CAPÍTULO 9 CINEMÁTICA DO MOVIMENTO ESPACIAL DE CORPOS RÍGIDOS

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO 9 CINEMÁTICA DO MOVIMENTO ESPACIAL DE CORPOS RÍGIDOS"

Transcrição

1 82 CPÍTULO 9 CINEMÁTIC DO MOVIMENTO ESPCIL DE CORPOS RÍGIDOS O estudo da dinâmica do corpo rígido requer o conhecimento da aceleração do centro de massa e das características cinemáticas do corpo denominadas velocidade angular e aceleração angular, em cada instante. Neste capítulo serão estudadas as propriedades cinemáticas dos movimentos espaciais de corpos rígidos. Inicialmente são estudados movimentos em torno de um ponto fio e em seguida movimentos espaciais quaisquer. 9.1 SOM DE ROTÇÕES EM RELÇÃO EIXOS NO ESPÇO posição espacial de um corpo rígido pode ser definida por seis coordenadas independentes, sendo bastante usadas três coordenadas de um ponto qualquer deste corpo mais três coordenadas angulares. Estas últimas definem o que chamaremos de atitude do corpo rígido. No caso dos movimentos planos, a atitude é definida apenas por uma coordenada angular que pode ser tratada de forma vetorial. No caso espacial deve-se tomar cuidado com as coordenada angulares, pois a soma de ângulos de rotação em relação a eios no espaço não obedece à propriedade da comutatividade da soma vetorial. Figura 9.1 mostra um eemplo em duas situações: inicialmente dá-se uma rotação de 90 em torno do eio e em seguida mais 90 em torno do eio. Na outra situação, partindo-se da mesma posição inicial, dá-se inicialmente uma rotação de 90 em torno de e em seguida uma rotação de 90 em torno do eio. Observa-se que o resultado final é distinto ao inverter-se a ordem da soma. ssim pode-se concluir no caso espacial que

2 83 θ (9.1) 1 θ2 θ2 θ1 1=90 2=90 2=90 1=90 Figura Soma de rotações de um corpo rígido. Se fiermos estas duas somas com pequenas rotações 1 e 2, as posições finais obtidas também não serão iguais, mas estarão próimas. Por outro lado considerando rotações infinitesimais d 1 e d 2, a propriedade da comutatividade da soma vetorial é restabelecida. Portanto, podemos escrever dθ θ (9.2) 1 dθ2 dθ2 d 1 Lembrando que a velocidade angular de um corpo é dada por dθ (9.3) podemos derivar no tempo a (9.2) para obter (9.4) Pode-se concluir, portanto, que a velocidade angular se comporta como vetor.

3 MOVIMENTO EM TORNO DE UM PONTO FIXO O movimento espacial de um corpo rígido pode ser analisado a partir da composição de um movimento de translação espacial com um movimento de rotação em torno de um ponto fio. Neste item vamos analisar a questão do movimento de um corpo rígido em torno de um ponto fio. Sea um corpo rígido C que tem um ponto O fio. posição de qualquer outro ponto P num referencial, cua origem está em O, é dada pelo vetor posição r r(t) (9.5) P r C O Figura Movimento em torno do ponto fio O. que é um vetor de módulo constante, sendo O e P pontos do corpo rígido C. Logo, para obtermos a velocidade de P faemos a derivada em t de r, v dr r (9.6) onde é a velocidade angular do corpo no instante t. Lembremos que a derivada em relação ao tempo de um vetor de módulo constante é dada pelo produto vetorial (9.6) - ver pêndice no final deste capítulo. Sendo O um ponto fio do corpo rígido, as traetórias do ponto P estão localiadas sobre uma superfície esférica de raio igual à distância entre O e P, ou sea, igual ao módulo do vetor r.

4 aceleração do ponto P é dada pela derivada no tempo da velocidade (9.6): 85 dv d dr a r (9.7) plicando (9.6) em (9.7), obtemos onde a α r ( r) (9.8) d α é a aceleração angular do corpo no instante t. Um importante caso particular de movimento em torno de um ponto fio ocorre quando um determinado corpo tem velocidade angular torno de um eio do corpo e este eio tem velocidade angular P constante em S constante em torno de um referencial fio. Neste caso a velocidade angular do corpo é igual a: P S (9.9) E a aceleração angular pode ser obtida através de d d P ds α (9.10) Sendo P um vetor de módulo constante, com direção variável, e constante, então a segunda parcela é igual a ero e a primeira é dada por S um vetor α S P (9.11) onde foram aplicados novamente resultados mostrados no pêndice deste capítulo com relação à derivação de vetores em relação ao tempo.

5 MOVIMENTO GERL DE UM CORPO RÍGIDO Conforme mencionado neste capítulo, o caso geral de movimentos espaciais pode ser visto como uma composição de dois movimentos, sendo um de translação e outro de rotação em torno de um ponto fio. Vamos tomar o ponto como referência e sea outro ponto qualquer do corpo rígido. relação entre as posições r e r desses dois pontos do corpo rígido é dada por r r r (9.12) / figura 9.3 ilustra dois sistemas de referência utiliados para a análise do movimento geral que faremos neste item. O sistema XYX é considerado o referencial em relação ao qual se estuda o movimento do corpo rígido C, chamado aqui de referencial fio. O referencial, chamado de referencial móvel, tem sua origem fia num ponto do corpo rígido, mas mantém-se durante todo o movimento em translação em relação ao fio XYZ. ssim, seus eios estão sempre paralelos entre si, o que equivale a ambos terem seus versores iguais em qualquer instante de tempo. Z r / C X Y v a Figura Movimento geral: referencial em translação. Derivando a (9.12) podemos relacionar as velocidades dos pontos e dr / v v (9.13) onde, neste caso

6 87 dr / v / ( v ) (9.14) corresponde à velocidade de em relação ao referencial, fio no ponto. O movimento do corpo rígido em relação ao referencial é um movimento de rotação em relação a um ponto fio, com velocidade angular. Logo e ( v ) r (9.15) / v v r (9.16) / Para se obter a relação entre as acelerações dos pontos e, derivamos a equação (9.16) dv dv d dr / / r (9.17) partir dos resultados obtidos no item anterior, podemos escrever a a α r r ) (9.18) / ( / onde é a aceleração angular do corpo rígido. ssim, é possível obter a posição, a velocidade e a aceleração de um ponto qualquer de um corpo rígido a partir dos correspondentes valores de um ponto, cuo movimento sea dado. s equações (9.12), (9.15) e (9.18) epressam estas relações para um movimento espacial qualquer. Podem ser aplicadas, é óbvio, para os casos particulares de translação, onde os vetores velocidade angular e aceleração angular são nulos mostrando que nestes casos as velocidades e as acelerações de todos os pontos do corpo rígido são iguais em cada instante. Estas equações também podem ser usadas para os movimentos de rotação em torno de um ponto fio em. Nestes casos os vetores velocidade e aceleração deste ponto são nulos e as equações resultantes repetem aquelas obtidas no item anterior. Observemos que como os dois referenciais utiliados neste caso estão sempre paralelos, todos os vetores podem ser escritos no referencial móvel.

7 MOVIMENTO GERL E MOVIMENTO RELTIVO Em muitas situações conhece-se o movimento de um corpo rígido em relação a outro corpo, representado por um referencial móvel, e conhece-se o movimento deste referencial móvel em relação a outro referencial fio XYZ. Podese escrever para este caso que r r r (9.19) / figura 9.4 ilustra estes dois sistemas de referência. Vamos analisar o movimento do corpo rígido C faendo a composição a partir dos dados do movimento relativo entre ambos os referenciais. origem do referencial móvel está num ponto qualquer não necessariamente pertencente ao corpo rígido C. Em muitas aplicações este referencial representa outro corpo em relação ao qual se conhece o movimento de C. C Z r Y r r / X Figura Movimento geral: referencial em movimento qualquer. Para obtermos a relação entre as velocidades de e, tomadas em relação ao referencial XYZ, vamos derivar a (9.19) dr / v v (9.20) Conforme mostrado no final deste capítulo, a derivada do vetor r / é igual a

8 d r d / / r r / 89 (9.21) onde é a velocidade angular do referencial em relação a XYZ. É importante observar que neste caso dr / v / v / (9.22) ou sea, é a velocidade de em relação ao referencial, de origem em. Substituindo (9.22) em (9.21) e, em seguida, o resultado em (9.20) obteremos v (9.23) v r / v/ onde são definidas as componentes da velocidade v r velocidade de arraste / v velocidade de relativa ao referencial móvel / v / Para se obter a relação entre as acelerações dos pontos e, derivamos a equação (9.23) dv dv d r dr / dv / / (9.24) partir dos resultados (9.21) e (9.22), podemos escrever d a a r / ( r / v / ) v / a / (9.25) onde d é a aceleração angular do referencial em relação à XYZ. Portanto, agrupando de forma conveniente, escrevemos d a a r / ( r / ) 2 v / a / (9.26)

9 90 onde são definidas as componentes de aceleração: d a r / ( r / ) aceleração de arraste 2 v/ aceleração de Coriolis ou complementar a / aceleração de relativa ao referencial móvel a Portanto, as equações (9.23) e (9.26) relacionam as velocidades e as acelerações de dois pontos e, pertencentes a corpos rígidos distintos. Observe que são iguais às equações gerais do movimento relativo para o caso de movimentos planos, conforme á mostradas no Capítulo 5. ssim, é possível obter a posição, a velocidade e a aceleração de um ponto qualquer de um corpo rígido a partir dos correspondentes valores de um ponto, cuo movimento sea dado. s equações (9.23) e (9.26) epressam estas relações para um movimento espacial qualquer. Podem ser aplicadas, é óbvio, para o caso particular no qual o ponto está fio no referencial. Neste caso as equações (9.23) e (9.26) tem apenas as parcelas de arraste não nulas, tanto para a velocidade como para a aceleração, conforme mostrado no item ÂNGULOS DE EULER Para definir a posição angular de um corpo rígido no espaço é usual utiliar 3 coordenadas da posição do centro de massa e 3 ângulos sequencialmente tomados em relação a determinados referenciais móveis ou fios. Um conunto entre as várias sequências para estes ângulos são os ângulos de Euler. Vamos defini-los com auílio das Figuras 9.5. Seam inicialmente coincidentes dois referenciais, um fio XYZ e um móvel. Conforme mostrado nas Figura 9.5, os ângulos de Euler, representados por, θ e ψ são definidos através de 3 posições sucessivas do sistema móvel. primeira posição é definida através do ângulo de rotação em torno de Z levando o referencial móvel à posição angular mostrada na Figura 9.5a como ; a segunda posição é definida através do ângulo θ de rotação em torno de 1 levando o referencial móvel à posição angular mostrada na Figura 9.5b como e a posição final é definida através do ângulo ψ de rotação em torno de 2 levando o

10 referencial à posição mostrada na Figura 9.5c como Esta posição é corresponde à atitude do corpo rígido preso ao referencial móvel em relação ao referencial fio XYZ. Observe-se que sempre os ângulos são definidos numa sequência convencionada a fim de determinar corretamente a posição angular de um corpo rígido. Conforme mostramos na seção 9.1, se alterarmos a ordem desta sequência obteremos uma posição final diferente. 91 Z, Z, 1 1 Y, Y X, (a) rotação X 1 em torno de Z 2 Z, 1 θ 2 θ 1 X θ 1, 2 Y (b) rotação θ em torno de 1 2, 3 Z, 1 3 ψ θ ψ θ 2 1 X θ ψ 3 Y 1, 2 (c) rotação ψ em torno de 2 Figura Ângulos de Euler

11 Devemos relacionar as componentes da velocidade angular do corpo rígido no referencial, com as velocidades angulares relativas dadas pelas derivadas temporais dos ângulos de Euler. Sea dada a velocidade angular do corpo rígido escrita em componentes do referencial móvel como 92 i (9.27) Observando nas Figuras 9.5, podemos escrever esta velocidade angular em função dos ângulos de Euler como i ( sen ) ( cos ) (9.28) lgumas vees, quando o corpo rígido é dado por um sólido de revolução com velocidade angular relativa em torno de seu eio longitudinal denominada spin, utiliamos o referencial móvel de forma um pouco modificada. O referencial móvel passa a ser parcialmente preso ao corpo, isto é, tem seu eio sempre coincidente com o eio longitudinal do corpo rígido, mas não acompanha o movimento de spin. ssim o referencial móvel está na posição dada por e a velocidade angular do corpo rígido é dada por: (9.29) R onde é a velocidade angular do referencial móvel e R é a velocidade angular relativa do corpo rígido em relação a este referencial. Portanto, i ( sen ) ( cos ) (9.30) e R (9.31) Nestes casos chama-se precessão ao movimento angular representado pela variação do ângulo, chama-se nutação ao movimento angular definido pela variação do ângulo θ e spin ao movimento definido pela variação angular ψ.

12 93 PÊNDICE - RELÇÃO ENTRE DERIVDS TEMPORIS Seam dois referenciais: XYZ um referencial fio e outro referencial móvel em relação ao primeiro. Sea um vetor, variável no tempo, escrito no referencial móvel como i (9.32) derivada temporal deste vetor em relação ao referencial, é dada por i (9.33) Para calcular a derivada temporal do vetor em relação ao referencial XYZ, temos XYZ i di d d (9.34) Como di i d d (9.35) onde é a velocidade angular do referencial móvel em relação a XYZ, i ( i) ( ) ( ) (9.36) ou i i (9.37) Logo XYZ (9.38) Observe-se que se é constante em relação à, então XYZ (9.39)

2 Cinemática 2.1 CINEMÁTICA DA PARTÍCULA Descrição do movimento

2 Cinemática 2.1 CINEMÁTICA DA PARTÍCULA Descrição do movimento 2 Cinemática A cinemática tem como objeto de estudo o movimento de sistemas mecânicos procurando descrever e analisar movimento do ponto de vista geométrico, sendo, para tal, irrelevantes os fenómenos

Leia mais

MOVIMENTO 3D REFERENCIAL AUXILIAR EM TRANSLAÇÃO. QUESTÃO ver vídeo 1.1

MOVIMENTO 3D REFERENCIAL AUXILIAR EM TRANSLAÇÃO. QUESTÃO ver vídeo 1.1 MOVIMENTO 3D REFERENCIAL AUXILIAR EM TRANSLAÇÃO INTRODUÇÃO ESTUDO DE CASO À medida que o caminhão da figura ao lado se retira da obra, o trabalhador na plataforma no topo do braço comanda o giro do braço

Leia mais

MOVIMENTO 3D: REFERENCIAL EM TRANSLAÇÃO

MOVIMENTO 3D: REFERENCIAL EM TRANSLAÇÃO MOVIMENTO 3D: REFERENCIAL EM TRANSLAÇÃO INTRODUÇÃO ESTUDO DE CASO À medida que o caminhão da figura ao lado se retira da obra, o trabalhador na plataforma no topo do braço gira o braço para baixo e em

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

ANÁLISE DE MOVIMENTO RELATIVO USANDO UM SISTEMA DE EIXOS EM ROTAÇÃO (Sec. 16.8) Na descrição dos movimentos de pontos de um único corpo rígido, ou de

ANÁLISE DE MOVIMENTO RELATIVO USANDO UM SISTEMA DE EIXOS EM ROTAÇÃO (Sec. 16.8) Na descrição dos movimentos de pontos de um único corpo rígido, ou de ANÁLISE DE MOVIMENTO RELATIVO USANDO UM SISTEMA DE EIXOS EM ROTAÇÃO (Sec. 16.8) Na descrição dos movimentos de pontos de um único corpo rígido, ou de pontos em corpos rígidos articulados, as análises de

Leia mais

Mecânica Clássica Curso - Licenciatura em Física EAD. Profº. M.Sc. Marcelo O Donnell Krause ILHÉUS - BA

Mecânica Clássica Curso - Licenciatura em Física EAD. Profº. M.Sc. Marcelo O Donnell Krause ILHÉUS - BA Mecânica Clássica Curso - Licenciatura em Física EAD Profº. M.Sc. Marcelo O Donnell Krause ILHÉUS - BA Aula 1 : Cinemática da partícula Aula 1 : Cinemática da partícula Exemplos Um tubo metálico, retilíneo

Leia mais

Vibrações e Dinâmica das Máquinas Aula - Cinemática. Professor: Gustavo Silva

Vibrações e Dinâmica das Máquinas Aula - Cinemática. Professor: Gustavo Silva Vibrações e Dinâmica das Máquinas Aula - Cinemática Professor: Gustavo Silva 1 Cinemática do Movimento Plano de um Corpo Rígido 1 Movimento de um corpo rígido; 2 Translação; 3 Rotação em torno de um eixo

Leia mais

Disciplina de Mecânica Geral II. CINEMÁTICA e DINÂMICA de CORPOS RÍGIDOS

Disciplina de Mecânica Geral II. CINEMÁTICA e DINÂMICA de CORPOS RÍGIDOS isciplina de Mecânica Geral II CINEMÁTIC e INÂMIC de CORPOS RÍGIOS CINEMÁTIC é o estudo da geometria em movimento, utilizada para relacionar as grandezas de deslocamento, velocidade, aceleração e tempo.

Leia mais

CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR

CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR O que vamos estudar? CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR Seção 11.1 Cinemática do corpo rígido Seção 11.2 Representação vetorial das rotações Seção 11.3 Torque Seção 11.4 Momento angular Seção 11.5

Leia mais

TÓPICO. Fundamentos da Matemática II INTRODUÇÃO AO CÁLCULO VETORIAL. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II INTRODUÇÃO AO CÁLCULO VETORIAL. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques INTRODUÇÃO AO CÁLCULO VETORIAL Gil da Costa Marques TÓPICO Fundamentos da Matemática II.1 Introdução. Funções vetoriais de uma variável. Domínio e conjunto imagem.4 Limites de funções vetoriais de uma

Leia mais

Capítulo 11 Rotações e Momento Angular

Capítulo 11 Rotações e Momento Angular Capítulo 11 Rotações e Momento Angular Corpo Rígido Um corpo rígido é um corpo ideal indeformável de tal forma que a distância entre 2 pontos quaisquer do corpo não muda nunca. Um corpo rígido pode realizar

Leia mais

Observação: i.e. é abreviação da expressão em latim istum est, que significa isto é.

Observação: i.e. é abreviação da expressão em latim istum est, que significa isto é. Um disco de raio R rola, sem deslizar, com velocidade angular ω constante ao longo de um plano horizontal, sendo que o centro da roda descreve uma trajetória retilínea. Suponha que, a partir de um instante

Leia mais

Mecânica 1. Guia de Estudos P2

Mecânica 1. Guia de Estudos P2 Mecânica 1 Guia de Estudos P2 Conceitos 1. Cinemática do Ponto Material 2. Cinemática dos Sólidos 1. Cinemática do Ponto Material a. Curvas Definição algébrica: A curva parametriza uma função de duas ou

Leia mais

*Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em simplificaaulas.com.

*Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em simplificaaulas.com. MECÂNICA 1 - RESUMO E EXERCÍCIOS* P2 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em. CENTRO INSTANTÂNEO DE ROTAÇÃO (CIR) 1 o ) Escolher

Leia mais

Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos:

Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: Segunda Lei de Newton para Rotações Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: L t = I ω t e como L/ t = τ EXT e ω/ t = α, em que α

Leia mais

CARACTERÍSTICAS GEOMETRICAS DE SUPERFICIES PLANAS

CARACTERÍSTICAS GEOMETRICAS DE SUPERFICIES PLANAS CARACTERÍSTCAS GEOMETRCAS DE SUPERFCES PLANAS 1 CENTRÓDES E BARCENTROS 1.1 ntrodução Freqüentemente consideramos a força peso dos corpos como cargas concentradas atuando num único ponto, quando na realidade

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica PME 3100 - Mecânica I - Segunda Prova- Duração 110 minutos 14 de outubro de 014 Obs. Não é permitido o uso de dispositivos eletrônicos, como calculadoras, tablets e celulares. C QUESTÃO 1 (3,0 pontos).

Leia mais

FEP Física Geral e Experimental para Engenharia I

FEP Física Geral e Experimental para Engenharia I FEP2195 - Física Geral e Experimental para Engenharia I Prova P1-10/04/2008 - Gabarito 1. A luz amarela de um sinal de transito em um cruzamento fica ligada durante 3 segundos. A largura do cruzamento

Leia mais

Observação: i.e. é abreviação da expressão em latim istum est, que significa isto é.

Observação: i.e. é abreviação da expressão em latim istum est, que significa isto é. Um disco de raio R rola, sem deslizar, com velocidade angular ω constante ao longo de um plano horizontal, sendo que o centro da roda descreve uma trajetória retilínea. Suponha que, a partir de um instante

Leia mais

Movimento Circular Uniforme

Movimento Circular Uniforme Movimento Circular Uniforme 2018 Dr. Walter F. de Azevedo Jr. Prof. Dr. Walter F. de Azevedo Jr. E-mail: walter@azevedolab.net 1 Movimento Circular Uniforme (otação) Considere um disco rígido de densidade

Leia mais

O Triedro de Frenet. MAT Cálculo Diferencial e Integral II Daniel Victor Tausk

O Triedro de Frenet. MAT Cálculo Diferencial e Integral II Daniel Victor Tausk O Triedro de Frenet MAT 2454 - Cálculo Diferencial e Integral II Daniel Victor Tausk Seja γ : I IR 3 uma curva de classe C 3 definida num intervalo I IR. Assuma que γ é regular, ou seja, γ (t) 0 para todo

Leia mais

Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras.

Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. Flexão Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. O estudo da flexão que se inicia, será dividido, para fim de entendimento, em duas partes: Tensões na flexão; Deformações

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos. Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes ivan@puc-rio.br

Leia mais

Transformações Geométricas 3D

Transformações Geométricas 3D Transformações Geométricas 3D Introdução Transformações 3D são uma etensão dos métodos 2D, incluindo-se a coordenada Z. Especificação de vetores em 3D translação: vetor de translação 3D escalonamento:

Leia mais

Capítulo 9 - Rotação de Corpos Rígidos

Capítulo 9 - Rotação de Corpos Rígidos Aquino Lauri Espíndola 1 1 Departmento de Física Instituto de Ciências Exatas - ICEx, Universidade Federal Fluminense Volta Redonda, RJ 27.213-250 1 de dezembro de 2010 Conteúdo 1 e Aceleração Angular

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo Cinemática retilínea: movimento contínuo

Leia mais

Física aplicada à engenharia I

Física aplicada à engenharia I Física aplicada à engenharia I Rotação - I 10.2 As Variáveis da Rotação Um corpo rígido é um corpo que gira com todas as partes ligadas entre si e sem mudar de forma. Um eixo fixo é um eixo de rotação

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Duração da Prova: 1 minutos Anel QUESTÃO 1 (,5 pontos). Conforme ilustrado na figura, um pequeno anel move-se vinculado a um arame curvo descrito pela equação: ( P O) = r( u) = ( cos u + cos u) i + ( sin

Leia mais

Lista 7. Campo magnético, força de Lorentz, aplicações

Lista 7. Campo magnético, força de Lorentz, aplicações Lista 7 Campo magnético, força de Lorentz, aplicações Q28.1) Considere a equação da força magnética aplicada sobre uma partícula carregada se movendo numa região com campo magnético: F = q v B. R: Sim,

Leia mais

massa do corpo: m; constante elástica da mola: k.

massa do corpo: m; constante elástica da mola: k. Um corpo, de massa m, está preso a extremidade de uma mola, de constante elástica k, e apoiado sobre uma superfície horizontal sem atrito. A outra extremidade da mola se encontra presa em ponto fixo. Afasta-se

Leia mais

MOVIMENTO 3D: REFERENCIAL EM ROTAÇÃO

MOVIMENTO 3D: REFERENCIAL EM ROTAÇÃO MOVIMENTO 3D: REFERENCIAL EM ROTAÇÃO INTRODUÇÃO ESTUDO DE CASO Um ventilador em funcionamento está oscilando em torno de um eixo vertical. Uma mosca insuspeita voa em direção ao ventilador e se choca com

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo Cinemática retilínea: movimento contínuo

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PME 30 MECÂNICA 1 Segunda Prova 18 de outubro de 016 Duração da Prova: 1 minutos Anel QUESTÃO 1 (,5 pontos). Conforme ilustrado na figura, um pequeno anel move-se vinculado a um arame curvo descrito pela

Leia mais

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T4 FÍSICA EXPERIMENTAL I - 007/08 MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO 1. Objectivo Estudo do movimento de rotação de um corpo

Leia mais

Capítulo Aplicações do produto interno

Capítulo Aplicações do produto interno Cálculo - Capítulo 1.4 - Aplicações do produto interno - versão 0/009 1 Capítulo 1.4 - Aplicações do produto interno 1.4.1 - Ortogonalidade entre vetores 1.3.3 - Ângulo entre vetores 1.4. - Projeção ortogonal

Leia mais

v CM K = ½ I CM a CM

v CM K = ½ I CM a CM ENGENHARIA 1 ROLAMENTO O rolamento é um movimento que associa translação e rotação. É o caso, por exemplo, de uma roda que, ao mesmo tempo que rotaciona em torno de seu eixo central, translada como um

Leia mais

Física 1 Mecânica. Instituto de Física - UFRJ

Física 1 Mecânica. Instituto de Física - UFRJ Física 1 Mecânica Sandra Amato Instituto de Física - UFRJ Rotação de uma partícula 1/ 30 (Rotação de uma partícula) Física 1 1/28 Outline 1 Produto Vetorial 2 Rotação em Torno de um Eixo Fixo 2/ 30 (Rotação

Leia mais

2º Exame de Mecânica Aplicada II

2º Exame de Mecânica Aplicada II 2º Exame de Mecânica Aplicada II Este exame é constituído por 4 perguntas e tem a duração de três horas. Justifique convenientemente todas as respostas apresentando cálculos intermédios. Responda a cada

Leia mais

MEC2-98/99 ANÁLISE CINEMÁTICA DE MECANISMOS 2.1. Fig 1 - Mecanismo com 2 graus de liberdade

MEC2-98/99 ANÁLISE CINEMÁTICA DE MECANISMOS 2.1. Fig 1 - Mecanismo com 2 graus de liberdade MEC - 98/99 ANÁLISE CINEMÁTICA DE MECANISMOS.1 Problema nº Fig 1 - Mecanismo com graus de liberdade No mecanismo representado na figura, a barra ABE está ligada por uma articulação plana à barra OA e através

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação

Leia mais

Física para Zootecnia

Física para Zootecnia Física para Zootecnia Rotação - I 10.2 As Variáveis da Rotação Um corpo rígido é um corpo que gira com todas as partes ligadas entre si e sem mudar de forma. Um eixo fixo é um eixo de rotação cuja posição

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo Cinemática retilínea: movimento contínuo

Leia mais

MOVIMENTO 3D REFERENCIAL AUXILIAR EM ROTAÇÃO

MOVIMENTO 3D REFERENCIAL AUXILIAR EM ROTAÇÃO MOVIMENTO 3D REFERENCIAL AUXILIAR EM ROTAÇÃO INTRODUÇÃO ESTUDO DE CASO Um ventilador em funcionamento está oscilando em torno de um eixo vertical. Uma mosca insuspeita voa em direção ao ventilador e se

Leia mais

Vetor Tangente, Normal e Binormal. T(t) = r (t)

Vetor Tangente, Normal e Binormal. T(t) = r (t) CVE 0003 - - CÁLCULO VETORIAL - - 2011/2 Vetor Tangente, Normal e Binormal Lembre-se que se C é uma curva suave dada pela função vetorial r(t), então r (t) é contínua e r (t) 0. Além disso, o vetor r (t)

Leia mais

Cap. 9 - Rotação do Corpo Rígido. 1 Posição, Velocidade e Aceleração Angulares

Cap. 9 - Rotação do Corpo Rígido. 1 Posição, Velocidade e Aceleração Angulares Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 9 - Rotação do Corpo Rígido Prof. Elvis Soares Para nós, um corpo rígido é um objeto indeformável, ou seja, nesse corpo

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ESCA PITÉCNICA DA UNIVERSIDADE DE SÃ PAU Avenida Professor Mello Moraes, nº 31. cep 558-9, São Paulo, SP. Telefone: (xx11) 391 5337 Fax: (xx11) 3813 188 MECÂNICA II - PME 3 Primeira Prova de abril de 17

Leia mais

m R 45o vertical Segunda Chamada de Física I Assinatura:

m R 45o vertical Segunda Chamada de Física I Assinatura: Segunda Chamada de Física I - 016- NOME: Assinatura: DE Nota Q1 Nas questões em que for necessário, considere que: todos os fios e molas são ideais; os fios permanecem esticados durante todo o tempo; a

Leia mais

massa do corpo A: m A ; massa do corpo B: m B ; massa da polia: M; raio da polia: R; adotando a aceleração da gravidade: g.

massa do corpo A: m A ; massa do corpo B: m B ; massa da polia: M; raio da polia: R; adotando a aceleração da gravidade: g. Uma máquina de Atwood possui massas m A e m B, onde a massa B é maior que a massa A, ligadas por uma corda ideal, inextensível e de massa desprezível, através de uma polia de massa M e raio R. Determinar

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2012-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia

Leia mais

MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO

MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO INTRODUÇÃO ESTUDO DE CASO Um motor de dois cilindros roda em vazio a 1000 rpm quando a válvula borboleta é aberta. Como a forma assimétrica da árvore de manivelas e

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PME 3 MECÂNICA II Prova substitutiva 3 de julho de 18 Duração da Prova: 11 minutos (não é permitido o uso de celulares, notebooks e dispositivos similares) 1ª Questão (3,5 pontos). Na figura ao lado, o

Leia mais

carga do fio: Q. r = r p r q figura 1

carga do fio: Q. r = r p r q figura 1 Uma carga Q está distribuída uniformemente ao longo de um fio reto de comprimento infinito. Determinar o vetor campo elétrico nos pontos situados sobre uma reta perpendicular ao fio. Dados do problema

Leia mais

CAPÍTULO 5. Considere-se uma matriz de rotação variante no tempo R = R(t). Tendo em vista a ortogonalidade de R, pode-se escrever

CAPÍTULO 5. Considere-se uma matriz de rotação variante no tempo R = R(t). Tendo em vista a ortogonalidade de R, pode-se escrever Capítulo 5 - Cinemática da Velocidade e da Aceleração. O Jacobiano do Manipulador 54 CAPÍTULO 5 CINEMÁTICA DA VELOCIDADE E DA ACELERAÇÃO O JACOBIANO DO MANIPULADOR 5.1 INTRODUÇÃO Nos capítulos anteriores

Leia mais

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA 1.0 Definições Posição angular: utiliza-se uma medida de ângulo a partir de uma direção de referência. É conveniente representar a posição da partícula com suas

Leia mais

22/Fev/2018 Aula Queda livre 2.2 Movimento 2 e 3-D Vetor deslocamento Vetor velocidade Vetor aceleração

22/Fev/2018 Aula Queda livre 2.2 Movimento 2 e 3-D Vetor deslocamento Vetor velocidade Vetor aceleração 22/Fev/2018 Aula2 2.1 Queda livre 2.2 Movimento 2 e 3-D 2.2.1 Vetor deslocamento 2.2.2 Vetor velocidade 2.2.3 Vetor aceleração 2.3 Lançamento de projétil 2.3.1 Independência dos movimentos 2.3.2 Forma

Leia mais

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L.

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Esquema do problema Consideremos uma corda longa, fixa nas extremidades, por onde se

Leia mais

MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO. No instante em que a válvula borboleta é aberta, qual é a aceleração angular

MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO. No instante em que a válvula borboleta é aberta, qual é a aceleração angular INTRODUÇÃO ESTUDO DE CASO MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO Um motor de dois cilindros roda em vazio, a 1000 rpm, quando a válvula borboleta (que regula o fluxo de ar e altera a carga de trabalho) é

Leia mais

Sistema de Coordenadas Intrínsecas

Sistema de Coordenadas Intrínsecas Sistema de Coordenadas Intrínsecas Emílio G. F. Mercuri a a Professor do Departamento de Engenharia Ambiental, Universidade Federal do Paraná, Curitiba, Paraná Resumo Depois da introdução a cinemática

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

Física I 2010/2011. Aula 13 Rotação I

Física I 2010/2011. Aula 13 Rotação I Física I 2010/2011 Aula 13 Rotação I Sumário As variáveis do movimento de rotação As variáveis da rotação são vectores? Rotação com aceleração angular constante A relação entre as variáveis lineares e

Leia mais

As variáveis de rotação

As variáveis de rotação Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento

Leia mais

Solução

Solução Uma barra homogênea e de secção constante encontra-se apoiada pelas suas extremidades sobre o chão e contra uma parede. Determinar o ângulo máximo que a barra pode formar com o plano vertical para que

Leia mais

Rotações de corpos rígidos

Rotações de corpos rígidos Rotações de corpos rígidos Alexandre Furlan Fundamentos de Mecânica - FIS065 Turmas E1 E2 E3 29 de outubro de 2018 Alexandre Furlan (Aula 18) Fundamentos de Mecânica 29 de outubro de 2018 1 / 10 Objetivos

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo Cinemática retilínea: movimento contínuo

Leia mais

Geostrofia: Condições Barotrópicas e Baroclínicas

Geostrofia: Condições Barotrópicas e Baroclínicas Geostrofia: Condições Barotrópicas e Baroclínicas Em um fluido onde a densidade é função somente da pressão, as superfícies de igual densidade (isopicnais) são paralelas às superfícies de igual pressão

Leia mais

Mecânica I. Corpo rígido

Mecânica I. Corpo rígido Corpo rígido Pode definir-se um corpo rígido como sendo o sistema discreto ou contínuo de partículas em que, sob a acção de sistemas de forças arbitrárias, se mantêm constantes as posições relatias entre

Leia mais

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação www.engenhariafacil.net Resumo com exercícios resolvidos do assunto: Dinâmica do Movimento de Rotação (1)- TORQUE, CONSIDERAÇÕES INICIAIS: Já estudamos que a atuação de forças em um corpo altera o movimento

Leia mais

massa do corpo A: m A ; massa do corpo B: m B ; massa da polia: M; raio da polia: R; adotando a aceleração da gravidade: g.

massa do corpo A: m A ; massa do corpo B: m B ; massa da polia: M; raio da polia: R; adotando a aceleração da gravidade: g. Uma máquina de Atwood possui massas m A e m B, onde a massa B é maior que a massa A, ligadas por uma corda ideal, inextensível e de massa desprezível, através de uma polia de massa M e raio R. Determinar

Leia mais

Cap. 3 - Cinemática Tridimensional

Cap. 3 - Cinemática Tridimensional Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 3 - Cinemática Tridimensional Prof. Elvis Soares 1 Cinemática Vetorial Para determinar a posição de uma partícula no

Leia mais

Apresentação Outras Coordenadas... 39

Apresentação Outras Coordenadas... 39 Sumário Apresentação... 15 1. Referenciais e Coordenadas Cartesianas... 17 1.1 Introdução... 17 1.2 O Espaço Físico... 18 1.3 Tempo... 19 1.3.1 Mas o Tempo é Finito ou Infinito?... 21 1.3.2 Pode-se Viajar

Leia mais

Superfícies e Curvas no Espaço

Superfícies e Curvas no Espaço Superfícies e Curvas no Espaço Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de deembro de 2001 1 Quádricas Nesta

Leia mais

FEP Física para Engenharia II. Prova P1 - Gabarito

FEP Física para Engenharia II. Prova P1 - Gabarito FEP2196 - Física para Engenharia II Prova P1 - Gabarito 1. Um cilindro de massa M e raio R rola sem deslizar no interior de um cilindro de raio 2R mantido fixo. O cilindro menor é solto a partir do repouso

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 59070 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 6 00 Superposição de Movimentos Periódicos Há muitas situações em física que envolvem a ocorrência simultânea de duas ou mais

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados.

O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados. 1. Análise Vetorial O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados. Os princípios eletromagnéticos são encontrados em diversas aplicações:

Leia mais

11 Cinemática de partículas 605

11 Cinemática de partículas 605 SUMÁRIO 11 Cinemática de partículas 605 11.1 Introdução à dinâmica 606 Movimento retilíneo de partículas 607 11.2 Posição, velocidade e aceleração 607 11.3 Determinação do movimento de uma partícula 611

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2013-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia

Leia mais

Análise Vetorial. Capítulo Sejam os dois segmentos de reta AB e CD, com AB = B A tal que:

Análise Vetorial. Capítulo Sejam os dois segmentos de reta AB e CD, com AB = B A tal que: Capítulo 1 Análise etorial 1.1 ejam os dois segmentos de reta AB e CD, com AB = B A e CD = D C, tal que: AB = î 2ĵ ˆk CD = 3î 6ĵ 3ˆk Para verificar que AB e CD são paralelos basta verificar que AB CD =

Leia mais

CAPÍTULO 3 DINÂMICA DA PARTÍCULA: TRABALHO E ENERGIA

CAPÍTULO 3 DINÂMICA DA PARTÍCULA: TRABALHO E ENERGIA CAPÍLO 3 DINÂMICA DA PARÍCLA: RABALHO E ENERGIA Neste capítulo será analisada a lei de Newton numa de suas formas integrais, aplicada ao movimento de partículas. Define-se o conceito de trabalho e energia

Leia mais

ROBÓTICA CINEMÁTICA. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial

ROBÓTICA CINEMÁTICA. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial SP CAMPUS PIRACICABA ROBÓTICA Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial CINEMÁTICA https://giovanatangerino.wordpress.com giovanatangerino@ifsp.edu.br giovanatt@gmail.com

Leia mais

FNC376N: Lista de março de ψ r ψ = Eψ. sin θ Y )

FNC376N: Lista de março de ψ r ψ = Eψ. sin θ Y ) FNC376N: ista 3 31 de março de 5 Tipler - Capítulo 7 7-7 Considere a função de onda ψ = A r a e r/a cos θ, onde A é uma constante e a = /µkze é o raio de Bohr dividido por Z a) Mostre que éla é uma solução

Leia mais

Problemas de Duas Partículas

Problemas de Duas Partículas Problemas de Duas Partículas Química Quântica Prof a. Dr a. Carla Dalmolin Massa reduzida Rotor Rígido Problemas de Duas Partículas Partícula 1: coordenadas x 1, y 1, z 1 Partícula 2: coordenadas x 2,

Leia mais

Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA

Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA 1. Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens estavam em R. Essas funções são chamadas de funções com valores

Leia mais

1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t 3 + t 2 )i + 3t 2 k

1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t 3 + t 2 )i + 3t 2 k 1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t + t 2 )i + t 2 k onde r é dado em metros e t em segundos. Determine: (a) (1,0) o vetor velocidade instantânea da partícula,

Leia mais

Notas sobre Mecânica Clássica

Notas sobre Mecânica Clássica Notas sobre Mecânica Clássica Hildeberto Eulalio Cabral 1 Cinemática do corpo rígido Em mecânica clássica, um corpo rígido é um sistema de pontos materiais cuas distâncias entre dois quaisquer deles mantem-se

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: As condições que

Leia mais

Lista 8 : Cinemática das Rotações NOME:

Lista 8 : Cinemática das Rotações NOME: Lista 8 : Cinemática das Rotações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais

Notas de aula resumo de mecânica. Prof. Robinson RESUMO DE MECÂNICA

Notas de aula resumo de mecânica. Prof. Robinson RESUMO DE MECÂNICA RESUMO DE MECÂNICA Ano 2014 1 1. DINÂMICA DE UMA PARTÍCULA 1.1. O referencial inercial. O referencial inercial é um sistema de referência que está em repouso ou movimento retilíneo uniforme ao espaço absoluto.

Leia mais

1 Cônicas Não Degeneradas

1 Cônicas Não Degeneradas Seções Cônicas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de dezembro de 2001 Estudaremos as (seções) cônicas,

Leia mais

Revisão II: Sistemas de Referência

Revisão II: Sistemas de Referência Revisão II: Sistemas de Referência sistema terrestre fixo (ex.: NED) origem: ponto fixo sobre a superfície da Terra zi : vertical, apontando para o centro da Terra xi e y I : repousam sobre o plano horizontal

Leia mais

Movimento circular e movimento relativo

Movimento circular e movimento relativo DEPARTAMENTO DE FÍSICA APONTAMENTOS DE CINEMÁTICA para a Cadeira de MECÂNICA E ONDAS Movimento circular e movimento relativo João Fonseca 4 Movimento circular Quando o raio de curvatura é constante e igual

Leia mais

Física 1 Mecânica. Instituto de Física - UFRJ

Física 1 Mecânica. Instituto de Física - UFRJ Física 1 Mecânica Sandra Amato Instituto de Física - UFRJ Produto Vetorial Torque e momento Angular de Uma Partícula 1/ 32 (Rotação de uma partícula) Física 1 1/32 Outline 1 Produto Vetorial 2 Momento

Leia mais

raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q.

raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q. Sea um arco de circunferência de raio a e ângulo central carregado com uma carga distribuída uniformemente ao longo do arco. Determine: a) O vetor campo elétrico nos pontos da reta que passa pelo centro

Leia mais

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g.

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g. Um corpo, de massa m, está suspenso pela extremidade de uma mola, de constante elástica, a outra extremidade da mola está presa ao teto. Afasta-se o corpo da posição de equilíbrio e libera-se o corpo.

Leia mais

Eletromagnetismo I (Curso do Bacharelado) Instituto de Física Universidade de São Paulo 1ª Aula - Prof. Alvaro Vannucci

Eletromagnetismo I (Curso do Bacharelado) Instituto de Física Universidade de São Paulo 1ª Aula - Prof. Alvaro Vannucci Eletromagnetismo I (Curso do Bacharelado) Instituto de Física Universidade de São Paulo 1ª Aula - Prof. Alvaro Vannucci Livros-Teto sugeridos para o curso: Reit-Milford e Griffiths Vamos inicialmente relembrar

Leia mais