APONTAMENTOS DE CINEMÁTICA

Tamanho: px
Começar a partir da página:

Download "APONTAMENTOS DE CINEMÁTICA"

Transcrição

1 DEPARTAMENTO DE FÍSICA APONTAMENTOS DE CINEMÁTICA para a Cadeira de MECÂNICA E ONDAS LEIC-Tagus, 2º Semestre 2011/2012 João Fonseca

2 Cinemática. 1 - Referencial. Coordenadas. Para localizarmos uma partícula (um ponto material) no espaço tridimensional, podemos usar as coordenadas cartesianas (x, y, z) do ponto que ela ocupa, definidas da maneira indicada na figura 1. z z P P y P y x P x Figura 1 - Coordenadas cartesianas do ponto P Subjacente à definição das coordenadas está a escolha de um referencial, ou seja, uma origem (O) e três eixos (rectas orientadas) sobre os quais se definiu uma escala. Se uma partícula se deslocar, o seu movimento pode ser conhecido de maneira completa através das funções x(t), y(t) e z(t), tomadas em conjunto. [TÓPICO AVANÇADO]... Existem outras formas diferentes de especificar a posição de uma partícula, para lá das coordenadas cartesianas. A figura 2 mostra como se definem as coordenadas cilíndricas (ρ, θ, z) e a figura 3 ilustra as coordenadas esféricas (r,θ,φ). Em alternativa às coordenadas cartesianas, o movimento da partícula pode ser convenientemente descrito pelas funções {ρ(t), θ(t), z(t)} ou {r(t), θ(t), φ(t)}. Depende da geometria do movimento qual dos sistemas de coordenadas é mais simples de usar em cada caso.

3 z ρ θ Figura 2 Coordenadas cilíndricas Quando o movimento se realiza sobre um plano, ou seja, a duas dimensões apenas, são por vezes úteis as coordenadas polares, definidas na figura 4. Note-se que são um caso particular das coordenadas cilíndricas, com z=0. θ r φ Figura 3 Coordenadas esféricas

4 y ρ θ x Figura 4 Coordenadas polares É fácil verificar que são válidas as seguintes relações entre os vários sistemas de coordenadas: Coordenadas polares <-> coordenadas cartesianas: x = ρ cosθ ρ = (x 2 + y 2 ) 1/2 y = ρ senθ θ = tg -1 (y/x) Coordenadas cilíndricas <-> coordenadas cartesianas: x = ρ cosφ ρ = (x 2 + y 2 ) 1/2 y = ρ senφ φ = tg -1 (y/x) z = z z = z Coordenadas esféricas <-> coordenadas cartesianas: x = r senθ cosφ ρ = (x 2 + y 2 +z 2 ) 1/2 y = r senθ senφ θ = tg -1 [(x 2 + y 2 ) 1/2 /z] z = r cosθ φ = tg -1 (y/x)...

5 2 - Vector posição e vector deslocamento Muitas das grandezas físicas a que se faz recurso para estudar o movimento são grandezas vectoriais: além de intensidade, têm direcção e sentido. Para um tratamento adequado dessas grandezas, convém definir um sistema de vectores unitários de base, ou versores, por combinação dos quais, multiplicados por escalares adequados, se possa obter qualquer vector. Começaremos por discutir os vectores de base associados às coordenadas cartesianas. Esses vectores têm módulo unitário, estão orientados segundo a direcção dos eixos do referencial, e têm o sentido positivo dos eixos, (figura 5a). Designaremos estes vectores de base por (û x, û y, û z ), servindo o acento circunflexo para indicar que os respectivos módulos são unitários. z a) b) z r= xû x +yû y +zû z zû z û z û x û y y xû x yû y y y x x Figura 5 a) Vectores unitários de base das coordenadas cartesianas, e b) decomposição do vector posição em componentes vectoriais segundo os eixos cartesianos. A figura 5b mostra que o vector posição de um ponto P, que é por definição o vector que une a origem do referencial a esse ponto, pode ser escrito, tendo em conta a regra da adição de vectores, na forma [6] r = x û x + y û y + z û z

6 Traduzimos esta expressão dizendo que x, y e z são as componentes escalares de r. Chamamos vector deslocamento entre dois pontos à diferença entre os respectivos vectores posição. De acordo com a regra da diferença entre vectores, e com referência à figura 6, o vector deslocamento de P para Q é dado por [7] Δr = r Q r P = (x Q -x P ) û x + (y Q -y P ) û y + (z Q -z P ) û z. Se considerarmos dois pontos infinitamente próximos, o vector deslocamento é dado por z P z Q P Δr Q y P y Q x P x Q Figura 6 Vector deslocamento É conveniente por vezes usar o chamado referencial intrínseco, que é definido com base na própria trajectória seguida por um ponto material. A figura 7 ilustra a orientação dos vectores de base do referencial intrínseco. O vector û t é tangente à trajectória no ponto considerado, e aponta no sentido do movimento. O vector û n é normal à trajectória e aponta (por convenção) para o lado interior da curvatura. Em geral, uma trajectória tridimensional não é planificável (não está contida num plano), mas é possível definir em cada ponto o plano osculador, que contém a trajectória na vizinhança desse ponto. Nesse caso, o vector û n pertence ao plano osculador, e é ainda possível definir o

7 vector unitário binormal û b, perpendicular a û t e a û n. Quando o movimento se faz num plano, o vector binormal coincide sempre com a normal a esse plano. trajectória û b û n û t Figura 7 referencial intrínseco A figura 7 permite ver que o vector deslocamento entre dois pontos vizinhos tem uma direcção próxima do vector û t. No limite, quando os pontos são infinitamente próximos, o deslocamento infinitesimal dr aponta na mesma direcção que û t, e o seu módulo é igual ao comprimento do arco descrito. Este facto pode ser traduzido pela equação [18] dr = ds û t sendo ds o comprimento do arco. 3 - Vector velocidade e vector aceleração. A velocidade de um ponto material é uma grandeza vectorial que por definição é igual à derivada do vector posição : [19] v = dr/dt Esta definição permite de imediato obter a expressão da velocidade em coordenadas cartesianas, tendo em conta [6]:

8 [20] v = (dx/dt) û x + (dy/dt) û y + (dz/dt) û z (notar que os vectores de base em coordenadas cartesianas são constantes.) As componentes escalares da velocidade são as quantidades [20] v x = dx/dt; v y = dy/dt; v z = dz/dt Exemplo 1 A trajectória de um avião é observada a partir de uma torre de controle (situada na origem do referencial), e verifica-se que ela é descrita por x = t (m) y = t (m) z = 800 (m) com t em segundos. O eixo Ox aponta para Sul, e o eixo Oy aponta para Leste. Qual a velocidade do avião, e qual a sua posição no instante em que se iniciou a observação (t = 0)? Se não se alterar a rota, qual a distância mínima a que o avião passa da torre? Solução : A velocidade do avião é dada por v = v x û x + v y û y + v z û z, com v x = dx/dt; v y = dy/dt; v z = dz/dt. Logo, v = û x û y (ms -1 ), Podemos concluir que o avião voa horizontalmente (v z = 0). O ângulo que o seu rumo faz com o eixo Ox é dado por φ = tg -1 v y /v x = 144.7º. Está portanto a dirigir-se para o quadrante Noroeste. A velocidade de cruzeiro, em módulo, é v = [(-120.0) 2 +(85.0) 2 ] 1/2 = ms -1. No instante t = 0, o vector posição do avião é dado por r 0 = 4500 û x 1700 û y û z (m), e a sua distância à origem é D = r 0 = 4876 m. A torre vê o avião na direcção S20.7W (ou seja, no quadrante Sudoeste fazendo um ângulo de 20.7º com o Sul), e a 800 metros de altitude. A distância na horizontal é de 4810 m. No instante genérico t, a distância entre o avião e a torre é D(t) =[( t) 2 + ( 85.0t-1700) ] 1/2, e para que a distância

9 seja mínima deve anular-se a derivada desta expressão. Feito o cálculo resulta t = 18.3 s, e nesse instante a distância é de 4068 m (distância mínima) sendo a distância na horizontal de 3985 m. A equação [18] permite obter de imediato a expressão do vector velocidade no referencial intrínseco. Seja s(t) o espaço percorrido por uma partícula, medido ao longo da trajectória. Tendo em conta que são sempre válidas as expressões dr = (dr/dt)dt e ds = (ds/dt)dt para os diferenciais das funções r(t) e s(t) respectivamente, resulta que (dr/dt)dt = û t (ds/dt) dt ou seja, [21] v = (ds/dt) û t Este resultado traduz o facto de que o vector velocidade é sempre tangente à trajectória, sendo o seu módulo igual ao espaço percorrido (medido ao longo da trajectória) por unidade de tempo. A grandeza v=ds/dt designa-se por velocidade linear, e é igual ao módulo do vector velocidade. Logo, é também válida a expressão v = [(dx/dt) 2 +(dy/dt) 2 +(dz/dt) 2 ] 1/2. Define-se aceleração de um ponto material como derivada do vector velocidade: a = dv/dt ou a = d 2 r/dt 2 Resulta imediatamente que a expressão da aceleração em coordenadas cartesianas é a = (d 2 x/dt 2 )û x + (d 2 y/dt 2 )û y + (d 2 z/dt 2 )û z = (dv x /dt)û x + (dv y /dt)û y + (dv z /dt)û z [TÓPICO AVANÇADO]... A expressão de aceleração no referencial intrínseco pode ser obtida por derivação de [21]: a = dv/dt û t + v dû t /dt. Neste caso é necessário calcular a derivada de û t, que é não nula visto que o versor tem direcção variável. O cálculo será feito com o auxílio da figura 8. Escolhendo dois pontos

10 próximos sobre a trajectória, P 1 e P 2, traçando as tangentes nesses pontos e as respectivas normais, podemos definir o centro de curvatura local C e o raio de curvatura local ρ. Fazendo tender para zero a distância entre os dois pontos, definimos de modo exacto o centro de curvatura e o raio de curvatura no ponto P. O vector û t pode ser escrito em função de û x e û y como û t = cos (π/2-α) û x sen (π/2-α) û y (verifique), ou seja û t = senα û x cosα û y e dû t /dt = cosα(dα/dt) û x + sena(dα/dt) û y = (dα/dt)[cosα û x + senα û y ] A inspecção da figura mostra que cosα û x + senα û y = -û n, logo, conclui-se que dû t /dt = -(dα/dt)û n. Tendo em conta que dα/dt = (dα/ds)(ds/dt) = vdα/ds, e que a relação entre o ângulo dθ e o arco subtendido ds é ds = -ρdθ, sendo ρ o raio de curvatura (o sinal - resulta de ser dθ < 0 no caso da figura, por ser um ângulo no sentido horário), obtem-se dα/dt = -v/ρ, e, finalmente, dû t /dt = (v/ρ)û n.... û n û t ρ α α+dα C dα (<0) Figura 8 Centro de curvatura(c) e raio de curvatura (ρ) O resultado é [25] a = (dv/dt) û t + (v 2 /ρ) û n

11 que é a expressão desejada. Não confundir o raio de curvatura ρ com a coordenada polar representada pela mesma letra grega. A parcela segundo û t é a aceleração tangencial, que resulta da variação do módulo da velocidade. A parcela segundo û n é a aceleração centrípeta, que existe mesmo que o módulo da velocidade seja constante. A aceleração centrípeta só se anula se a trajectória for rectilínea (ρ é infinito nesse caso). Como convencionámos que o versor û n se dirige sempre para o lado interior da curvatura, podemos concluir que a aceleração centrípeta está sempre dirigida para o lado de dentro da curvatura, como o seu nome indica. 4 Movimento circular Quando o raio de curvatura é constante e igual a R ou seja. quando a trajectória é uma circunferência o vector velocidade pode ser escrito na forma v = R(dθ/dt) û t ou v = ωr û t, onde [30] ω = dθ/dt é a velocidade angular. É conveniente definir o vector velocidade angular w como se indica na figura 9: o seu módulo é igual a dθ/dt, a sua direcção é perpendicular ao plano do movimento, e o seu sentido é dado pela regra da mão direita quando os outros dedos apontam o sentido da rotação, o polegar aponta no sentido de ω. ω R v β r Figura 9 Definição do vector velocidade angular ω

12 Resulta da maneira como foi definido que o vector velocidade angular verifica a expressão [31] v = ω x r Com efeito, o módulo de ω x r é ω r senβ = ωr, que é o módulo da velocidade no movimento circular. Verifique que a direcção e o sentido do vector velocidade resultam correctos quando se usa a expressão [31]. 5 Movimento relativo de translacção. Em muitas situações é importante comparar descrições de um dado movimento feitas por observadores que estão em movimento relativo de translacção entre si. Por conveniência, vamos considerar que (S) é o referencial de um observador em repouso e (S ) é o referencial de um observador móvel. (S ) (S) r m r R r Figura 10 Movimento relativo de translacção Como se sabe, é arbitrário dizermos que um dado objecto está fixo: o chão que pisamos está suficientemente fixo para descrevermos em relação a ele o movimento de um projéctil, mas acompanha os movimentos de rotação e translacção da Terra, movimento do Sistema Solar na galáxia, etc...

13 A figura 10 mostra que os vectores posição da partícula vistos pelos dois observadores se relacionam através de [32] r = r r R onde r R é o vector posição da origem do referencial móvel, em relação ao referencial fixo. A derivação da expressão [32] conduz directamente à relação existente entre as velocidades da partícula segundo os dois observadores: [33] v = v v R e derivando novamente obtém-se a relação entre as acelerações: [34] a = a a R A última expressão tem uma consequência importante: se o movimento relativo entre os observadores for rectilíneo e uniforme, a R será zero e ambos os observadores determinam a mesma aceleração para o objecto móvel. Se no referencial (S) se verificar o Princípio da Inércia, que diz que um corpo livre de interacções mantém constante a sua velocidade, e se não existir aceleração de (S ) em relação a (S), será pela equação [34] a = a = 0, ou seja, o Princípio da Inércia verifica-se também em (S ). Chamamos referencial inercial a um sistema de eixos em que seja verificado o Princípio da Inércia. Podemos agora concluir que se (S) for um referencial inercial, qualquer outro referencial que tenha em relação a (S) um movimento de translacção rectilíneo e uniforme será também um referencial de inércia. Por esse motivo, designam-se por referenciais equivalentes dois sistemas de eixos com movimento relativo de translacção rectilíneo e uniforme. Um referencial que sofra uma aceleração não pode ser um referencial inercial. Um autocarro que trava (isto é, desacelera) é um bom exemplo de um referencial não inercial. Um objecto abandonado a si mesmo tende a manter o seu movimento inalterado (Princípio da Inércia) e por isso quando o autocarro trava esse objecto tende a acelerar em relação ao referencial autocarro. Se conseguirmos identificar um referencial inercial, poderemos testar os outros referenciais verificando se têm aceleração em relação ao

14 primeiro. Na prática, interessa-nos que o referencial com que trabalhamos seja suficientemente inercial para estudarmos o movimento de que nos ocupamos. Se quizermos estudar a queda de uma maçã, a superfície da Terra está suficientemente em repouso. Já o movimento do planeta Mercúrio será difícil de descrever e explicar se tomarmos a Terra como referencial, como verificaram os astrónomos anteriores a Copérnico (séc. 16) que usavam um sistema geocêntrico para o Sistema Solar. 6 Movimento relativo de rotação. Se um referencial girar em relação a outro considerado fixo, os respectivos observadores descreverão de modo diferente o movimento de uma mesma partícula. (S) z (S ) z ω y r = r y x x Figura 11 Os eixos do referencial (S ) giram em torno do eixo de rotação indicado a traço-ponto, com velocidade angular ω. A origem dos dois referenciais mantém-se coincidente.

15 Num exemplo importante de aplicação, o eixo a traço-ponto seria o eixo de rotação da Terra, e o eixo Oz a vertical (direcção do fio do prumo) de um lugar, por exemplo Lisboa. O referencial fixo poderia ser definido astronomicamente (eixos apontados para estrelas distantes). Como comparar as velocidades e as acelerações determinadas por dois observadores, um fixo e outro a girar? Como as origens se mantém coincidentes, o vector posição é o mesmo independentemente do referencial que se considere. [TÓPICO AVANÇADO]... Podemos afirmar que [35] r = xû x + yû y + zû z,= x û x + y û y + z û z onde se considertam as duas maneiras possíveis de decompôr o vector posição. Para o cálculo da velocidade, vamos optar por derivar a segunda decomposição, mas calculando segundo o ponto de vista do referencial (S): v = dr/dt = d/dt(x û x + y û y + z û z ) = (dx /dt) û x + (dy /dt) û y + (dz /dt) û z + x (dû x /dt) + y (dû y /dt) + z (dû z /dt). Foi necessário derivar os vectores de base do referencial (S ) pois estamos a calcular a velocidade segundo o observador em (S), para quem aqueles vectores de base estão a girar. Podemos considerar û y, por exemplo, como o vector posição de um ponto que se encontra na sua extremidade, e que gira com velocidade angular ω. A derivada (dû y /dt) será o vector velocidade desse ponto. De acordo com a equação [31], deverá então ser (dû y /dt) = ω x û y. Resultados análogos aplicam-se aos outros vectores de base, e a velocidade v pode ser escrita na forma v = [(dx /dt) û x + (dy /dt) û y + (dz /dt) û z ] + + x ω x û x + y ω x û y + z ω x û z.= [(dx /dt) û x + (dy /dt) û y + (dz /dt) û z ] + ω x r A quantidade entre parentesis rectos é a velocidade observada no referencial (S ), pelo que se pode concluir que...

16 [36] v = v + ω x r que é a relação procurada entre as duas velocidades. Para relacionar as acelerações, há que derivar [36]: a = (dv/dt) = d/dt(v x û x + v y û y + v z û z ) + d/dt(ω x r). No caso em que ω é constante, resulta: a = (a x û x + a y û y + a z û z ) + ω x (v x û x + v y û y + v z û z ) + ω x v Identificando os vectores, usando [36] e resolvendo em ordem a a, resulta: [37] a = a - 2 ω x v - ω x (ω x r) Em conclusão, o observador que está num referencial girante vê duas componentes de aceleração adicionais, que resultam da sua própria rotação. A parcela a Cor = -2 ω x v designa-se por aceleração de Coriolis. A parcela a c = - ω x (ω x r) designa-se por aceleração centrífuga. A aceleração de Coriolis só afecta os corpos que se movem em relação ao referencial (S ), pois anula-se se v = 0. Os corpos que se movem à superfície da Terra ficam sujeitos à aceleração de Coriolis quando observados a partir da Terra. A aceleração centrífuga é responsável pelo facto de a aceleração de queda dos corpos no campo gravítico depender da latitude. Exemplo 4 Imagine que a velocidade de rotação da Terra aumentava gradualmente. Para que duração do dia a aceleração da gravidade em Lisboa se reduzia a zero? Qual seria a situação no Equador? E no Polo Norte? Latitude de Lisboa: 39ºN.

17 ω 2 Rcos 2 λ Solução: A figura ao lado mostra como o efeito da aceleração centrífuga associada ao movimento de rotação da Terra corresponde (em primeira aproximação) a sub- λ trair ω 2 Rcos 2 λ ao valor da aceleração g 0 da gravidade, sendo λ a latitude. Para que a aceleração da gravidade se anule (imponderabilidade) deve ser g 0 = ω 2 Rcos 2 λ. Substituindo R por m, λ por 39º e g 0 por 9.8 ms -1, resulta ω = 1.597x10-3 rads -1. Este valor corresponde à velocidade angular da Terra na situação pretendida, e o período de rotação correspondente é dado por T = 2π/ω = 3933 s, ou seja, T = 1h05m34s. No Equador, a componente centrífuga da aceleração seria superior a g 0, e os objectos que não estivessem fixos seriam projectados no espaço. No Polo Norte, a situação não se alteraria, pois a aceleração centrífuga seria nula (cos 90º = 0). a c

Movimento circular e movimento relativo

Movimento circular e movimento relativo DEPARTAMENTO DE FÍSICA APONTAMENTOS DE CINEMÁTICA para a Cadeira de MECÂNICA E ONDAS Movimento circular e movimento relativo João Fonseca 4 Movimento circular Quando o raio de curvatura é constante e igual

Leia mais

APONTAMENTOS DE CINEMÁTICA

APONTAMENTOS DE CINEMÁTICA DEPARTAMENTO DE FÍSICA APONTAMENTOS DE CINEMÁTICA para a Cadeira de MECÂNICA E ONDAS João Fonseca Cinemática. 1 - Referencial. Coordenadas. Para localizarmos uma partícula (um ponto material) no espaço

Leia mais

APONTAMENTOS DE CINEMÁTICA. para a Cadeira de MECÂNICA E ONDAS. do Mestrado em Engenharia Electrotécnica e de Computadores 2º Semestre de 2016/17

APONTAMENTOS DE CINEMÁTICA. para a Cadeira de MECÂNICA E ONDAS. do Mestrado em Engenharia Electrotécnica e de Computadores 2º Semestre de 2016/17 APONTAMENTOS DE CINEMÁTICA para a Cadeira de MECÂNICA E ONDAS do Mestrado em Engenharia Electrotécnica e de Computadores 2º Semestre de 2016/17 João Fonseca Cinemática. 1 - Referencial. Coordenadas. Para

Leia mais

CADEIRA DE MECÂNICA E ONDAS 2º Semestre de 2011/2012. Problemas de cinemática, com resolução

CADEIRA DE MECÂNICA E ONDAS 2º Semestre de 2011/2012. Problemas de cinemática, com resolução Licenciatura em Engenharia Informática e de Computadores CADEIRA DE MECÂNICA E ONDAS 2º Semestre de 2011/2012 Problemas de cinemática, com resolução Problema 1.2 A trajectória de um avião é observada a

Leia mais

Fundamentos de Física. José Cunha

Fundamentos de Física. José Cunha José Cunha jmcunha@ipca.pt Cinemática de um Ponto Material Movimento Unidimensional Cinemática é a descrição do movimento sem considerar as suas causas 3 Cinemática 4 Cinemática 5 Cinemática Para descrever

Leia mais

Capítulo 9 - Rotação de Corpos Rígidos

Capítulo 9 - Rotação de Corpos Rígidos Aquino Lauri Espíndola 1 1 Departmento de Física Instituto de Ciências Exatas - ICEx, Universidade Federal Fluminense Volta Redonda, RJ 27.213-250 1 de dezembro de 2010 Conteúdo 1 e Aceleração Angular

Leia mais

2 Cinemática 2.1 CINEMÁTICA DA PARTÍCULA Descrição do movimento

2 Cinemática 2.1 CINEMÁTICA DA PARTÍCULA Descrição do movimento 2 Cinemática A cinemática tem como objeto de estudo o movimento de sistemas mecânicos procurando descrever e analisar movimento do ponto de vista geométrico, sendo, para tal, irrelevantes os fenómenos

Leia mais

Sistema de Coordenadas Intrínsecas

Sistema de Coordenadas Intrínsecas Sistema de Coordenadas Intrínsecas Emílio G. F. Mercuri a a Professor do Departamento de Engenharia Ambiental, Universidade Federal do Paraná, Curitiba, Paraná Resumo Depois da introdução a cinemática

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais

Física para Zootecnia

Física para Zootecnia Física para Zootecnia Rotação - I 10.2 As Variáveis da Rotação Um corpo rígido é um corpo que gira com todas as partes ligadas entre si e sem mudar de forma. Um eixo fixo é um eixo de rotação cuja posição

Leia mais

Física I 2010/2011. Aula 13 Rotação I

Física I 2010/2011. Aula 13 Rotação I Física I 2010/2011 Aula 13 Rotação I Sumário As variáveis do movimento de rotação As variáveis da rotação são vectores? Rotação com aceleração angular constante A relação entre as variáveis lineares e

Leia mais

MOVIMENTO EM DUAS E TRÊS DIMENSÕES

MOVIMENTO EM DUAS E TRÊS DIMENSÕES CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: MECÂNICA E TERMODINÂMICA MOVIMENTO EM DUAS E TRÊS DIMENSÕES Prof. Bruno Farias Introdução Neste módulo

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação

Leia mais

Física aplicada à engenharia I

Física aplicada à engenharia I Física aplicada à engenharia I Rotação - I 10.2 As Variáveis da Rotação Um corpo rígido é um corpo que gira com todas as partes ligadas entre si e sem mudar de forma. Um eixo fixo é um eixo de rotação

Leia mais

Física I. Aula 05 Forças e Movimentos IV 2010/2011. Movimento Circular

Física I. Aula 05 Forças e Movimentos IV 2010/2011. Movimento Circular Física I 2010/2011 Aula 05 Forças e Movimentos IV Movimento Circular Sumário Movimento circular Movimento circular uniforme Movimento relativo a uma dimensão Movimento relativo a duas dimensões Física

Leia mais

Cap. 9 - Rotação do Corpo Rígido. 1 Posição, Velocidade e Aceleração Angulares

Cap. 9 - Rotação do Corpo Rígido. 1 Posição, Velocidade e Aceleração Angulares Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 9 - Rotação do Corpo Rígido Prof. Elvis Soares Para nós, um corpo rígido é um objeto indeformável, ou seja, nesse corpo

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação

Leia mais

Agrupamento de Escolas da Senhora da Hora

Agrupamento de Escolas da Senhora da Hora Agrupamento de Escolas da Senhora da Hora Curso Profissional de Técnico de Multimédia Informação Prova da Disciplina de Física - Módulo: 1 Forças e Movimentos; Estática Modalidade da Prova: Escrita Ano

Leia mais

Dinâmica do Movimento dos Corpos CINEMÁTICA VETORIAL5. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Dinâmica do Movimento dos Corpos CINEMÁTICA VETORIAL5. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques CINEMÁTICA VETORIAL5 Gil da Costa Marques 5.1 Referenciais 5. Vetores e Referenciais Cartesianos 5.3 Referenciais Gerais 5.4 Vetores em Coordenadas Polares 5.5 Vetores Velocidade e Aceleração em coordenadas

Leia mais

Linhas. Integrais de Linha

Linhas. Integrais de Linha Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires Linhas. Integrais de Linha Linhas e Caminhos. Um segmento de recta 3 Consideremos o segmento de recta

Leia mais

Física I 2009/2010. Aula02 Movimento Unidimensional

Física I 2009/2010. Aula02 Movimento Unidimensional Física I 2009/2010 Aula02 Movimento Unidimensional Sumário 2-1 Movimento 2-2 Posição e Deslocamento. 2-3 Velocidade Média 2-4 Velocidade Instantânea 2-5 Aceleração 2-6 Caso especial: aceleração constante

Leia mais

Física. Física Módulo 1 Velocidade Relativa, Movimento de Projéteis, Movimento Circular

Física. Física Módulo 1 Velocidade Relativa, Movimento de Projéteis, Movimento Circular Física Módulo 1 Velocidade Relativa, Movimento de Projéteis, Movimento Circular Velocidade Relativa Um Gedankenexperiment Imagine-se agora em um avião, a 350 km/h. O destino (a direção) é por conta de

Leia mais

MOVIMENTO 3D REFERENCIAL AUXILIAR EM TRANSLAÇÃO. QUESTÃO ver vídeo 1.1

MOVIMENTO 3D REFERENCIAL AUXILIAR EM TRANSLAÇÃO. QUESTÃO ver vídeo 1.1 MOVIMENTO 3D REFERENCIAL AUXILIAR EM TRANSLAÇÃO INTRODUÇÃO ESTUDO DE CASO À medida que o caminhão da figura ao lado se retira da obra, o trabalhador na plataforma no topo do braço comanda o giro do braço

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP2196 - Física para Engenharia II Prova de Recuperação - 14/02/200 - Gabarito 1. Uma massa é abandonada com velocidade inicial igual a zero de modo que atinge o solo 10 segundos depois de solta. Desprezando

Leia mais

Equipe de Física. Física. Movimento Circular

Equipe de Física. Física. Movimento Circular Aluno (a): Série: 3ª Turma: TUTORIAL 3B Ensino Médio Equipe de Física Data: Física Movimento Circular Grandezas Angulares As grandezas até agora utilizadas de deslocamento/espaço (s, h, x, y), de velocidade

Leia mais

CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR

CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR O que vamos estudar? CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR Seção 11.1 Cinemática do corpo rígido Seção 11.2 Representação vetorial das rotações Seção 11.3 Torque Seção 11.4 Momento angular Seção 11.5

Leia mais

MOVIMENTO 3D: REFERENCIAL EM TRANSLAÇÃO

MOVIMENTO 3D: REFERENCIAL EM TRANSLAÇÃO MOVIMENTO 3D: REFERENCIAL EM TRANSLAÇÃO INTRODUÇÃO ESTUDO DE CASO À medida que o caminhão da figura ao lado se retira da obra, o trabalhador na plataforma no topo do braço gira o braço para baixo e em

Leia mais

Mecânica e Ondas fascículo 14

Mecânica e Ondas fascículo 14 Mecânica e Ondas fascículo 14 Copyright c 2008 Mario J. Pinheiro All rights reserved April 14, 2011 Contents 15 Cinemática do corpo rígido 321 15.1 Rotação em torno de um eixo fixo................. 321

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo Cinemática retilínea: movimento contínuo

Leia mais

Aula do cap. 10 Rotação

Aula do cap. 10 Rotação Aula do cap. 10 Rotação Conteúdo da 1ª Parte: Corpos rígidos em rotação; Variáveis angulares; Equações Cinemáticas para aceleração Angular constante; Relação entre Variáveis Lineares e Angulares; Referência:

Leia mais

Rotação de Corpos Rígidos

Rotação de Corpos Rígidos Fisica I IO Rotação de Corpos Rígidos Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202 crislpo@if.usp.br Rotação de Corpos Rígidos Movimentos de corpos contínuos podiam em muitos casos ser descritos

Leia mais

Cinemática do ponto material (PM)

Cinemática do ponto material (PM) Cinemática do ponto material (PM) 1- Determine a velocidade média de um PM nos instantes t=5 s e t=10 s, sendo o seu movimento dado pelo gráfico mostrado a seguir 2- Uma partícula move-se numa dada direcção,

Leia mais

Resposta: (A) o traço é positivo (B) o determinante é negativo (C) o determinante é nulo (D) o traço é negativo (E) o traço é nulo.

Resposta: (A) o traço é positivo (B) o determinante é negativo (C) o determinante é nulo (D) o traço é negativo (E) o traço é nulo. MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 201/2018 EIC0010 FÍSICA I 1º ANO, 2º SEMESTRE 12 de junho de 2018 Nome: Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário

Leia mais

EXEMPLOS FORÇA CENTRÍFUGA AULA 23. Prof a Nair Stem Instituto de Física da USP

EXEMPLOS FORÇA CENTRÍFUGA AULA 23. Prof a Nair Stem Instituto de Física da USP EXEMPLOS FORÇA CENTRÍFUGA AULA 3 Prof a Nair Stem Instituto de Física da USP FORÇA CENTRÍFUGA Forças que aparecem em um referencial S em rotação uniforme em relação a um referencial S. Como por exemplo

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo Cinemática retilínea: movimento contínuo

Leia mais

Movimento em duas ou mais dimensões. Prof. Ettore Baldini-Neto

Movimento em duas ou mais dimensões. Prof. Ettore Baldini-Neto Movimento em duas ou mais dimensões Prof. Ettore Baldini-Neto A partir de agora, generalizamos a discussão que fizemos para o movimento retilíneo para mais dimensões. A grande diferença é que o cálculo

Leia mais

CAPÍTULO 9 CINEMÁTICA DO MOVIMENTO ESPACIAL DE CORPOS RÍGIDOS

CAPÍTULO 9 CINEMÁTICA DO MOVIMENTO ESPACIAL DE CORPOS RÍGIDOS 82 CPÍTULO 9 CINEMÁTIC DO MOVIMENTO ESPCIL DE CORPOS RÍGIDOS O estudo da dinâmica do corpo rígido requer o conhecimento da aceleração do centro de massa e das características cinemáticas do corpo denominadas

Leia mais

Mecânica 1. Guia de Estudos P2

Mecânica 1. Guia de Estudos P2 Mecânica 1 Guia de Estudos P2 Conceitos 1. Cinemática do Ponto Material 2. Cinemática dos Sólidos 1. Cinemática do Ponto Material a. Curvas Definição algébrica: A curva parametriza uma função de duas ou

Leia mais

Cinemática em 2D e 3D

Cinemática em 2D e 3D Cinemática em 2D e 3D o vetores posição, velocidade e aceleração o movimento com aceleração constante, movimento de projéteis o Cinemática rotacional, movimento circular uniforme Movimento 2D e 3D Localizar

Leia mais

Mestrado em Engenharia Electrotécnica e de Computadores Cadeira de Mecânica e Ondas

Mestrado em Engenharia Electrotécnica e de Computadores Cadeira de Mecânica e Ondas Mestrado em Engenharia Electrotécnica e de Computadores Cadeira de Mecânica e Ondas Docentes: João Fonseca, jfonseca@tecnico.ulisboa.pt Amaro Rica da Silva, ricadasilva@tecnico.ulisboa.pt David Resendes,

Leia mais

Vetor Tangente, Normal e Binormal. T(t) = r (t)

Vetor Tangente, Normal e Binormal. T(t) = r (t) CVE 0003 - - CÁLCULO VETORIAL - - 2011/2 Vetor Tangente, Normal e Binormal Lembre-se que se C é uma curva suave dada pela função vetorial r(t), então r (t) é contínua e r (t) 0. Além disso, o vetor r (t)

Leia mais

Imagine que estamos observando a formiguinha abaixo:

Imagine que estamos observando a formiguinha abaixo: 1 INTRODUÇÃO À Imagine que estamos observando a formiguinha abaixo: Sabemos que ela caminha com uma determinada velocidade v, com uma aceleração a e que a cada instante t, ela avança sua posição x. Se

Leia mais

Mecânica Clássica Curso - Licenciatura em Física EAD. Profº. M.Sc. Marcelo O Donnell Krause ILHÉUS - BA

Mecânica Clássica Curso - Licenciatura em Física EAD. Profº. M.Sc. Marcelo O Donnell Krause ILHÉUS - BA Mecânica Clássica Curso - Licenciatura em Física EAD Profº. M.Sc. Marcelo O Donnell Krause ILHÉUS - BA Aula 1 : Cinemática da partícula Aula 1 : Cinemática da partícula Exemplos Um tubo metálico, retilíneo

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo Cinemática retilínea: movimento contínuo

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 11º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO Nº 2

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 11º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO Nº 2 ESOL SEUNÁRI OM º ILO. INIS OIMR º NO E ESOLRIE MTEMÁTI FIH E VLIÇÃO Nº Grupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas, das quais só

Leia mais

As variáveis de rotação

As variáveis de rotação Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento

Leia mais

22/Fev/2018 Aula Queda livre 2.2 Movimento 2 e 3-D Vetor deslocamento Vetor velocidade Vetor aceleração

22/Fev/2018 Aula Queda livre 2.2 Movimento 2 e 3-D Vetor deslocamento Vetor velocidade Vetor aceleração 22/Fev/2018 Aula2 2.1 Queda livre 2.2 Movimento 2 e 3-D 2.2.1 Vetor deslocamento 2.2.2 Vetor velocidade 2.2.3 Vetor aceleração 2.3 Lançamento de projétil 2.3.1 Independência dos movimentos 2.3.2 Forma

Leia mais

Apresentação Outras Coordenadas... 39

Apresentação Outras Coordenadas... 39 Sumário Apresentação... 15 1. Referenciais e Coordenadas Cartesianas... 17 1.1 Introdução... 17 1.2 O Espaço Físico... 18 1.3 Tempo... 19 1.3.1 Mas o Tempo é Finito ou Infinito?... 21 1.3.2 Pode-se Viajar

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II Universidade Fernando Pessoa Departamento de Ciência e Tecnologia Apontamentos de ANÁLISE MATEMÁTICA II Maria Alzira Pimenta Dinis 1999 Índice Índice Pág. Capítulo I Funções Vectoriais. 1 Curvas e Movimento

Leia mais

Física Teórica I. Prof. Dr. Raphael M. Albuquerque. Universidade do Estado do Rio de Janeiro. Capítulo 10. Apresentação Rotações

Física Teórica I. Prof. Dr. Raphael M. Albuquerque. Universidade do Estado do Rio de Janeiro. Capítulo 10. Apresentação Rotações Universidade do Estado do Rio de Janeiro Faculdade de Tecnologia - Câmpus Resende Física Teórica I Prof. Dr. Raphael M. Albuquerque Apresentação Rotações Apresentação do Curso Prof. Raphael raphael.albuquerque@uerj.br

Leia mais

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L.

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Esquema do problema Consideremos uma corda longa, fixa nas extremidades, por onde se

Leia mais

28/Fev/2018 Aula Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos.

28/Fev/2018 Aula Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos. 28/Fev/2018 Aula 4 4. Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos 5/Mar/2018 Aula 5 5.1 Movimento circular 5.1.1 Movimento circular uniforme 5.1.2

Leia mais

Determinado por um segmento orientado AB, é o conjunto de todos os segmentos orientados equipolentes a AB.

Determinado por um segmento orientado AB, é o conjunto de todos os segmentos orientados equipolentes a AB. Vetores Determinado por um segmento orientado AB, é o conjunto de todos os segmentos orientados equipolentes a AB. Se indicarmos com este conjunto, simbolicamente poderemos escrever: onde XY é um segmento

Leia mais

Teoria da Membrana. Cascas de Revolução 9.1. Capítulo 9

Teoria da Membrana. Cascas de Revolução 9.1. Capítulo 9 Teoria da Membrana. Cascas de evolução 9. Capítulo 9 Teoria de Membrana. Cascas de evolução 9. Sistema de Eixos Uma casca de revolução tem uma superfície média que forma uma superfície de revolução. Esta

Leia mais

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0. Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar

Leia mais

Fís. Semana. Leonardo Gomes (Arthur Vieira)

Fís. Semana. Leonardo Gomes (Arthur Vieira) Semana 6 Leonardo Gomes (Arthur Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 06/03

Leia mais

FEP Física Geral e Experimental para Engenharia I

FEP Física Geral e Experimental para Engenharia I FEP2195 - Física Geral e Experimental para Engenharia I Prova P1-10/04/2008 - Gabarito 1. A luz amarela de um sinal de transito em um cruzamento fica ligada durante 3 segundos. A largura do cruzamento

Leia mais

P3 MECÂNICA NEWTONIANA A (FIS 1025) 18/11/2011

P3 MECÂNICA NEWTONIANA A (FIS 1025) 18/11/2011 P3 MECÂNICA NEWTONIANA A (FIS 1025) 18/11/2011 Nome: Assinatura: Matrícula: Turma: Questão Valor Grau Revisão 1 a 3,0 2 a 3,0 3 a 2,5 Total 8,5 -As respostas sem justificativas ou cálculos não serão computadas.

Leia mais

PARAMETRIZAÇÃO DE CURVA:

PARAMETRIZAÇÃO DE CURVA: PARAMETRIZAÇÃO DE CURVA: parametrizar uma curva C R n (n=2 ou 3), consiste em definir uma função vetorial: r : I R R n (n = 2 ou 3), onde I é um intervalo e r(i) = C. Equações paramétricas da curva C de

Leia mais

FEP Física para Engenharia II. Prova P1 - Gabarito

FEP Física para Engenharia II. Prova P1 - Gabarito FEP2196 - Física para Engenharia II Prova P1 - Gabarito 1. Um cilindro de massa M e raio R rola sem deslizar no interior de um cilindro de raio 2R mantido fixo. O cilindro menor é solto a partir do repouso

Leia mais

Espaço x Espaço inicial x o

Espaço x Espaço inicial x o MOVIMENTO CIRCULAR Prof. Patricia Caldana O movimento circular é o movimento no qual o corpo descreve trajetória circular, podendo ser uma circunferência ou um arco de circunferência. Grandezas Angulares

Leia mais

Capítulo 11 Rotações e Momento Angular

Capítulo 11 Rotações e Momento Angular Capítulo 11 Rotações e Momento Angular Corpo Rígido Um corpo rígido é um corpo ideal indeformável de tal forma que a distância entre 2 pontos quaisquer do corpo não muda nunca. Um corpo rígido pode realizar

Leia mais

Movimento em duas e três dimensões

Movimento em duas e três dimensões Movimento em duas e três dimensões Professor: Carlos Alberto Disciplina: Física Geral I Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como representar a posição de um corpo em duas

Leia mais

Componente Química 11ºAno Professora Paula Melo Silva Unidade 1 Mecânica 1.1. Tempo, posição e velocidade

Componente Química 11ºAno Professora Paula Melo Silva Unidade 1 Mecânica 1.1. Tempo, posição e velocidade Referencial e posição: coordenadas cartesianas em movimentos retilíneos Componente Química 11ºAno Professora Paula Melo Silva Unidade 1 Mecânica 1.1. Tempo, posição e velocidade Distância percorrida sobre

Leia mais

Lista 8 : Cinemática das Rotações NOME:

Lista 8 : Cinemática das Rotações NOME: Lista 8 : Cinemática das Rotações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder

Leia mais

Mecânica 1.1 Tempo, posição e velocidade

Mecânica 1.1 Tempo, posição e velocidade Mecânica 1.1 Tempo, posição e velocidade REFERENCIAL E POSIÇÃO Estudar o movimento de um sistema mecânico pode ser muito complicado se implicar o estudo do movimento de todas as partículas que o constituem.

Leia mais

Mecânica e Ondas fascículo 4

Mecânica e Ondas fascículo 4 Mecânica e Ondas fascículo 4 March 6, 2008 Contents 5 Vectores 50 5.1 Deslocamento............................. 50 5.2 Adição de vectores.......................... 52 5.3 Negativo de um vector........................

Leia mais

Física Geral I. 1º semestre /05. Nas primeiras seis perguntas de escolha múltipla indique apenas uma das opções

Física Geral I. 1º semestre /05. Nas primeiras seis perguntas de escolha múltipla indique apenas uma das opções Física Geral I 1º semestre - 2004/05 2 TESTE DE AVALIAÇÃO 2668 - ENSINO DE FÍSICA E QUÍMICA 1487 - OPTOMETRIA E OPTOTECNIA - FÍSICA APLICADA 9 de Dezembro 2004 Duração: 2 horas + 30 min tolerância Nas

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo A equação do movimento Equação do movimento

Leia mais

3ª Ficha Global de Física 12º ano

3ª Ficha Global de Física 12º ano 3ª Ficha Global de Física 12º ano Todos os cálculos devem ser apresentados de modo claro e sucinto Note: 1º - as figuras não estão desenhadas a escala; Adopte quando necessário: g = 10 m.s 2 G = 6,67 10-11

Leia mais

O Triedro de Frenet. MAT Cálculo Diferencial e Integral II Daniel Victor Tausk

O Triedro de Frenet. MAT Cálculo Diferencial e Integral II Daniel Victor Tausk O Triedro de Frenet MAT 2454 - Cálculo Diferencial e Integral II Daniel Victor Tausk Seja γ : I IR 3 uma curva de classe C 3 definida num intervalo I IR. Assuma que γ é regular, ou seja, γ (t) 0 para todo

Leia mais

*Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em simplificaaulas.com.

*Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em simplificaaulas.com. MECÂNICA 1 - RESUMO E EXERCÍCIOS* P2 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em. CENTRO INSTANTÂNEO DE ROTAÇÃO (CIR) 1 o ) Escolher

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012. EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012. EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012 EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE Prova com consulta de formulário e uso de computador. Duração 2 horas. Nome do estudante: Pode consultar

Leia mais

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA 1.0 Definições Posição angular: utiliza-se uma medida de ângulo a partir de uma direção de referência. É conveniente representar a posição da partícula com suas

Leia mais

Vibrações e Dinâmica das Máquinas Aula - Cinemática. Professor: Gustavo Silva

Vibrações e Dinâmica das Máquinas Aula - Cinemática. Professor: Gustavo Silva Vibrações e Dinâmica das Máquinas Aula - Cinemática Professor: Gustavo Silva 1 Cinemática do Movimento Plano de um Corpo Rígido 1 Movimento de um corpo rígido; 2 Translação; 3 Rotação em torno de um eixo

Leia mais

Alexandre Diehl Departamento de Física UFPel

Alexandre Diehl Departamento de Física UFPel - 6 Alexandre Diehl Departamento de Física UFPel Características do movimento Módulo do vetor velocidade é constante. O vetor velocidade muda continuamente de direção e sentido, ou seja, existe aceleração.

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2015/2016

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2015/2016 MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 015/016 EIC0010 FÍSICA I 1o ANO, o SEMESTRE 1 de junho de 016 Nome: Duração horas. Prova com consulta de formulário e uso de computador. O formulário

Leia mais

Disciplina de Mecânica Geral II. CINEMÁTICA e DINÂMICA de CORPOS RÍGIDOS

Disciplina de Mecânica Geral II. CINEMÁTICA e DINÂMICA de CORPOS RÍGIDOS isciplina de Mecânica Geral II CINEMÁTIC e INÂMIC de CORPOS RÍGIOS CINEMÁTIC é o estudo da geometria em movimento, utilizada para relacionar as grandezas de deslocamento, velocidade, aceleração e tempo.

Leia mais

Ficha de trabalho 5 AMPLIAÇÃO

Ficha de trabalho 5 AMPLIAÇÃO Nome: N. o : Turma: Data: Ficha de trabalho 5 AMPLIAÇÃO 1. Uma pedra é lançada do ponto P com uma velocidade de 10 m s 1 numa direcção que forma um ângulo de 45º com a horizontal, atingindo o ponto Q conforme

Leia mais

Movimento Circular Uniforme

Movimento Circular Uniforme Movimento Circular Uniforme 2018 Dr. Walter F. de Azevedo Jr. Prof. Dr. Walter F. de Azevedo Jr. E-mail: walter@azevedolab.net 1 Movimento Circular Uniforme (otação) Considere um disco rígido de densidade

Leia mais

1 Vetores no Plano e no Espaço

1 Vetores no Plano e no Espaço 1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no

Leia mais

3.6 Descrição de Rotações no Plano

3.6 Descrição de Rotações no Plano 3.6-1 3.6 Descrição de Rotações no Plano 3.6.1 Matriz de Rotação Às vezes temos que descrever a posição de uma partícula num referencial plano que é girado de um ângulo φ com respeito a outro sistema fixo.

Leia mais

2 Conceitos Básicos da Geometria Diferencial Afim

2 Conceitos Básicos da Geometria Diferencial Afim 2 Conceitos Básicos da Geometria Diferencial Afim Antes de iniciarmos o estudo das desigualdades isoperimétricas para curvas convexas, vamos rever alguns conceitos e resultados da Geometria Diferencial

Leia mais

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,0 ponto) PROAC / COSEAC - Gabarito. Engenharia de Produção e Mecânica Volta Redonda

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,0 ponto) PROAC / COSEAC - Gabarito. Engenharia de Produção e Mecânica Volta Redonda Prova de Conhecimentos Específicos 1 a QUESTÃO: (1,0 ponto) Calcule a derivada segunda d dx x ( e cos x) 1 ( ) d e x cosx = e x cos x e x sen x dx d dx ( x x ) e cos x e senx = 4e x cos x + e x sen x +

Leia mais

MOVIMENTO EM UMA LINHA RETA

MOVIMENTO EM UMA LINHA RETA MOVIMENTO EM UMA LINHA RETA MOVIMENTO EM UMA LINHA RETA Objetivos de aprendizagem: Descrever o movimento em uma linha reta em termos de velocidade média, velocidade instantânea, aceleração média e aceleração

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO Caro professor, cara professora, esta prova tem 2 partes; a primeira parte é objetiva, constituída por 14 questões de múltipla escolha,

Leia mais

VETOR POSIÇÃO 𝑟 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘

VETOR POSIÇÃO 𝑟 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 VETOR POSIÇÃO r = xi + yj + zk VETOR DESLOCAMENTO Se uma partícula se move de uma posição r 1 para outra r 2 : r = r 2 r 1 r = x 2 x 1 i + y 2 y 1 j + z 2 z 1 k VETORES VELOCIDADE MÉDIA E VELOCIDADE INSTANTÂNEA

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos. Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes ivan@puc-rio.br

Leia mais

O quadro abaixo destina-se à correcção da prova. Por favor não escreva nada.

O quadro abaixo destina-se à correcção da prova. Por favor não escreva nada. Instituto Superior Técnico Departamento de Matemática 2 o semestre 08/09 Nome: Número: Curso: Sala: 1 o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL-II LEIC-Taguspark, LERC, LEGI, LEE 4 de Abril de 2009 (11:00)

Leia mais

1.3. Forças e movimentos. Professora Paula Melo Silva

1.3. Forças e movimentos. Professora Paula Melo Silva 1.3. Forças e movimentos Professora Paula Melo Silva QUEDA LIVRE O filósofo grego Aristóteles acreditava que os corpos mais pesados, abandonados de uma mesma altura, alcançariam o solo antes dos mais leves.

Leia mais

Notação Científica. n é um expoente inteiro; N é tal que:

Notação Científica. n é um expoente inteiro; N é tal que: Física 1 Ano Notação Científica n é um expoente inteiro; N é tal que: Exemplos: Notação Científica Ordem de Grandeza Qual a ordem de grandeza? Distância da Terra ao Sol: Massa de um elétron: Cinemática

Leia mais

CINEMÁTICA E DINÂMICA

CINEMÁTICA E DINÂMICA PETROBRAS TECNICO(A) DE OPERAÇÃO JÚNIOR CINEMÁTICA E DINÂMICA QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 RESUMÃO GRANDEZAS E UNIDADES (S.I.) s: Espaço (distância)

Leia mais

Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2

Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2 Resistência dos Materiais - Elasticidade Linear Acetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Carregamento Genérico:

Leia mais

Movimento Circular. 1 Rotação. Aron Maciel

Movimento Circular. 1 Rotação. Aron Maciel Movimento Circular Aron Maciel 1 Rotação Já sabemos como as leis e definições da Física funcionam no movimento retilíneo, agora, vamos investigar situações em que temos objetos rotacionando em torno de

Leia mais

MAT0326 Geometria Diferencial I

MAT0326 Geometria Diferencial I MAT6 Geometria Diferencial I Primeira Prova /9/ Soluções Questão Valor:. =.5 +.5 pontos). a. Mostre que cos arctanx) ) =. + x b. Determine uma curva plana α : R R, parametrizada por comprimento de arco,

Leia mais

SOLUÇÃO: sendo T 0 a temperatura inicial, 2P 0 a pressão inicial e AH/2 o volume inicial do ar no tubo. Manipulando estas equações obtemos

SOLUÇÃO: sendo T 0 a temperatura inicial, 2P 0 a pressão inicial e AH/2 o volume inicial do ar no tubo. Manipulando estas equações obtemos OSG: 718-1 01. Uma pequena coluna de ar de altura h = 76 cm é tampada por uma coluna de mercúrio através de um tubo vertical de altura H =15 cm. A pressão atmosférica é de 10 5 Pa e a temperatura é de

Leia mais

Física 1 Mecânica. Instituto de Física - UFRJ

Física 1 Mecânica. Instituto de Física - UFRJ Física 1 Mecânica Sandra Amato Instituto de Física - UFRJ Rotação de uma partícula 1/ 30 (Rotação de uma partícula) Física 1 1/28 Outline 1 Produto Vetorial 2 Rotação em Torno de um Eixo Fixo 2/ 30 (Rotação

Leia mais