Lógica de Predicados

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Lógica de Predicados"

Transcrição

1 Lógica de Predicados

2 Conteúdo Correção dos Exercícios (Rosen 47) Prioridade dos Quantificadores (Rosen 38) Ligando Variáveis (Rosen 38) Equivalências lógicas (Rosen 39) Negando expressões com quantificadores (Rosen 39)

3 Exercícios Rosen 47 8)Transcreva estas proposições para o português, em que R(x) é x é um coelho e H(x) é x salta e o domínio são todos os animais. a) x(r(x) H(x))

4 Exercícios Rosen 47 8)Transcreva estas proposições para o português, em que R(x) é x é um coelho e H(x) é x salta e o domínio são todos os animais. a) x(r(x) H(x)) Todo coelho salta.

5 Exercícios Rosen 47 8)Transcreva estas proposições para o português, em que R(x) é x é um coelho e H(x) é x salta e o domínio são todos os animais. a) x(r(x) H(x)) Todo coelho salta. b) x(r(x) ^ H(x))

6 Exercícios Rosen 47 8)Transcreva estas proposições para o português, em que R(x) é x é um coelho e H(x) é x salta e o domínio são todos os animais. a) x(r(x) H(x)) Todo coelho salta. b) x(r(x) ^ H(x)) Todos os animais são coelhos e saltam

7 Exercícios Rosen 47 8)Transcreva estas proposições para o português, em que R(x) é x é um coelho e H(x) é x salta e o domínio são todos os animais. a) x(r(x) H(x)) Todo coelho salta. b) x(r(x) ^ H(x)) Todos os animais são c) x(r(x) H(x)) coelhos e saltam

8 Exercícios Rosen 47 8)Transcreva estas proposições para o português, em que R(x) é x é um coelho e H(x) é x salta e o domínio são todos os animais. a) x(r(x) H(x)) Todo coelho salta. b) x(r(x) ^ H(x)) Todos os animais são coelhos e saltam c) x(r(x) H(x)) Existe um animal que se é coelho então ele salta.

9 Exercícios Rosen 47 8)Transcreva estas proposições para o português, em que R(x) é x é um coelho e H(x) é x salta e o domínio são todos os animais. a) x(r(x) H(x)) Todo coelho salta. b) x(r(x) ^ H(x)) Todos os animais são coelhos e saltam c) x(r(x) H(x)) Existe um animal que se é coelho então ele salta. d) x(r(x) ^ H(x))

10 Exercícios Rosen 47 8)Transcreva estas proposições para o português, em que R(x) é x é um coelho e H(x) é x salta e o domínio são todos os animais. a) x(r(x) H(x)) Todo coelho salta. b) x(r(x) ^ H(x)) Todos os animais são coelhos e saltam c) x(r(x) H(x)) Existe um animal que se é coelho então ele salta. d) x(r(x) ^ H(x)) Existe um coelho que salta

11 Exercícios Rosen 47 9) Considere P(x) como a proposição x fala russo e considere Q(x) como a proposição x sabe a linguagem computacional C++. Expresse cada uma dessas sentenças em termos de P(x), Q(x), quantificadores e conectivos lógicos. O domínio para quantificadores são todos os estudantes de sua escola.

12 Exercícios Rosen 47 9) Considere P(x) = x fala russo Q(x)= x sabe a linguagem C++. Domínio ={todos os estudantes de sua escola} a) Há um estudante em sua escola que fala russo e sabe C++.

13 Exercícios Rosen 47 9)P(x) = x fala russo Q(x)= x sabe a linguagem C++. Domínio ={todos os estudantes de sua escola} a) Há um estudante em sua escola que fala russo e sabe C++. x (P(x) ^ Q(x))

14 Exercícios Rosen 47 9)P(x) = x fala russo Q(x)= x sabe a linguagem C++. Domínio ={todos os estudantes de sua escola} b) Há um estudante em sua escola que fala russo mas não sabe C++.

15 Exercícios Rosen 47 9)P(x) = x fala russo Q(x)= x sabe a linguagem C++. Domínio ={todos os estudantes de sua escola} b) Há um estudante em sua escola que fala russo mas não sabe C++. x (P(x) ^ ~Q(x))

16 Exercícios Rosen 47 9)P(x) = x fala russo Q(x)= x sabe a linguagem C++. Domínio ={todos os estudantes de sua escola} c) Todo estudante em sua escola ou fala russo ou sabe C++.

17 Exercícios Rosen 47 9)P(x) = x fala russo Q(x)= x sabe a linguagem C++. Domínio ={todos os estudantes de sua escola} c) Todo estudante em sua escola ou fala russo ou sabe C++. x (P(x) v Q(x))

18 Exercícios Rosen 47 9)P(x) = x fala russo Q(x)= x sabe a linguagem C++. Domínio ={todos os estudantes de sua escola} d) Nenhum estudante em sua escola fala russo ou sabe C++.

19 Exercícios Rosen 47 9)P(x) = x fala russo Q(x)= x sabe a linguagem C++. Domínio ={todos os estudantes de sua escola} d) Nenhum estudante em sua escola fala russo ou sabe C++. ~ x (P(x) v Q(x))

20 Refrescar a Mente!!! Na aula passada traduzimos as seguintes sentenças: Todo estudante desta classe estudou lógica e Todo estudante da classe visitou Canadá ou México!!!

21 Predicados com duas variáveis Para cada estudante desta classe, x estudou lógica. C(x) = x estudou lógica S(x) = x é estudante desta classe Vamos reformular nossa primeira frase: Todo estudante desta classe estudou lógica

22 Predicados com duas variáveis Para cada estudante desta classe, x estudou lógica. C(x) = x estudou lógica S(x) = x é estudante desta classe Domínio 1: {estudantes desta classe} x C(x)

23 Predicados com duas variáveis Para cada estudante desta classe, x estudou lógica. C(x) = x estudou lógica S(x) = x é estudante desta classe Domínio 1: {estudantes desta classe} x C(x) Domínio 2: {todas as pessoas} x (S(x) C(x))

24 Predicados com duas variáveis Para cada estudante desta classe, x estudou lógica. C(x) = x estudou lógica S(x) = x é estudante desta classe Agora vamos definir uma novo predicado!!! Q(x,y) = estudante x estudou matéria y

25 Predicados com duas variáveis Para cada estudante desta classe, x estudou lógica. Q(x,y) = estudante x estudou matéria y Domínio 1: {estudantes desta classe} x Q(x,lógica)

26 Predicados com duas variáveis Para cada estudante desta classe, x estudou lógica. Q(x,y) = estudante x estudou matéria y Domínio 1: {estudantes desta classe} x Q(x,lógica) Domínio 2: {todas as pessoas} x (S(x) Q(x, lógica))

27 Predicados com duas variáveis Algum estudante da classe visitou Canadá ou México. V(x,y) = x visitou o país y x (V(x,México) v V(x,Canadá))

28 Quantificadores Agrupados x (P(x) ^ Q(x)) v x R(x) Escopo não se sobrepõe. Escopo Escopo Relembrando o que é escopo de um quantificador.

29 Variável Livre x (x+y = 0) x é ligada Não é uma proposição, pois y é variável livre Todas as variáveis que ocorrem em um função proposicional devem ser ligadas ou devem representar um conjunto de valores particulares para ser uma proposição.

30 Quantificadores Agrupados Dois quantificadores são agrupados se um está no escopo do outro. x y (x+y = 0)

31 Quantificadores Agrupados Dois quantificadores são agrupados se um está no escopo do outro. x y (x+y = 0) x Q(x) onde Tudo que está no escopo pode ser considerado uma função proposicional Q(x) = yp(x,y) P(x,y) = (x+y = 0)

32 Quantificadores Agrupados Dois quantificadores são agrupados se um está no escopo do outro. x y (x+y = 0) É difícil de se x Q(x) onde entender!!!! Q(x) = yp(x,y) P(x,y) = (x+y = 0)

33 Pensando em quantificações como um laço x {1,2,3 } e y {a,b,c} x y P(x,y) 1 2 a b c a b c = V = V = V = V = V = V Todas as combinações devem ser verdadeiras 3 a b c = V = V = V

34 Pensando em quantificações como um laço x {1,2,3 } e y {a,b,c} x y P(x,y) 1 2 a b c a b c =? =? =? =? =? =? Pelo menos um de cada deve ser verdadeiro 3 a b c =? =? =?

35 Pensando em quantificações como um laço x {1,2,3 } e y {a,b,c} x y P(x,y) 1 2 a b c a b c = V = V = V =? =? =? Em um grupo tem que dar tudo Verdade 3 a b c =? =? =?

36 Pensando em quantificações como um laço x {1,2,3 } e y {a,b,c} x y P(x,y) a b c a b c a b c = V =? =? =? =? =? =? =? =? Basta que um resultado seja Verdade

37 Quantificadores Agrupados Como vimos a ordem dos quantificadores agrupados é importante, a menos que todos sejam iguais ( ou ).

38 Quantificadores Agrupados Como vimos a ordem dos quantificadores agrupados é importante, a menos que sejam todos sejam todos ou. Exemplo: Q(x,y) = x+y=0 Domínio = {números reais} y x Q(x,y) Falso ou Verdadeiro?

39 Pensando... x,y R y x(x+y = 0) Existe um número real y para todo numero real x = V = F = F = F = V = F = F = F = V Deveria ser o mesmo y para todo x

40 Pensando... x,y R y x(x+y = 0) = V = F = F = F = V = F Deveria ser o mesmo y para todo x, logo é = F = F = V FALSO

41 Quantificadores Agrupados Como vimos a ordem dos quantificadores agrupados é importante, a menos que sejam todos sejam todos ou. Exemplo: Q(x,y) = x+y=0 Domínio = {números reais} y x Q(x,y) Falso!!!! x y Q(x,y) Falso ou Verdadeiro?

42 Pensando... x,y R x y(x+y = 0) = V = F = F = F = V = F Sempre tem um V no conjunto logo é = F = F = V

43 Pensando... x,y R x y(x+y = 0) = V = F = F = F = V = F Sempre tem um V no conjunto logo é = F = F = V Verdade

44 Quantificadores Agrupados Como vimos a ordem dos quantificadores agrupados é importante, a menos que sejam todos sejam todos ou. Exemplo: Q(x,y) = x+y=0 Domínio = {números reais} y x Q(x,y) Falso!!!! x y Q(x,y) ENTÃO... A ORDEM IMPORTA!!! Verdadeiro!!!

45 Quantificadores Agrupados Como vimos a ordem dos quantificadores agrupados é importante, a menos que sejam todos sejam todos ou. Exemplo: Q(x,y) = x+y=0 Domínio = {números reais} Podemos ter quantificações com mais de duas variáveis!!! y x Q(x,y) Falso!!!! x y Q(x,y) Verdadeiro!!!

46 Traduzindo sentenças da matemática A soma de dois números inteiros positivos é sempre positiva Domínio = Z +

47 Traduzindo sentenças da matemática A soma de dois números inteiros positivos é sempre positiva Domínio = Z + x y (x+y > 0)

48 Traduzindo sentenças da matemática A soma de dois números inteiros positivos é sempre positiva Domínio = Z + x y (x+y > 0) Domínio = Z

49 Traduzindo sentenças da matemática A soma de dois números inteiros positivos é sempre positiva Domínio = Z + x y (x+y > 0) Domínio = Z x y (((x>0)^(y>0))(x+y > 0))

50 Traduzindo do Português Se uma pessoa é do sexo feminino e tem filhos, então ela é mãe de alguém Domínio = { todas as pessoas} F(x) = x é do sexo feminino P(x) = x tem filho M(x,y) = x é mãe de y

51 Traduzindo do Português Se uma pessoa é do sexo feminino e tem filhos, então ela é mãe de alguém Domínio = { todas as pessoas} F(x) = x é do sexo feminino P(x) = x tem filho M(x,y) = x é mãe de y?????????

52 Traduzindo do Português Se uma pessoa é do sexo feminino e tem filhos, então ela é mãe de alguém Domínio = { todas as pessoas} F(x) = x é do sexo feminino P(x) = x tem filho M(x,y) = x é mãe de y (F(x) ^ P(x))????

53 Traduzindo do Português Se uma pessoa é do sexo feminino e tem filhos, então ela é mãe de alguém Domínio = { todas as pessoas} F(x) = x é do sexo feminino P(x) = x tem filho M(x,y) = x é mãe de y (F(x) ^ P(x)) M(x,y) e os quantificadores?

54 Traduzindo do Português Se uma pessoa é do sexo feminino e tem filhos, então ela é mãe de alguém Domínio = { todas as pessoas} F(x) = x é do sexo feminino P(x) = x tem filho M(x,y) = x é mãe de y x((f(x) ^ P(x)) M(x,y)) Todas as pessoas que são do sexo feminino e tem filhos.

55 Traduzindo do Português Se uma pessoa é do sexo feminino e tem filhos, então ela é mãe de alguém Domínio = { todas as pessoas} F(x) = x é do sexo feminino P(x) = x tem filho M(x,y) = x é mãe de y Para todos os x s existe um y. x((f(x) ^ P(x)) ym(x,y))

56 Traduzindo do Português Se uma pessoa é do sexo feminino e tem filhos, então ela é mãe de alguém Domínio = { todas as pessoas} F(x) = x é do sexo feminino P(x) = x tem filho M(x,y) = x é mãe de y Podemos por do lado de fora x y ((F(x) ^ P(x)) M(x,y))

57 Lógica de Predicados Concluímos o 1.3 do Rosen e estamos aptos a fazer todos os exercícios das páginas 47 a 50

58 Equivalências (S T) Sentenças que envolvem predicados e quantificadores são logicamente equivalentes se e somente se elas têm o mesmo valor verdade quaisquer que sejam os predicados substituídos nessas sentenças e qualquer que seja o domínio para as variáveis nessas funções proposicionais.

59 Equivalências x(p(x) ^ Q(x)) x P(x) ^ x Q(x) x(p(x) v Q(x)) x P(x) v x Q(x)

60 Equivalências x(p(x) ^ Q(x)) x P(x) ^ x Q(x) x(p(x) v Q(x)) x P(x) v x Q(x) CUIDADO!!!! x(p(x) v Q(x)) x P(x) v x Q(x) x(p(x) ^ Q(x)) x P(x) ^ x Q(x)

61 Negando Expressões Quantificadas Não é o caso de todos os estudantes desta classe terem feito aulas de lógica. ~ x P(x)

62 Negando Expressões Quantificadas Não é o caso de todos os estudantes desta classe terem feito aulas de lógica. ~ x P(x) Podemos reformular a frase para: Existe um estudante desta classe que não teve aula de lógica. x ~P(x)

63 Negando Expressões Quantificadas Não é o caso de todos os estudantes desta classe terem feito aulas de lógica. ~ x P(x) Existe um estudante desta classe que não teve aula de lógica. x ~P(x) Ilustramos que: ~ x P(x) x ~P(x)

64 Negando Expressões Quantificadas Existe um estudante na classe que teve aulas de calculo. x P(x) Não é o caso de existir um estudante na classe que teve aulas de calculo. ~ x P(x)

65 Negando Expressões Quantificadas Não é o caso de existir um estudante na classe que teve aulas de calculo. ~ x P(x) Podemos reformular a frase para: Todo os estudantes nesta classe não tiveram aulas de calculo. x ~P(x)

66 Negando Expressões Quantificadas Não é o caso de existir um estudante na classe que teve aulas de calculo. ~ x P(x) Todo os estudantes nesta classe não tiveram aulas de calculo. x ~P(x) Ilustramos que: ~ x P(x) x ~P(x)

67 Negando Expressões Quantificadas As regras para negações de quantificadores são chamadas de Leis de De Morgan para quantificadores. ~ x P(x) x ~P(x) ~ x P(x) x ~P(x)

68 Exercícios 1) Quais as negações de: a) Existe um político honesto b) Todos os brasileiros comem churrasco 2) Negar x (x 2 > x) 3) Negar x (x 2 = x) 4) Mostre que: ~ x (P(x)Q(x)) x (P(x) ^ ~Q(x))

69 Exercício 1) 1) Existe um político honesto H(x) = x é honesto Domínio = {todos os políticos} Como fica a proposição???

70 Exercício 1) 1) Existe um político honesto H(x) = x é honesto Domínio = {todos os políticos} x H(x)

71 Exercício 1) 1) Existe um político honesto H(x) = x é honesto Domínio = {todos os políticos} x H(x) negando ~ x H(x)

72 Exercício 1) 1) Existe um político honesto H(x) = x é honesto Domínio = {todos os políticos} x H(x) negando ~ x H(x) Sabemos que ~ x H(x) x ~H(x) Então podemos dizer que:...

73 Exercício 1) 1) Existe um político honesto H(x) = x é honesto Domínio = {todos os políticos} x H(x) negando ~ x H(x) Sabemos que ~ x H(x) x ~H(x) Então podemos dizer que: Todos os políticos são desonestos.

74 Exercícios 2) Negar x (x 2 > x)

75 Exercícios 3) Negar x (x 2 > x) ~ x (x 2 > x)????

76 Exercícios 3) Negar x (x 2 > x) ~ x (x 2 > x) x ~ (x 2 > x)????

77 Exercícios 3) Negar x (x 2 > x) ~ x (x 2 > x) x ~ (x 2 > x)???? x (x 2 x) Qual????

78 Exercícios 1) Mostre que: ~ x (P(x)Q(x)) x (P(x) ^ ~Q(x)) Rosen pg 47 exercícios: 6c, 6d, 6e, 6f Rosen pg 48 exercício 34 Rosen pg 59 9 a) 9 b) 9 c) 9 i) 11 a) 11 b) Rosen pg 61 exercício 26

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Correção dos Exercícios (Rosen 47) Prioridade dos Quantificadores (Rosen 38) Ligando Variáveis (Rosen 38) Predicados com duas variáveis. Equivalências lógicas (Rosen 39) Negando

Leia mais

Lógica de Predicados. Quantificadores

Lógica de Predicados. Quantificadores Lógica de Predicados Quantificadores Conteúdo Correção de Exercícios Operações Lógicas Quantificadores Rosen (pg 33) Tradução Português Lógica Rosen (pg 42) Exercícios Determinar o conjunto verdade em

Leia mais

Lógica de Predicados. Correção dos Exercícios Regras de Inferência

Lógica de Predicados. Correção dos Exercícios Regras de Inferência Lógica de Predicados Correção dos Exercícios Regras de Inferência O que foi visto até agora... Predicado Proposição Quantificadores Conjuntos Quantificadores com restrição Operações Lógicas com predicados

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Correção Exercícios Operações Lógicas sobre Predicados Condicional Quantificador de Unicidade (Rosen 37) Quantificadores com Restrição (Rosen 38) Tradução Português-Lógica

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL FACULDADE PITÁGORAS Curso Superior em Tecnologia: Banco de dados e Sistemas para Internet Matemática Computacional Prof. Ulisses Cotta Cavalca LÓGICA PROPOSICIONAL EXERCÍCIOS

Leia mais

Quantificadores, Predicados e Validade

Quantificadores, Predicados e Validade Quantificadores, Predicados e Validade Quantificadores e Predicados Fbfs proposicionais tem uma possibilidade limitada de expressão. Exemplo: Para todo x, x > 0 Ela não pode ser simbolizada adequadamente

Leia mais

Elementos de Lógica Matemática p. 1/2

Elementos de Lógica Matemática p. 1/2 Elementos de Lógica Matemática Uma Breve Iniciação Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Elementos de Lógica Matemática p. 1/2 Vamos aprender a falar aramaico? ǫ > 0 ( δ

Leia mais

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1 Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados

Leia mais

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Exercícios Use lógica proposicional para provar os seguintes argumentos: a) A B C B A C b) A B C B C A c) A B B A C C Exercícios Use lógica

Leia mais

Matemática Discreta. Lógica de Predicados. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG

Matemática Discreta. Lógica de Predicados. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG Matemática Discreta Lógica de Predicados Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Quantificadores Como expressar a sentença Para todo número inteiro x, o valor de x é positivo. usando

Leia mais

Matemática Discreta - 03

Matemática Discreta - 03 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 03 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Gabarito da Avaliação 3 de Lógica Computacional 1

Gabarito da Avaliação 3 de Lógica Computacional 1 Questões iguais em todas as provas: Gabarito da Avaliação 3 de Lógica Computacional 1 1. (5 pts) Utilize a Regra DC para mostrar que é válido o seguinte argumento: p q r, s ~r ~t, s u p u De acordo com

Leia mais

Raciocínio Lógico. Negação da Conjunção e Disjunção Inclusiva (Lei de Morgan) Professor Edgar Abreu.

Raciocínio Lógico. Negação da Conjunção e Disjunção Inclusiva (Lei de Morgan) Professor Edgar Abreu. Raciocínio Lógico Negação da Conjunção e Disjunção Inclusiva (Lei de Morgan) Professor Edgar Abreu www.acasadoconcurseiro.com.br Raciocínio Lógico NEGAÇÃO DE UMA PROPOSIÇÃO COMPOSTA Agora vamos aprender

Leia mais

Aula 12: Lógica de Predicados

Aula 12: Lógica de Predicados Lógica para Computação Primeiro Semestre, 2015 Aula 12: Lógica de Predicados DAINF-UTFPR Prof. Ricardo Dutra da Silva Vamos estender a lógica proposicional para torná-la mais expressiva. Na lógica proposicional,

Leia mais

FICHA DE TRABALHO N.º 2 MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES

FICHA DE TRABALHO N.º 2 MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES FICHA DE TRABALHO N.º MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES Conhece a Matemática e dominarás o Mundo. Galileu Galilei GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Considere a condição px : x é um número

Leia mais

Enunciados Quantificados Equivalentes

Enunciados Quantificados Equivalentes Lógica para Ciência da Computação I Lógica Matemática Texto 15 Enunciados Quantificados Equivalentes Sumário 1 Equivalência de enunciados quantificados 2 1.1 Observações................................

Leia mais

Noções básicas de Lógica

Noções básicas de Lógica Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a uma sequências de símbolos. Uma expressão pode ser uma expressão com significado expressão sem significado

Leia mais

Lógica Proposicional. p : Hoje não é sexta-feira. q : Todo homem é mortal. r : Existem pessoas inseguras.

Lógica Proposicional. p : Hoje não é sexta-feira. q : Todo homem é mortal. r : Existem pessoas inseguras. Tópicos Introdução à Lógica Edna A. Hoshino DCT - UFMS fevereiro de 2011 1 Tabela-Verdade Equivalências Proposicionais Formas Normais 2 Variáveis e Predicados Quantificadores 3 para predicados e quantificadores

Leia mais

Lógica para computação - Linguagem da Lógica de Predicados

Lógica para computação - Linguagem da Lógica de Predicados DAINF - Departamento de Informática Lógica para computação - Linguagem da Lógica de Predicados Prof. Alex Kutzke ( http://alex.kutzke.com.br/courses ) 13 de Outubro de 2015 Razões para uma nova linguagem

Leia mais

2014/1S EP33D Matemática Discreta

2014/1S EP33D Matemática Discreta 014/1S EP33D Matemática Discreta Avaliação Substitutiva 01 Data: 1/05/014 Início: 13h00min Duração:,5 horas (3 aulas) INFORMAÇÕES: (i) a prova é individual; (ii) qualquer forma de consulta ou auxílio à

Leia mais

Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação. Sentenças Abertas

Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação. Sentenças Abertas Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Sentenças Abertas Lógica Computacional 1 Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com Sentença

Leia mais

ANÁLISE MATEMÁTICA I. Curso: EB

ANÁLISE MATEMÁTICA I. Curso: EB ANÁLISE MATEMÁTICA I (com Laboratórios) Curso: EB Lógica - Resumo Ana Matos DMAT Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a qualquer sequência de símbolos.

Leia mais

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Newton José Vieira 21 de agosto de 2007 SUMÁRIO Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova 1 CONJUNTOS A NOÇÃO

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL FACULDADE PITÁGORAS Curso Superior em Tecnologia Redes de Computadores e Banco de dados Matemática Computacional Prof. Ulisses Cotta Cavalca LÓGICA PROPOSICIONAL Belo Horizonte/MG

Leia mais

Enunciados Quantificados Equivalentes

Enunciados Quantificados Equivalentes Enunciados Quantificados Equivalentes Renata de Freitas e Petrucio Viana IME, UFF Junho de 2014 Sumário Equivalência de enunciados quantificados. Aplicação da noção de interpretação para decidir quando

Leia mais

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados

Leia mais

Lógica Computacional

Lógica Computacional Lógica Computacional Consequência Tautológica e Lógica em Frases Quantificadas Leis de de Morgan Separação de Quantificadores Consequências Analíticas e Método Axiomático 3 Novembro 2016 Lógica Computacional

Leia mais

AULA 5 QUANTIFICADORES, PREDICADOS E VALIDADE

AULA 5 QUANTIFICADORES, PREDICADOS E VALIDADE Disciplina: Matemática Computacional Prof. Diana de Barros Teles AULA 5 QUANTIFICADORES, PREDICADOS E VALIDADE Quantificadores: são frases do tipo para todo, ou para cada, ou para algum, isso é, frases

Leia mais

SMA Elementos de Matemática Notas de Aulas

SMA Elementos de Matemática Notas de Aulas Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação SMA 341 - Elementos de Matemática Notas de Aulas Ires Dias Sandra Maria Semensato de Godoy São Carlos 2009 Sumário 1 Noções

Leia mais

Matemática para controle:

Matemática para controle: Matemática para controle: Introdução à Lógica Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro amit@nacad.ufrj.br http://www.nacad.ufrj.br/ amit Introdução

Leia mais

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa.

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa. Tema 1 Lógica e Teoria dos Conjuntos 1. Proposições e valores lógicos. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira

Leia mais

Introdução à Lógica de Predicados

Introdução à Lógica de Predicados Introdução à Lógica de Predicados Matemática Discreta I Rodrigo Ribeiro Departamento de Ciências Exatas e Aplicadas Universidade de Federal de Ouro Preto 10 de dezembro de 2012 Motivação (I) Considere

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 3

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 3 Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 3 www.pontodosconcursos.com.br 1 Apresentação Olá, pessoal Tudo bem com vocês? Em breve teremos o concurso do TCM/RJ e sabemos

Leia mais

Este material se compõe de exercícios de Lógica relacionadas as disciplinas de Fundamentos de Matemática e Matemática Discreta..

Este material se compõe de exercícios de Lógica relacionadas as disciplinas de Fundamentos de Matemática e Matemática Discreta.. This is page i Printer: Opaque this 1 Lógica Este material se compõe de exercícios de Lógica relacionadas as disciplinas de Fundamentos de Matemática e Matemática Discreta.. 1.1 Tabela Verdade 1. (FM-2003)

Leia mais

Usando as regras de Morgan, de a negação das proposições:

Usando as regras de Morgan, de a negação das proposições: LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi fabianotaguchi@gmail.com http://fabianotaguchi.wordpress.com EXERCÍCIOS Usando as regras de Morgan, de a negação das proposições: a) É falso que não está frio

Leia mais

LÓGICA APLICADA A COMPUTAÇÃO

LÓGICA APLICADA A COMPUTAÇÃO LÓGICA APLICADA A COMPUTAÇÃO 2009.3 Aquiles Burlamaqui Ementa Unidade 2 Lógica de Predicados: Linguagem e Semântica Tradução do português para a Lógica Quantificadores e Tipos Quantificadores como Conjunções

Leia mais

2º. Semestre de 2006 Marcelo Nogueira São José dos Campos - SP

2º. Semestre de 2006 Marcelo Nogueira São José dos Campos - SP (Exercício 01) Simbolize, no nível proposicional, os seguintes argumentos: (a) Os vencimentos aumentam somente se há inflação. Se há inflação, então o custo de vida aumenta. Os vencimentos não aumentaram.

Leia mais

Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática

Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Argumentação em Matemática Prof. Lenimar Nunes de Andrade e-mail: numerufpb@gmail.com ou lenimar@mat.ufpb.br versão 1.0

Leia mais

A semântica da Lógica de Predicados. (Capítulo 9) LÓGICA APLICADA A COMPUTAÇÃO. Professor: Rosalvo Ferreira de Oliveira Neto

A semântica da Lógica de Predicados. (Capítulo 9) LÓGICA APLICADA A COMPUTAÇÃO. Professor: Rosalvo Ferreira de Oliveira Neto A semântica da Lógica de Predicados (Capítulo 9) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto 1. Definições 2. Exemplos 3. Lista Estrutura 3 Interpretações mais elaboradas

Leia mais

Unidade 2. Lógica de Predicados. Objetivos:

Unidade 2. Lógica de Predicados. Objetivos: Unidade 2 Lógica de Predicados Objetivos: Conhecer a linguagem formal Lógica de Predicados, assim como gerar fórmulas bem formadas nessa linguagem, a atribuição de valor verdade às fórmulas envolvendo

Leia mais

Cálculo de Predicados

Cálculo de Predicados Matemática Discreta - Departamento de Matemática - EST-IPV - 2003/2004 - II Cálculo de Predicados 1. Predicados e quantificadores Consideremos as afirmações seguintes: x é par (1) x é tão alto como y (2)

Leia mais

Afirmações Matemáticas

Afirmações Matemáticas Afirmações Matemáticas Na aula passada, vimos que o objetivo desta disciplina é estudar estruturas matemáticas, afirmações sobre elas e como provar essas afirmações. Já falamos das estruturas principais,

Leia mais

Capítulo 8 Lógica de primeira Ordem

Capítulo 8 Lógica de primeira Ordem Capítulo 8 Lógica de primeira Ordem Tópicos 1. Contextualização 2. Definições 3. Exemplos 4. Questão desafio! 2 O que não é possível expressar em Lógica Proposicional? Todo tricolor é um campeão. Roberto

Leia mais

Fundamentos de Matemática

Fundamentos de Matemática Fundamentos de Matemática Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 1 7 de janeiro de 2013 Aula 1 Fundamentos de Matemática 1 Apresentação Aula 1

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Slides da disciplina Lógica para Computação ministrada pelo Prof. Celso Antônio Alves Kaestner, Dr. Eng. (kaestner@dainf.ct.utfpr.edu.br) entre 2007 e 2008. Alterações feitas em 2009

Leia mais

Para provar uma implicação se p, então q, é suficiente fazer o seguinte:

Para provar uma implicação se p, então q, é suficiente fazer o seguinte: Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que

Leia mais

RACIOCÍNIO LÓGICO. Quantas dessas proposições compostas são FALSAS? a) Nenhuma. b) Apenas uma. c) Apenas duas. d) Apenas três. e) Quatro.

RACIOCÍNIO LÓGICO. Quantas dessas proposições compostas são FALSAS? a) Nenhuma. b) Apenas uma. c) Apenas duas. d) Apenas três. e) Quatro. RACIOCÍNIO LÓGICO 01. Uma proposição é uma sentença fechada que possui sentido completo e à qual se pode atribuir um valor lógico verdadeiro ou falso. Qual das sentenças apresentadas abaixo se trata de

Leia mais

1 TEORIA DOS CONJUNTOS

1 TEORIA DOS CONJUNTOS 1 TEORIA DOS CONJUNTOS Definição de Conjunto: um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada. Em outras palavras,

Leia mais

Matemática E Extensivo V. 8

Matemática E Extensivo V. 8 Matemática E Extensivo V. 8 Resolva Aula 9 9.) D x + x 7x 6 = x = é raiz. Aula.) x + px + = Se + i é raiz, então i também é. 5 7 6 Soma = b a = p p = + i + i p = p = Q(x) = x + 5x + Resolvendo Q(x) =,

Leia mais

LÓGICA APLICADA A COMPUTAÇÃO

LÓGICA APLICADA A COMPUTAÇÃO LÓGICA APLICADA A COMPUTAÇÃO 2009.3 Aquiles Burlamaqui Apresentação da Disciplina Planejamento Conteúdo Programático Metodologia Bibliografia Definição Motivação Planejamento Semestre 2009.3 Local 3B5

Leia mais

Matemática discreta e Lógica Matemática

Matemática discreta e Lógica Matemática AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1. Lógica proposicional: introdução,

Leia mais

Lógica dos Quantificadores: sintaxe

Lógica dos Quantificadores: sintaxe Lógica dos Quantificadores: sintaxe Renata de Freitas e Petrucio Viana IME, UFF 18 de junho de 2015 Sumário 1. Princípios sintáticos 2. Alfabeto de LQ 3. Fórmulas de LQ 4. Variáveis livres, variáveis ligadas

Leia mais

2 AULA. Conectivos e Quantificadores. lógicas. LIVRO. META: Introduzir os conectivos e quantificadores

2 AULA. Conectivos e Quantificadores. lógicas. LIVRO. META: Introduzir os conectivos e quantificadores 1 LIVRO Conectivos e Quantificadores Lógicos META: Introduzir os conectivos e quantificadores lógicos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Compreender a semântica dos conectivos

Leia mais

Planificação do 1º Período

Planificação do 1º Período Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro Planificação do 1º Período Disciplina: Matemática A Grupo: 500 Ano: 10º Número de blocos de 45 minutos previstos: 74 Ano

Leia mais

Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO

Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO Inteligência Artificial IA Prof. João Luís Garcia Rosa II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO 2004 Representação do conhecimento Para representar o conhecimento do mundo que um sistema

Leia mais

Aula 2: Linguagem Proposicional

Aula 2: Linguagem Proposicional Lógica para Computação Primeiro Semestre, 2015 Aula 2: Linguagem Proposicional DAINF-UTFPR Prof. Ricardo Dutra da Silva Linguagens naturais, como o nosso Português, podem expressar ideias ambíguas ou imprecisas.

Leia mais

Aula 00. Matemática Financeira para ISS-Cuiabá. Matemática Financeira Professor: Guilherme Neves. Prof.

Aula 00. Matemática Financeira para ISS-Cuiabá. Matemática Financeira Professor: Guilherme Neves.  Prof. Aula 00 Matemática Financeira Professor: Guilherme Neves www.pontodosconcursos.com.br 1 Aula 00 Aula Demonstrativa Matemática Financeira Apresentação... 3 Modelos de questões resolvidas FGV... 4 Relação

Leia mais

PROVA RESOLVIDA TJ/SP RACIOCÍNIO LÓGICO. Professor Guilherme Neves.

PROVA RESOLVIDA TJ/SP RACIOCÍNIO LÓGICO. Professor Guilherme Neves. TJ/SP - 2017 RACIOCÍNIO LÓGICO Professor Guilherme Neves www.pontodosconcursos.com.br www.pontodosconcursos.com.br Professor Guilherme Neves 1 91. Uma negação lógica para a afirmação João é rico, ou Maria

Leia mais

Entropia, Entropia Relativa

Entropia, Entropia Relativa Entropia, Entropia Relativa e Informação Mútua Miguel Barão (mjsb@di.uevora.pt) Departamento de Informática Universidade de Évora 13 de Março de 2003 1 Introdução Suponhamos que uma fonte gera símbolos

Leia mais

A linguagem da Lógica de Predicados. (Capítulo 8) LÓGICA APLICADA A COMPUTAÇÃO. Professor: Rosalvo Ferreira de Oliveira Neto

A linguagem da Lógica de Predicados. (Capítulo 8) LÓGICA APLICADA A COMPUTAÇÃO. Professor: Rosalvo Ferreira de Oliveira Neto A linguagem da Lógica de Predicados (Capítulo 8) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Contextualização 2. Definições 3. Exemplos 4. Lista 3 O que não é

Leia mais

Campos Sales (CE),

Campos Sales (CE), UNIERSIDADE REGIONAL DO CARIRI URCA PRÓ-REITORIA DE ENSINO E GRADUAÇÃO PROGRAD UNIDADE DESCENTRALIZADA DE CAMPOS SALES CAMPI CARIRI OESTE DEPARTAMENTO DE MATEMÁTICA DISCIPLINA: Tópicos de Matemática SEMESTRE:

Leia mais

Simbolização de Enunciados com um Quantificador

Simbolização de Enunciados com um Quantificador Lógica para Ciência da Computação I Lógica Matemática Texto 13 Simbolização de Enunciados com um Quantificador Sumário 1 Quantificadores: simbolização e sintaxe 2 2 Explicitando e quantificando variáveis

Leia mais

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG Matemática Discreta Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Tautologias Tautologia é uma fórmula proposicional que é verdadeira para todos os possíveis valores-verdade

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos Técnicas de Prova Profa. Sheila Morais de Almeida DAINF-UTFPR-PG julho - 2015 Técnicas de Prova Definição Uma prova é um argumento válido que mostra a veracidade de um enunciado matemático.

Leia mais

JOÃO NUNES de SOUZA. LÓGICA para CIÊNCIA da COMPUTAÇÃO. Uma introdução concisa

JOÃO NUNES de SOUZA. LÓGICA para CIÊNCIA da COMPUTAÇÃO. Uma introdução concisa JOÃO NUNES de SOUZA LÓGICA para CIÊNCIA da COMPUTAÇÃO Uma introdução concisa 2 de junho de 2009 1 A linguagem da Lógica Proposicional Errata Caso você encontre algum erro nesse capítulo ou tenha algum

Leia mais

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico.

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico. CENTRO UNVERSITÁRIO UNA NOÇÕES DE RACIOCÍNIO LÓGICO Professor: Rodrigo Eustáquio Borges A disciplina Lógica Matemática tem como objetivo capacitar o aluno a reconhecer e aplicar os conceitos fundamentais

Leia mais

Aula 1 Aula 2. Ana Carolina Boero. Página:

Aula 1 Aula 2. Ana Carolina Boero.   Página: Elementos de lógica e linguagem matemática E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Linguagem matemática A linguagem matemática

Leia mais

ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011

ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011 Uma Resolução ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011 1. Seleccione e transcreva para a sua folha de exame a única opção correcta: A fórmula proposicional (p q) (p q) é a) logicamente

Leia mais

Inteligência Artificial IA IV. RACIOCÍNIO BASEADO EM REGRAS

Inteligência Artificial IA IV. RACIOCÍNIO BASEADO EM REGRAS Inteligência Artificial IA Prof. João Luís Garcia Rosa IV. RACIOCÍNIO BASEADO EM REGRAS Parte 1 2004 Introdução A forma como um corpo de conhecimento sobre um certo campo é expresso por um especialista

Leia mais

Resumo. Sistemas e Sinais Conjuntos e Funções. Conjuntos. Aula de Hoje

Resumo. Sistemas e Sinais Conjuntos e Funções. Conjuntos. Aula de Hoje Resumo Sistemas e Sinais Conjuntos e Funções lco@ist.utl.pt Instituto Superior Técnico Conjuntos. Atribuição e asserção. Operadores, variáveis e predicados. Quantificadores. Produto cartesiano. Funções.

Leia mais

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 4

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 4 Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 4 1 Apresentação Olá, pessoal Tudo bem com vocês? Finalmente saiu o edital do TCM/RJ Para quem ainda não me conhece, meu nome

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Emerson L. Monte Carmelo Doherty Andrade Departamento de Matemática Universidade Estadual de Maringá - UEM 2006 1 Predicados A Lógica proposicional não é suficientemente poderosa para

Leia mais

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17)

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Lista 1 - Bases Matemáticas Elementos de Lógica e Linguagem Matemática 1

Leia mais

Proposições simples e compostas

Proposições simples e compostas Revisão Lógica Proposições simples e compostas Uma proposição é simples quando declara algo sem o uso de conectivos. Exemplos de proposições simples: p : O número 2 é primo. (V) q : 15 : 3 = 6 (F) r :

Leia mais

INTRODUÇÃO À LÓGICA MATEMÁTICA

INTRODUÇÃO À LÓGICA MATEMÁTICA INTRODUÇÃO À LÓGICA MATEMÁTICA Matemática Aplicada a Computação rofessor Rossini A M Bezerra Lógica é o estudo dos princípios e métodos usados para distinguir sentenças verdadeiras de falsas. Definição

Leia mais

Lógica formal. A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação IV) Simbolização 1. Simples 2.

Lógica formal. A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação IV) Simbolização 1. Simples 2. Lógica formal A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação I) Simbolização 1. Simples 2. Composta B)Leis do pensamento I) Princípio da Identidade II) Principio do não-contraditório

Leia mais

Cálculo proposicional

Cálculo proposicional O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais

Leia mais

Diferenciais em Série de Potências

Diferenciais em Série de Potências Existência de Soluções de Equações Diferenciais em Série de Potências Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/ regi 0 de julho de

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 06 Lógica Proposicional Lógica Proposicional Lógica simples. A sentenças são formadas por conectivos como: e, ou, então.

Leia mais

Lógica Proposicional Semântica e Tabelas Verdade

Lógica Proposicional Semântica e Tabelas Verdade Lógica Proposicional Semântica e Tabelas Verdade Prof. Marcos A. Schreiner Disciplina de Introdução à Lógica 30 de março de 2015 Prof. Marcos A. Schreiner (UFPR) 30 de março de 2015 1 / 20 1 Introdução

Leia mais

Aula 00 Aula Demonstrativa

Aula 00 Aula Demonstrativa Aula 00 Aula Demonstrativa Apresentação... 2 Resolução da prova de RLQ do concurso PECFAZ 2013/ESAF... 4 Relação das questões comentadas... 17 Gabaritos... 20 www.pontodosconcursos.com.br 1 Apresentação

Leia mais

Álgebra das Proposições. Prof. Guilherme Tomaschewski Netto

Álgebra das Proposições. Prof. Guilherme Tomaschewski Netto Álgebra das Proposições Prof. Guilherme Tomaschewski Netto guilherme.netto@gmail.com Roteiro! Lógica Matemática clássica! Proposições! alores lógicos! Conectivos! Fórmulas Lógicas! Exemplos de aplicações

Leia mais

Lógica de primeira ordem (Capítulo 8 - Russell) Inteligência Artificial

Lógica de primeira ordem (Capítulo 8 - Russell) Inteligência Artificial Lógica de primeira ordem (Capítulo 8 - Russell) Inteligência Artificial Estrutura 1- Contextualização 2- Definições 3- Lista de exercício 4- Prolog 5- Regras em Prolog - Mundo Wumpus 6- Aplicação do Mundo

Leia mais

Matemática Básica EXERCÍCIOS OBRIGATÓRIOS. Dê um contraexemplo para cada sentença falsa.

Matemática Básica EXERCÍCIOS OBRIGATÓRIOS. Dê um contraexemplo para cada sentença falsa. DR. SIMON G. CHIOSSI @ GMA / UFF MB V 1 0/02/2016 NOME LEGÍVEL: Matemática Básica Prova V 1 turma A1 0 / 02 / 2016 MATRÍCULA: EXERCÍCIOS OBRIGATÓRIOS (1) Sejam P(x) o predicado x 2 = x e Q(x) o predicado

Leia mais

PROBLEMAS DE LÓGICA. Prof. Élio Mega

PROBLEMAS DE LÓGICA. Prof. Élio Mega PROBLEMAS DE LÓGICA Prof. Élio Mega ALGUNS CONCEITOS DA LÓGICA MATEMÁTICA Sentença é qualquer afirmação que pode ser classificada de verdadeira (V) ou falsa (F) (e exatamente uma dessas coisas, sem ambiguidade).

Leia mais

Matemática Discreta - Exercícios de Lógica. 1. Diga que relações lógicas existem entre as seguintes proposições:

Matemática Discreta - Exercícios de Lógica. 1. Diga que relações lógicas existem entre as seguintes proposições: 1. Diga que relações lógicas existem entre as seguintes proposições: (a) Todos os marcianos falam inglês. (b) Todos os marcianos não falam inglês. (c) Nenhum marciano fala inglês. (d) Alguns marcianos

Leia mais

Se o número máximo de laranjas estragadas é 4, então temos, no mínimo, 140 laranjas não estragadas.

Se o número máximo de laranjas estragadas é 4, então temos, no mínimo, 140 laranjas não estragadas. 26. (IBGE 2016/FGV) Em uma caixa há doze dúzias de laranjas, sobre as quais sabe-se que: I - há pelo menos duas laranjas estragadas; II - dadas seis quaisquer dessas laranjas, há pelo menos duas não estragadas.

Leia mais

Matemática Régis Cortes. Lógica matemática

Matemática Régis Cortes. Lógica matemática Lógica matemática 1 INTRODUÇÃO Neste roteiro, o principal objetivo será a investigação da validade de ARGUMENTOS: conjunto de enunciados dos quais um é a CONCLUSÃO e os demais PREMISSAS. Os argumentos

Leia mais

1. = F; Q = V; R = V.

1. = F; Q = V; R = V. ENADE 2005 e 2008 Nas opções abaixo, representa o condicional material (se...então...), v representa a disjunção (ou um, ou outro, ou ambos) e ~ representa a negação (não). Com o auxílio de tabelas veritativas,

Leia mais

SMA Elementos de Matemática Notas de Aulas. Ires Dias - Sandra Maria Semensato de Godoy

SMA Elementos de Matemática Notas de Aulas. Ires Dias - Sandra Maria Semensato de Godoy SMA - 341 - Elementos de Matemática Notas de Aulas Ires Dias - Sandra Maria Semensato de Godoy 2006 Capítulo 1 Noções de Lógica Lógica é a higiene usada pelos matemáticos para conservar suas idéias saudáveis

Leia mais

Aula 00. Raciocínio Lógico para Técnico do INSS. Raciocínio Lógico Professor: Guilherme Neves. Prof.

Aula 00. Raciocínio Lógico para Técnico do INSS. Raciocínio Lógico Professor: Guilherme Neves.  Prof. Aula 00 Raciocínio Lógico Professor: Guilherme Neves www.pontodosconcursos.com.br 1 Aula 00 Aula Demonstrativa Raciocínio Lógico para INSS Apresentação... 3 Modelos de Questões Comentadas - CESPE... 4

Leia mais

Iniciação a Lógica Matemática

Iniciação a Lógica Matemática Iniciação a Lógica Matemática Faculdade Pitágoras Prof. Edwar Saliba Júnior Julho de 2012 1 O Nascimento da Lógica É lógico que eu vou!, Lógico que ela disse isso! são expressões que indicam alguma coisa

Leia mais

Lógica,Linguagem e Comunicação-LLC

Lógica,Linguagem e Comunicação-LLC Lógica,Linguagem e Comunicação-LLC Introdução a Lógica Prof. Fabrício Rossy de Lima Lobato fabriciorossy@ig.com.br Agenda Introdução Lógica Lógica Formal Proposições Implicação Lógica Argumentação Quantificadores

Leia mais

RACIOCÍNIO LÓGICO-MATEMÁTICO

RACIOCÍNIO LÓGICO-MATEMÁTICO Josimar Padilha RACIOCÍNIO LÓGICO-MATEMÁTICO FUNDAMENTOS E MÉTODOS PRÁTICOS 2016 Capítulo 1 Lógica de Primeira Ordem-Proposicional Estruturas Lógicas CONCEITOS INICIAIS A lógica formal não se ocupa com

Leia mais

LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014

LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 1) Determinar o valor verdade da proposição (p q) r, sabendo-se que AL (p) =, AL (q) = e AL (r) =. Proposições são afirmações que podem ser julgadas como verdadeira

Leia mais

O problema proposto possui alguma solução? Se sim, quantas e quais são elas?

O problema proposto possui alguma solução? Se sim, quantas e quais são elas? PROVA PARA OS ALUNOS DE 3º ANO DO ENSINO MÉDIO 1) Considere o seguinte problema: Vitor ganhou R$ 3,20 de seu pai em moedas de 5 centavos, 10 centavos e 25 centavos. Se recebeu um total de 50 moedas, quantas

Leia mais

Lógica das Proposições

Lógica das Proposições Lógica das Proposições Transcrição - Podcast 1 Professor Carlos Mainardes Olá eu sou Carlos Mainardes do blog Matemática em Concursos, e esse material que estou disponibilizando trata de um assunto muito

Leia mais

AXB = {(x, y) x A e y B}

AXB = {(x, y) x A e y B} CENTRO UNIVERSITÁRIO DO NORTE PAULISTA LÓGICA E MATEMÁTICA DISCRETA 2010 1 Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não

Leia mais

Aula 5 Limites infinitos. Assíntotas verticais.

Aula 5 Limites infinitos. Assíntotas verticais. MÓDULO - AULA 5 Aula 5 Limites infinitos. Assíntotas verticais. Objetivo lim Compreender o significado dos limites infinitos lim f(x) = ±, f(x) = ± e lim f(x) = ± + Referências: Aulas 34 e 40, de Pré-Cálculo,

Leia mais