mais

Lógica predicados. Lógica predicados (continuação)

Lógica predicados. Lógica predicados (continuação) Lógica predicados (continuação) Uma formula está na forma normal conjuntiva (FNC) se é uma conjunção de cláusulas. Qualquer fórmula bem formada pode ser convertida para uma FNC, ou seja, normalizada, seguindo

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Correção dos Exercícios (Rosen 47) Prioridade dos Quantificadores (Rosen 38) Ligando Variáveis (Rosen 38) Equivalências lógicas (Rosen 39) Negando expressões com quantificadores

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Correção Exercícios Negando quantificadores agrupados (Rosen 57) Tradução Lógica - Português (Rosen 55) Tradução Português Lógica(Rosen 56) Exercícios Rosen (59) 9) Considere

Leia mais

Técnicas de Inteligência Artificial

Técnicas de Inteligência Artificial Universidade do Sul de Santa Catarina Ciência da Computação Técnicas de Inteligência Artificial Aula 04 Lógica Proposicional e Lógica dos Predicados Max Pereira Proposicional A lógica está relacionada

Leia mais

Negação. Matemática Básica. Negação. Negação. Humberto José Bortolossi. Parte 3. Regras do Jogo. Regras do Jogo

Negação. Matemática Básica. Negação. Negação. Humberto José Bortolossi. Parte 3. Regras do Jogo. Regras do Jogo Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Parte 3 Parte 3 Matemática Básica 1 Parte 3 Matemática Básica 2 Qual é a negação do predicado

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/59 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

Introdução à Lógica de Predicados

Introdução à Lógica de Predicados Introdução à Lógica de Predicados Matemática Discreta I Rodrigo Ribeiro Departamento de Ciências Exatas e Aplicadas Universidade de Federal de Ouro Preto 10 de dezembro de 2012 Motivação (I) Considere

Leia mais

Lógica de Predicados. Correção dos Exercícios Regras de Inferência

Lógica de Predicados. Correção dos Exercícios Regras de Inferência Lógica de Predicados Correção dos Exercícios Regras de Inferência O que foi visto até agora... Predicado Proposição Quantificadores Conjuntos Quantificadores com restrição Operações Lógicas com predicados

Leia mais

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1 Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados

Leia mais

Regras de Inferência. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março

Regras de Inferência. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março Matemática Discreta Regras de Inferência Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Argumentos Válidos em Lógica Proposicional Considere o argumento: Se João pensa, então João existe.

Leia mais

IME, UFF 7 de novembro de 2013

IME, UFF 7 de novembro de 2013 em Lógica de IME, UFF 7 de novembro de 2013 Sumário em... em Sintaxe da A lógica que estamos definindo é uma extensão de LS e é chamada de Lógica de Ordem,, por uma razão que será esclarecida mais adiante.

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Correção Exercícios Quantificadores Agrupados; (Rosen 50) Traduzindo sentenças. Exercícios Quais as negações de: 1) Existe um político honesto 2) Todos os brasileiros comem

Leia mais

Lógica Proposicional. p : Hoje não é sexta-feira. q : Todo homem é mortal. r : Existem pessoas inseguras.

Lógica Proposicional. p : Hoje não é sexta-feira. q : Todo homem é mortal. r : Existem pessoas inseguras. Tópicos Introdução à Lógica Edna A. Hoshino DCT - UFMS fevereiro de 2011 1 Tabela-Verdade Equivalências Proposicionais Formas Normais 2 Variáveis e Predicados Quantificadores 3 para predicados e quantificadores

Leia mais

Capítulo 8 Lógica de primeira Ordem

Capítulo 8 Lógica de primeira Ordem Capítulo 8 Lógica de primeira Ordem Tópicos 1. Contextualização 2. Definições 3. Exemplos 4. Questão desafio! 2 O que não é possível expressar em Lógica Proposicional? Todo tricolor é um campeão. Roberto

Leia mais

Este material se compõe de exercícios de Lógica relacionadas as disciplinas de Fundamentos de Matemática e Matemática Discreta..

Este material se compõe de exercícios de Lógica relacionadas as disciplinas de Fundamentos de Matemática e Matemática Discreta.. This is page i Printer: Opaque this 1 Lógica Este material se compõe de exercícios de Lógica relacionadas as disciplinas de Fundamentos de Matemática e Matemática Discreta.. 1.1 Tabela Verdade 1. (FM-2003)

Leia mais

Lógica dos Quantificadores: sintaxe

Lógica dos Quantificadores: sintaxe Lógica dos Quantificadores: sintaxe Renata de Freitas e Petrucio Viana IME, UFF 18 de junho de 2015 Sumário 1. Princípios sintáticos 2. Alfabeto de LQ 3. Fórmulas de LQ 4. Variáveis livres, variáveis ligadas

Leia mais

Lógica de Predicados. Quantificadores

Lógica de Predicados. Quantificadores Lógica de Predicados Quantificadores Conteúdo Correção de Exercícios Operações Lógicas Quantificadores Rosen (pg 33) Tradução Português Lógica Rosen (pg 42) Exercícios Determinar o conjunto verdade em

Leia mais

LÓGICA APLICADA A COMPUTAÇÃO

LÓGICA APLICADA A COMPUTAÇÃO LÓGICA APLICADA A COMPUTAÇÃO 2009.3 Aquiles Burlamaqui Ementa Unidade 2 Lógica de Predicados: Linguagem e Semântica Tradução do português para a Lógica Quantificadores e Tipos Quantificadores como Conjunções

Leia mais

SMA Elementos de Matemática Notas de Aulas

SMA Elementos de Matemática Notas de Aulas Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação SMA 341 - Elementos de Matemática Notas de Aulas Ires Dias Sandra Maria Semensato de Godoy São Carlos 2009 Sumário 1 Noções

Leia mais

2 Lógica Fuzzy. 2 Lógica Fuzzy. Sintaxe da linguagem

2 Lógica Fuzzy. 2 Lógica Fuzzy. Sintaxe da linguagem 2 Lógica Fuzzy 2.1 Cálculo proposicional (lógica proposicional) 2.2 Lógica de Predicados 2.3 Lógica de múltiplos valores 2.4 Lógica Fuzzy Proposições fuzzy Inferência a partir de proposições fuzzy condicionais

Leia mais

Usando as regras de Morgan, de a negação das proposições:

Usando as regras de Morgan, de a negação das proposições: LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi fabianotaguchi@gmail.com http://fabianotaguchi.wordpress.com EXERCÍCIOS Usando as regras de Morgan, de a negação das proposições: a) É falso que não está frio

Leia mais

Gestão Empresarial Prof. Ânderson Vieira

Gestão Empresarial Prof. Ânderson Vieira NOÇÕES DE LÓGICA Gestão Empresarial Prof. Ânderson ieira A maioria do texto apresentado neste arquivo é do livro Fundamentos de Matemática Elementar, ol. 1, Gelson Iezzi e Carlos Murakami (eja [1]). Algumas

Leia mais

1. = F; Q = V; R = V.

1. = F; Q = V; R = V. ENADE 2005 e 2008 Nas opções abaixo, representa o condicional material (se...então...), v representa a disjunção (ou um, ou outro, ou ambos) e ~ representa a negação (não). Com o auxílio de tabelas veritativas,

Leia mais

Capítulo 3 Lógica de Primeira Ordem

Capítulo 3 Lógica de Primeira Ordem Capítulo 3 Lógica de Primeira Ordem Lógica para Programação LEIC - Tagus Park 1 o Semestre, Ano Lectivo 2007/08 c Inês Lynce and Luísa Coheur Bibliografia Martins J.P., Lógica para Programação, Capítulo

Leia mais

Aula 1 Aula 2. Ana Carolina Boero. Página:

Aula 1 Aula 2. Ana Carolina Boero.   Página: Elementos de lógica e linguagem matemática E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Linguagem matemática A linguagem matemática

Leia mais

A linguagem da Lógica de Predicados. (Capítulo 8) LÓGICA APLICADA A COMPUTAÇÃO. Professor: Rosalvo Ferreira de Oliveira Neto

A linguagem da Lógica de Predicados. (Capítulo 8) LÓGICA APLICADA A COMPUTAÇÃO. Professor: Rosalvo Ferreira de Oliveira Neto A linguagem da Lógica de Predicados (Capítulo 8) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Contextualização 2. Definições 3. Exemplos 4. Lista 3 O que não é

Leia mais

Faculdade de Informática PUCRS Lógica para Computação Lista de Exercícios Sintaxe e Semântica da Lógica de Predicados Prof.

Faculdade de Informática PUCRS Lógica para Computação Lista de Exercícios Sintaxe e Semântica da Lógica de Predicados Prof. Faculdade de Informática PUCRS Lógica para Computação Lista de Exercícios Sintaxe e Semântica da Lógica de Predicados Prof. Alfio Martini 1. Seja OP = {{d}, {f, g}, Ar F }, onde d é uma constante, Ar F

Leia mais

Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO

Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO Inteligência Artificial IA Prof. João Luís Garcia Rosa II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO 2004 Representação do conhecimento Para representar o conhecimento do mundo que um sistema

Leia mais

Prof. Cesar Augusto Tacla

Prof. Cesar Augusto Tacla PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ REPRESENTAÇÃO DE CONHECIMENTOS PARTE 3: LÓGICA DE 1A. ORDEM Prof. Cesar Augusto Tacla UTFPR/Campus Curitiba 1 TÓPICOS Compromissos ontológicos e epistemológicos

Leia mais

1 Lógica de primeira ordem

1 Lógica de primeira ordem 1 Lógica de primeira ordem 1.1 Sintaxe Para definir uma linguagem de primeira ordem é necessário dispor de um alfabeto. Este alfabeto introduz os símbolos à custa dos quais são construídos os termos e

Leia mais

2º. Semestre de 2006 Marcelo Nogueira São José dos Campos - SP

2º. Semestre de 2006 Marcelo Nogueira São José dos Campos - SP (Exercício 01) Simbolize, no nível proposicional, os seguintes argumentos: (a) Os vencimentos aumentam somente se há inflação. Se há inflação, então o custo de vida aumenta. Os vencimentos não aumentaram.

Leia mais

LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE

LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE Algumas sentenças nã pdem ser expressas apenas cm us de símbls prpsicinais, parênteses e cnectivs lógics exempl: a sentenç a Para td x, x >0

Leia mais

Matemática Discreta. Teoria de Conjuntos - Parte 2. Profa. Sheila Morais de Almeida. abril DAINF-UTFPR-PG

Matemática Discreta. Teoria de Conjuntos - Parte 2. Profa. Sheila Morais de Almeida. abril DAINF-UTFPR-PG Matemática Discreta Teoria de Conjuntos - Parte 2 Profa. Sheila Morais de Almeida DAINF-UTFPR-PG abril - 2017 Operações em conjuntos As operações entre conjuntos podem ser unárias, binárias, ternárias,

Leia mais

Aula 12: Lógica de Predicados

Aula 12: Lógica de Predicados Lógica para Computação Primeiro Semestre, 2015 Aula 12: Lógica de Predicados DAINF-UTFPR Prof. Ricardo Dutra da Silva Vamos estender a lógica proposicional para torná-la mais expressiva. Na lógica proposicional,

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Correção Exercícios Operações Lógicas sobre Predicados Condicional Quantificador de Unicidade (Rosen 37) Quantificadores com Restrição (Rosen 38) Tradução Português-Lógica

Leia mais

2 AULA. Conectivos e Quantificadores. lógicas. LIVRO. META: Introduzir os conectivos e quantificadores

2 AULA. Conectivos e Quantificadores. lógicas. LIVRO. META: Introduzir os conectivos e quantificadores 1 LIVRO Conectivos e Quantificadores Lógicos META: Introduzir os conectivos e quantificadores lógicos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Compreender a semântica dos conectivos

Leia mais

Dedução Natural para a Lógica de Predicados

Dedução Natural para a Lógica de Predicados Dedução Natural para a Lógica de Predicados Matemática Discreta I Rodrigo Ribeiro Departamento de Ciências Exatas e Aplicadas Universidade de Federal de Ouro Preto 14 de dezembro de 2012 Lógica de Predicados

Leia mais

n. 19 QUANTIFICADOR UNIVERSAL QUANTIFICADOR EXISTENCIAL QUANTIFICADOR EXISTENCIAL DE UNICIDADE SENTENÇAS ABERTAS

n. 19 QUANTIFICADOR UNIVERSAL QUANTIFICADOR EXISTENCIAL QUANTIFICADOR EXISTENCIAL DE UNICIDADE SENTENÇAS ABERTAS n. 19 QUANTIFICADOR UNIVERSAL QUANTIFICADOR EXISTENCIAL QUANTIFICADOR EXISTENCIAL DE UNICIDADE SENTENÇAS ABERTAS As sentenças em que não é possível atribuir valor lógico verdadeiro ou falso, porque isso

Leia mais

Antonio Paulo Muccillo de Medeiros

Antonio Paulo Muccillo de Medeiros Antonio Paulo Muccillo de Medeiros Conceito É a área da matemática que estuda os argumentos (premissas e conclusão). Estuda os métodos e princípios que permitam distinguir argumentos corretos e incorretos.

Leia mais

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados

Leia mais

Simbolização de Enunciados com um Quantificador

Simbolização de Enunciados com um Quantificador Lógica para Ciência da Computação I Lógica Matemática Texto 13 Simbolização de Enunciados com um Quantificador Sumário 1 Quantificadores: simbolização e sintaxe 2 2 Explicitando e quantificando variáveis

Leia mais

Lógica de primeira ordem (Capítulo 8 - Russell) Inteligência Artificial

Lógica de primeira ordem (Capítulo 8 - Russell) Inteligência Artificial Lógica de primeira ordem (Capítulo 8 - Russell) Inteligência Artificial Estrutura 1- Contextualização 2- Definições 3- Lista de exercício 4- Prolog 5- Regras em Prolog - Mundo Wumpus 6- Aplicação do Mundo

Leia mais

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Newton José Vieira 21 de agosto de 2007 SUMÁRIO Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova 1 CONJUNTOS A NOÇÃO

Leia mais

FICHA DE TRABALHO N.º 2 MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES

FICHA DE TRABALHO N.º 2 MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES FICHA DE TRABALHO N.º MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES Conhece a Matemática e dominarás o Mundo. Galileu Galilei GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Considere a condição px : x é um número

Leia mais

2014/1S EP33D Matemática Discreta

2014/1S EP33D Matemática Discreta 014/1S EP33D Matemática Discreta Avaliação Substitutiva 01 Data: 1/05/014 Início: 13h00min Duração:,5 horas (3 aulas) INFORMAÇÕES: (i) a prova é individual; (ii) qualquer forma de consulta ou auxílio à

Leia mais

Enunciados Quantificados Equivalentes

Enunciados Quantificados Equivalentes Enunciados Quantificados Equivalentes Renata de Freitas e Petrucio Viana IME, UFF Junho de 2014 Sumário Equivalência de enunciados quantificados. Aplicação da noção de interpretação para decidir quando

Leia mais

Lógica para Computação

Lógica para Computação Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br A (ou lógica de 1ª ordem) é uma extensão da lógica proposicional que aumenta sua expressividade,

Leia mais

Afirmações Matemáticas

Afirmações Matemáticas Afirmações Matemáticas Na aula passada, vimos que o objetivo desta disciplina é estudar estruturas matemáticas, afirmações sobre elas e como provar essas afirmações. Já falamos das estruturas principais,

Leia mais

Campos Sales (CE),

Campos Sales (CE), UNIERSIDADE REGIONAL DO CARIRI URCA PRÓ-REITORIA DE ENSINO E GRADUAÇÃO PROGRAD UNIDADE DESCENTRALIZADA DE CAMPOS SALES CAMPI CARIRI OESTE DEPARTAMENTO DE MATEMÁTICA DISCIPLINA: Tópicos de Matemática SEMESTRE:

Leia mais

Enunciados Quantificados Equivalentes

Enunciados Quantificados Equivalentes Lógica para Ciência da Computação I Lógica Matemática Texto 15 Enunciados Quantificados Equivalentes Sumário 1 Equivalência de enunciados quantificados 2 1.1 Observações................................

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Slides da disciplina Lógica para Computação ministrada pelo Prof. Celso Antônio Alves Kaestner, Dr. Eng. (kaestner@dainf.ct.utfpr.edu.br) entre 2007 e 2008. Alterações feitas em 2009

Leia mais

A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA

A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA MAT1513 - Laboratório de Matemática - Diurno Professor David Pires Dias - 2017 Texto sobre Lógica (de autoria da Professora Iole de Freitas Druck) A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA Iniciemos

Leia mais

Fundamentos de Matemática

Fundamentos de Matemática Fundamentos de Matemática Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 1 7 de janeiro de 2013 Aula 1 Fundamentos de Matemática 1 Apresentação Aula 1

Leia mais

LISTA DE EXERCÍCIOS. Implicações e Teoria dos Conjuntos, Conectivos Lógicos

LISTA DE EXERCÍCIOS. Implicações e Teoria dos Conjuntos, Conectivos Lógicos LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 03 Implicações e Teoria dos Conjuntos, Conectivos Lógicos [01] Considere os seguintes predicados (x

Leia mais

SMA Elementos de Matemática Notas de Aulas. Ires Dias - Sandra Maria Semensato de Godoy

SMA Elementos de Matemática Notas de Aulas. Ires Dias - Sandra Maria Semensato de Godoy SMA - 341 - Elementos de Matemática Notas de Aulas Ires Dias - Sandra Maria Semensato de Godoy 2006 Capítulo 1 Noções de Lógica Lógica é a higiene usada pelos matemáticos para conservar suas idéias saudáveis

Leia mais

Cálculo proposicional

Cálculo proposicional O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais

Leia mais

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues As respostas encontram-se em itálico. 1. Quais das frases a seguir são sentenças? a. A lua é feita de queijo verde. erdadeira, pois é uma

Leia mais

Lógica Computacional

Lógica Computacional Lógica Computacional Consequência Tautológica e Lógica em Frases Quantificadas Leis de de Morgan Separação de Quantificadores Consequências Analíticas e Método Axiomático 3 Novembro 2016 Lógica Computacional

Leia mais

Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática

Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Argumentação em Matemática Prof. Lenimar Nunes de Andrade e-mail: numerufpb@gmail.com ou lenimar@mat.ufpb.br versão 1.0

Leia mais

Gabarito da Avaliação 3 de Lógica Computacional 1

Gabarito da Avaliação 3 de Lógica Computacional 1 Questões iguais em todas as provas: Gabarito da Avaliação 3 de Lógica Computacional 1 1. (5 pts) Utilize a Regra DC para mostrar que é válido o seguinte argumento: p q r, s ~r ~t, s u p u De acordo com

Leia mais

Unidade 2. Lógica de Predicados. Objetivos:

Unidade 2. Lógica de Predicados. Objetivos: Unidade 2 Lógica de Predicados Objetivos: Conhecer a linguagem formal Lógica de Predicados, assim como gerar fórmulas bem formadas nessa linguagem, a atribuição de valor verdade às fórmulas envolvendo

Leia mais

Para provar uma implicação se p, então q, é suficiente fazer o seguinte:

Para provar uma implicação se p, então q, é suficiente fazer o seguinte: Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que

Leia mais

Lógica para Computação Segundo Semestre, Aula 10: SAT. Prof. Ricardo Dutra da Silva. ( p (q ( q r))) ( p r) ( p q) ( p q r) p r.

Lógica para Computação Segundo Semestre, Aula 10: SAT. Prof. Ricardo Dutra da Silva. ( p (q ( q r))) ( p r) ( p q) ( p q r) p r. Lógica para Computação Segundo Semestre, 2014 Aula 10: SAT DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. SAT é o problema de decidir se existe uma valoração que satisfaça uma fórmula proposicional.

Leia mais

Aula 2, 2014/2 Sintaxe da Lógica dos Conectivos

Aula 2, 2014/2 Sintaxe da Lógica dos Conectivos Notas de aula de Lógica para Ciência da Computação Aula 2, 2014/2 Sintaxe da Lógica dos Conectivos Renata de Freitas e Petrucio Viana Departamento de Análise, IME UFF 27 de agosto de 2014 Sumário 1 Sintaxe

Leia mais

Inteligência Artificial 2016/2017. Grupo 1 Perguntas obrigatórias (15 Minutos)

Inteligência Artificial 2016/2017. Grupo 1 Perguntas obrigatórias (15 Minutos) EI (diurno e PL) ETI (diurno e PL) IGE (diurno e PL) Inteligência Artificial 2016/2017 Teste Tipo de Sistemas Baseados em Conhecimento Lê cuidadosamente as instruções desta prova feita em moldes não habituais.

Leia mais

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa.

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa. Tema 1 Lógica e Teoria dos Conjuntos 1. Proposições e valores lógicos. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira

Leia mais

Matemática discreta e Lógica Matemática

Matemática discreta e Lógica Matemática AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1 Lógica Sentenças, representação

Leia mais

Noções básicas de Lógica

Noções básicas de Lógica Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a uma sequências de símbolos. Uma expressão pode ser uma expressão com significado expressão sem significado

Leia mais

Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. Exemplos:

Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. Exemplos: 1 Noções Básicas de Lógica 1.1 Proposições Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. 1. Os sapos são anfíbios. 2. A capital do Brasil é Porto Alegre. 3. O tomate é um tubérculo.

Leia mais

GAN Lógica para Ciência da Computação I. Profs. Petrucio Viana e Renata de Freitas. Lista 14 - Demonstrações em LPO

GAN Lógica para Ciência da Computação I. Profs. Petrucio Viana e Renata de Freitas. Lista 14 - Demonstrações em LPO GAN 00166 Lógica para Ciência da Computação GAN 00171 Lógica para Ciência da Computação I Profs. Petrucio Viana e Renata de Freitas Lista 14 - Demonstrações em LPO 1. Simbolize os argumentos a seguir em

Leia mais

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a

Leia mais

Matemática discreta e Lógica Matemática

Matemática discreta e Lógica Matemática AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1. Lógica proposicional: introdução,

Leia mais

Faculdade de Informática e Tecnologia de Pernambuco

Faculdade de Informática e Tecnologia de Pernambuco Faculdade de Informática e Tecnologia de Pernambuco Plano de Ensino Disciplina: INF101 - Álgebra Aplicada à Computação; Professor: Diego Machado Dias; Curso: Ciência da Computação; Carga horária: 72h;

Leia mais

Lógica Proposicional Sintaxe

Lógica Proposicional Sintaxe Lógica Proposicional Sintaxe José Gustavo de Souza Paiva Lógica Proposicional Forma mais simples da lógica Fatos do mundo real representados por sentenças sem argumento proposições Proposição Sentença

Leia mais

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1.

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. LIÇÃO 4 QUANTIFICADORES Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. (b) x 2 2x + 1 = 0. (c) x é um país. (d) Ele e

Leia mais

Matemática Básica EXERCÍCIOS OBRIGATÓRIOS. Dê um contraexemplo para cada sentença falsa.

Matemática Básica EXERCÍCIOS OBRIGATÓRIOS. Dê um contraexemplo para cada sentença falsa. DR. SIMON G. CHIOSSI @ GMA / UFF MB V 1 0/02/2016 NOME LEGÍVEL: Matemática Básica Prova V 1 turma A1 0 / 02 / 2016 MATRÍCULA: EXERCÍCIOS OBRIGATÓRIOS (1) Sejam P(x) o predicado x 2 = x e Q(x) o predicado

Leia mais

PROBLEMAS DE LÓGICA. Prof. Élio Mega

PROBLEMAS DE LÓGICA. Prof. Élio Mega PROBLEMAS DE LÓGICA Prof. Élio Mega ALGUNS CONCEITOS DA LÓGICA MATEMÁTICA Sentença é qualquer afirmação que pode ser classificada de verdadeira (V) ou falsa (F) (e exatamente uma dessas coisas, sem ambiguidade).

Leia mais

MATEMÁTICA DISCRETA E LÓGICA MATEMÁTICA PROF. APARECIDO EDILSON MORCELLI

MATEMÁTICA DISCRETA E LÓGICA MATEMÁTICA PROF. APARECIDO EDILSON MORCELLI MATEMÁTICA DISCRETA E LÓGICA MATEMÁTICA PROF. APARECIDO EDILSON MORCELLI CONSTRUÇÃO DA TABELA- VERDADE Dada a fórmula: {A [C (A C)]} Observamos três ocorrências de conectivos:,,. O último é a primeira

Leia mais

Resumo. Sistemas e Sinais Conjuntos e Funções. Conjuntos. Aula de Hoje

Resumo. Sistemas e Sinais Conjuntos e Funções. Conjuntos. Aula de Hoje Resumo Sistemas e Sinais Conjuntos e Funções lco@ist.utl.pt Instituto Superior Técnico Conjuntos. Atribuição e asserção. Operadores, variáveis e predicados. Quantificadores. Produto cartesiano. Funções.

Leia mais

ANÁLISE MATEMÁTICA I. Curso: EB

ANÁLISE MATEMÁTICA I. Curso: EB ANÁLISE MATEMÁTICA I (com Laboratórios) Curso: EB Lógica - Resumo Ana Matos DMAT Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a qualquer sequência de símbolos.

Leia mais

Diferenciais inexatas e o fator integrante

Diferenciais inexatas e o fator integrante Métodos Matemáticos 202 Notas de Aula Equações Diferenciais Ordinárias III A C Tort 2 de outubro de 202 Diferenciais inexatas e o fator integrante imos que a EDO implícita: é exata se e apenas se: M(x,

Leia mais

Sistemas Dedutivos Lógica de 1ª. Ordem (LPO)

Sistemas Dedutivos Lógica de 1ª. Ordem (LPO) Sistemas Dedutivos Lógica de 1ª. Ordem (LPO) UTFPR/Curitiba Prof. Cesar A. Tacla http://www.pessoal.utfpr.edu.br/tacla 28/03/2016 12:51 MÉTODO DE PROVA POR RESOLUÇÃO Plano Resolução em LPO método de prova

Leia mais

Matemática para controle:

Matemática para controle: Matemática para controle: Introdução à Lógica Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro amit@nacad.ufrj.br http://www.nacad.ufrj.br/ amit Introdução

Leia mais

Aula 2: Linguagem Proposicional

Aula 2: Linguagem Proposicional Lógica para Computação Primeiro Semestre, 2015 Aula 2: Linguagem Proposicional DAINF-UTFPR Prof. Ricardo Dutra da Silva Linguagens naturais, como o nosso Português, podem expressar ideias ambíguas ou imprecisas.

Leia mais

Inteligência Artificial IA IV. RACIOCÍNIO BASEADO EM REGRAS

Inteligência Artificial IA IV. RACIOCÍNIO BASEADO EM REGRAS Inteligência Artificial IA Prof. João Luís Garcia Rosa IV. RACIOCÍNIO BASEADO EM REGRAS Parte 1 2004 Introdução A forma como um corpo de conhecimento sobre um certo campo é expresso por um especialista

Leia mais