CARACTERÍSTICAS GEOMETRICAS DE SUPERFICIES PLANAS

Tamanho: px
Começar a partir da página:

Download "CARACTERÍSTICAS GEOMETRICAS DE SUPERFICIES PLANAS"

Transcrição

1 CARACTERÍSTCAS GEOMETRCAS DE SUPERFCES PLANAS 1 CENTRÓDES E BARCENTROS 1.1 ntrodução Freqüentemente consideramos a força peso dos corpos como cargas concentradas atuando num único ponto, quando na realidade o que se passa é que o peso é uma força distriuída, isto é, cada pequena porção de matéria tem o seu próprio peso. Esta simplificação pode ser feita se aplicarmos a força concentrada num ponto especial denominado Baricentro. Este ponto deve ter uma distriuição de matéria omogênea em torno de si. Terá importância tamém a determinação de um ponto de uma superfície e não somente de um corpo tridimensional que terá uma distriuição omogênea de área em torno de si. A este ponto especial camaremos de Centróide (ou Centro de Gravidade ). Demonstra-se que as coordenadas deste ponto serão otidas, no caso geral, tomando-se um elemento de área da e partindo do centróide deste elemento ( el ; el ) faemos a integração em toda a área A. el el 8

2 As coordenadas deste ponto serão: A integral da el da da el da da é conecida como Momento Estático de 1 a Ordem ou Momento Estático de Área em relação ao eio. Analogamente, a integral da define o Momento Estático de 1 a Ordem ou Momento Estático de Área em relação ao eio. 1. Determinação do Centróide a Por ntegração Escola do elemento de área pode-se escoler qualquer elemento de área para o cálculo do. A resolução da maior parte dos prolemas será possível com elemento de área em forma de uma faia retangular ou um setor circular. E.: Retângulo d el 9

3 da da el el e da d 1 d d d d da da el el e da d 1 d d d d Portanto, para o retângulo temos: el d

4 / / / / A partir destes resultados, toda ve que utiliarmos um elemento de área em forma de faia retangular colocaremos: el e el Por Composição de Figuras Muitas figuras são resultantes de soma ou diferença de outras figuras conecidas e para estas á um segundo método para se determinar o. E.: 1mm 1mm 6mm 1

5 Notamos que a figura resultante pode ser otida pela soma de um retângulo com um triângulo ou pela diferença de um outro retângulo e um triângulo. Faremos a opção pela soma. Oservamos que o de cada figura (retângulo e triângulo) já são conecidos, pois foram otidos por integração. Contudo, Estas coordenadas devem ser tomadas em relação à origem do sistema dado. Como trata-se de soma de figuras conecidas, as integrais da se tornam A Figura, A e A. A A el da, el da e A Retângulo Triângulo A 16 9,85mm A 86 55,8mm A 156 A Aplicações do Cálculo do Teoremas de Pappus-Guldinus: para a aplicação dos teoremas torna-se necessário definirmos: Superfície de revolução: é uma superfície que pode ser gerada pela rotação de uma curva plana em torno de um eio dado. Curva plana (reta) Superfície de revolução casca do cone Corpo de revolução: é um corpo que pode ser gerado pela rotação de uma área plana em torno de um eio fio.

6 Área plana (triângulo) Corpo (cone) Teorema : a área de uma superfície de revolução é igual ao comprimento da curva geratri, multiplicada pela distância percorrida pelo centróide da curva durante a geração da superfície. Teorema : o volume de um corpo de revolução é igual à área geratri, multiplicada pela distância percorrida pelo centróide da área durante a geração do corpo. 1. Centróide de um Corpo Tridimensional Analogamente ao que foi feito para áreas planas, a determinação do Centróide de um Corpo Tridimensional pode ser otida pelas epressões: dv dv dv dv e dv dv Para corpos omogêneos, isto é, os que possuem peso específico constante, o Centróide coincide com o Baricentro. Relemremos que Centróide é um ponto com distriuição de volume omogênea em torno de si (do ponto de vista geométrico) e Baricentro é um ponto com distriuição omogênea de massa em torno de si (ponto onde deve situar a força peso, que soina sustitui o peso distriuído de cada porção de matéria). A integral dv é conecida como Momento Estático ou Momento de Primeira Ordem de Volume em relação ao plano. Analogamente, dv com em relação a e dv em relação a.

7 No cálculo de centróide de áreas pudemos oservar que figuras com eio de simetria possuíam o sore este eio. O mesmo se aplica para o de corpos tridimensionais. Desta forma é imediato o de esferas, elipsóides, cuos, paralelepípedos, etc. Semelante ao que foi feito para as áreas, á dois métodos para determinar o de volumes: por ntegração e Composição de Corpos.

8 Lista de Eercícios 1. Determinar, por integração direta, o das áreas aaio: a) Triângulo f() k (;) d el el ) Paráola do o grau f() k (;) d el el 5

9 . Determinar, por composição de figuras, o das áreas aaio: a) 6mm 1mm 1mm ) mm r 1mm mm c) 75mm 1,5mm 1mm 1,5mm 6

10 d) 7,5mm 5mm mm 75mm 5mm 7,5mm 7,5mm 15mm 5mm e) r 75mm r 1 5mm f) r 1mm r 1 75mm α α 5mm 7

11 g) r mm r 1 5mm 1mm. Um cone e um cilindro de mesmo raio a e altura estão unidos como ilustrado aaio. Determine a posição do centróide do corpo. a 8

12 . Momento de nércia de Figuras Planas integrais No desenvolvimento da epressão da tensão Normal no estudo da fleão, surgem as ds e ds camadas de Momento Estático de a ordem ou Momento de nércia. Estudaremos o desenvolvimento e epressões finais dessas integrais para as figuras mais comuns. Momento de nércia é uma grandea que mede a resistência que uma determinada área oferece quando solicitada ao giro em torno de um determinado eio. Normalmente representamos pelas letras e. Assim a resistência que a Figura 1 oferece ao giro em torno do eio é representada por ds e em torno do eio é representada por ds, onde ds é um elemento de área da Figura 5.1, é a distância do elemento de área ao eio e é a distância do elemento de área ao eio. S ds O Da mesma maneira que fiemos para os Momentos Estáticos de 1 a ordem (cálculos de Centro de Gravidade), desenvolveremos as integrais para as figuras comuns, retângulo, triângulo, paráola e círculo. A escola do elemento de área adequado facilita a resolução das integrais. Deve-se utiliar um elemento de área que eqüidiste do eio em torno do qual se calcula o Momento de nércia. 9

13 Retângulo d ds d ds Triângulo d ds d d ds d ( ) - d ds d ( ) - d ds d

14 ds ( ) d 1 ds d.1. Teorema dos Eios Paralelos 1 Freqüentemente necessitamos do momento de inércia de uma área em relação a um eio qualquer (este eio será qualquer para a figura em si, mas especial para a seção da qual a referida figura fa parte). para evitar o cálculo constante de integrais, desenvolveremos uma epressão para o cálculo do momento de inércia em relação a este eio qualquer a partir do valor do momento de inércia em relação a outro eio, já conecido. ds B ' d B A A AA AA ds ( ' + d) ds ' ds + d ' ds + d ds A integral ' ds já é conecida. Como o eio BB é o oriontal que contém o, esta integral é camada. Portanto: A integral ' ds é igual a ero pois refere-se ao. A integral ds resulta a área S. AA BB + d S 1

15 Sendo d a distância de eio a eio. Para eios oriontais teremos: + d S + d S Retângulo / / + d S + 1 / / + d S + 1 Tritângulo / /

16 + d S / / + d S. Momento Polar de nércia r ds No estudo da torção em peças cilíndricas terá grande importância a integral, que é camada de Momento Polar de nércia. É utiliada quando ouver solicitação em torno de um eio (na seção estudada teremos um ponto Pólo). ds r Temos que: p r ds ( + ) ds p ds + ds

17 + p A terceira figura importante para a qual precisamos dos valores dos Momentos de nércia é o Círculo. A dedução mais simples é a de. du u r p u ds π u du ds r u π u r π u p Em função da simetria, podemos concluir que para o círculo os valores de e são iguais. Como o ponto O é o encontro dos eios e, teremos: π r du du + π r + (pois ) Portanto, para o círculo teremos: π r π r p π r Ou, escrevendo em função do diâmetro:

18 π d 6 π d 6 p π d Figuras Circulares ds ( ; ) r θ + r sen θ r cos θ ds d d r cos θ dθ r ds d r sen θ r cos θ r cos θ dθ -- r sen θ cos θ dθ r sen θ cos θ dθ r -- θ senθ 8 Para descrever o círculo θ deve variar de π π r Para o semi-círculo θ deve variar de θ a π a π r π +. π +. Então π r 8 5

19 ser Para o quarto de círculo θ deve variar de a ds d. Então π r 16 π + e o elemento de área deve Resumindo teremos: π r π d 6 π r 8 π d Teorema dos Eios Paralelos π r 16 π d 56 Círculo: os valores otidos já são em relação aos eios que passam pelo Centro de Gravidade. Semi-Círculo: + d S π r 8 r + π π r 6

20 r π π, r Quarto de Círculo: + d S π r 16 r r + π π 16 9 π π r,5878 r. Produto de nércia É definido com a integral ds otida multiplicando-se cada elemento de área ds de uma área S por suas coordenadas e em relação aos eios coordenados e e integrando sore a área. Ao contrário dos Momentos de nércia e, o Produto de nércia pode ser positivo, negativo ou nulo e não tem significado físico. Será útil mais tarde para a determinação dos próprios Momentos de nércia. É indicado pela areviação. ds S Calculando para as figuras mais comuns temos: ds 7

21 8 Retângulo: d ds ds d Triângulo: Há quatro posições para os triângulos. Desenvolveremos uma delas. ds 1 ds ds d d Z + 1 d ds d

22 ( 6-8 ) Teorema dos Eios Paralelos De forma semelante ao que fiemos com os Momentos de nércia teremos: d ds S d 1 O ' + ' + d d 1 ds ( ' + d ) ( ' + d ) 1 ds 1 1 d d ds + d ' ds + d ' ds + ' ' ds + d1 d S 9

23 Aplicando para cada uma das figuras principais teremos: Retângulo: / + d1 d S / Z + Triângulo: / / 1 + d d S + 7 5

24 5 Momentos de inércia de uma área em relação a eios inclinados Muitas vees é necessário calcular os momentos e o produto de inércia, e para uma área em relação a um par de eios u e v inclinados em relação aos eios e, sendo os valores de θ,, e conecidos. Para isso utiliaremos as equações de transformação que relacionam as coordenadas, e e. da ' A ' θ θ θ ' ' ' cos( θ ) + sen( θ ) ' cos( θ ) sen( θ ) Saendo-se que : ' ' ' ' ' ' da da ' ' da Sustituindo e na epressão acima, tem-se: ' ' ' ' ( cos( θ ) sen( θ )) ( cos( θ ) + sen( θ )) da da ( cos( θ ) sen( θ ))( cos( θ ) + sen( θ )) da Epandindo cada epressão e lemrando que 51

25 otem-se ' ' ' ' da da da cos sen θ + θ + senθ cosθ sen θ cos θ + senθ cosθ senθ cosθ senθ cosθ + (cos θ sen θ ) Simplificando estas equações utiliando as identidades trigonométricas sen θ senθ cosθ cos θ cos resulta: θ sen θ ' ' ' ' sen θ + cos θ cos θ + cos θ sen θ (1) sen θ Se a primeira e a segunda equações forem somadas, pode-se mostrar que o momento polar de inércia em relação ao eio que passa pelo ponto O é independente da orientação dos eio e, ou seja: + ' + ' Momentos principais de inércia As equações (1) mostram que, e dependem do ângulo de inclinação dos eios e. Deseja-se determinar agora a orientação desses eios para os quais os momentos de inércia da área, e são etremos, isto é, máimo e mínimo. Este par de eios em particular é camado de eios principais de inércia e os correspondentes momentos de inércia em relação a eles são os camados momentos principais de inércia. Em geral eiste um par de eios para cada origem O escolida. Nos projetos estruturais e mecânicos de um elemento, a origem O é geralmente localiada no centróide da área de seção reta. 5

26 O ângulo θθp que define a orientação dos eios principais da área pode ser otido por derivação da primeira das equações (1) em relação a θ, impondo-se resultado nulo. d ' sen θ cos θ dθ Assim, em θθp tan θ p () ( ) Essa equação possui duas raíes θp1 e θp defasadas de 9 º e estaelecem a inclinação dos eios principais. De forma a sustitui-las nas equações (1) devemos inicialmente oter o seno e o cosseno de θp1 e θp o que pode ser feito pela relação () em associação com a identidade trigonométrica sen θ cos θ 1. Otem-se dessa forma: Para θ p1 p + p sen θ cos θ p1 p1 + + Para θ p sen θ cos θ p p + + Sustituindo esses dois pares de relações trigonométricas nas equações (1) e simplificando tem-se: 5

27 ma min ± + 5

28 Lista de Eercícios 1. Calcular os valores de e em relação ao sistema de eios que passa pelo da seção. a) (cm) 55

29 ) (cm) Determine o produto de inércia () para as figuras aaio. a) d - 56

30 ) d - c) d -. Determine o valor de para as figuras aaio. a) / / 57

31 ) / / c) / / 58

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo: Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema

Leia mais

CARTOGRAFIA. Sistemas de Coordenadas. Prof. Luiz Rotta

CARTOGRAFIA. Sistemas de Coordenadas. Prof. Luiz Rotta CARTOGRAFIA Sistemas de Coordenadas Prof. Luiz Rotta SISTEMA DE COORDENADAS Por que os sistemas de coordenadas são necessários? Para expressar a posição de pontos sobre uma superfície É com base em sistemas

Leia mais

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS Matemática 2 Pedro Paulo GEOMETRIA PLANA X 1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS 1.2 Triângulo equilátero circunscrito A seguir, nós vamos analisar a relação entre alguns polígonos regulares e as circunferências.

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1)

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1) Capítulo 2 Lei de Gauss 2.1 Fluxo Elétrico O fluxo Φ E de um campo vetorial E constante perpendicular a uma superfície é definido como Φ E = E (2.1) Fluxo mede o quanto o campo atravessa a superfície.

Leia mais

GEOMETRIA. sólidos geométricos, regiões planas e contornos PRISMAS SÓLIDOS GEOMÉTRICOS REGIÕES PLANAS CONTORNOS

GEOMETRIA. sólidos geométricos, regiões planas e contornos PRISMAS SÓLIDOS GEOMÉTRICOS REGIÕES PLANAS CONTORNOS PRISMAS Os prismas são sólidos geométricos muito utilizados na construção civil e indústria. PRISMAS base Os poliedros representados a seguir são denominados prismas. face lateral base Nesses prismas,

Leia mais

1 Exercícios de Aplicações da Integral

1 Exercícios de Aplicações da Integral Cálculo I (5/) IM UFRJ Lista 6: Aplicações de Integral Prof. Milton Lopes e Prof. Marco Cabral Versão 9.5.5 Eercícios de Aplicações da Integral. Eercícios de Fiação Fi.: Esboce o gráco e calcule a área

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Abril/2015

Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Abril/2015 GEOMETRIA Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Abril/2015 O MATERIAL COMO SUPORTE DO PENSAMENTO Muita gente usa o material na sala de aula como se a Geometria estivesse no material.

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo: Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,

Leia mais

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes. Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais

Atividade de revisão do 1º semestre de 2009 e autoavaliação de recuperação

Atividade de revisão do 1º semestre de 2009 e autoavaliação de recuperação Física Atividade 3 os anos Glorinha ago/09 Nome: Nº: Turma: Atividade de revisão do 1º semestre de 2009 e autoavaliação de recuperação Essa atividade tem o objetivo de revisar alguns conceitos estudados

Leia mais

Capítulo1 Tensão Normal

Capítulo1 Tensão Normal - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Referências Bibliográficas:

Leia mais

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 11 Resolver problema envolvendo o cálculo de perímetro de figuras planas. Os itens referentes a

Leia mais

Boa Prova! arcsen(x 2 +2x) Determine:

Boa Prova! arcsen(x 2 +2x) Determine: Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia - CCT Unidade Acadêmica de Matemática e Estatística - UAME - Tarde Prova Estágio Data: 5 de setembro de 006. Professor(a):

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

PARTE 11 VETOR GRADIENTE:

PARTE 11 VETOR GRADIENTE: PARTE 11 VETOR GRADIENTE: INTERPRETAÇÃO GEOMÉTRICA 11.1 Introdução Dada a função real de n variáveis reais, f : Domf) R n R X = 1,,..., n ) f 1,,..., n ), se f possui todas as derivadas parciais de primeira

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues.

NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues. Lista 12: Equilíbrio do Corpo Rígido NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Ler os enunciados com atenção. iii.

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla.

De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla. 8 Mudança de variável em integrais riplas 38 De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla. I f ( dxddz Introduzindo novas variáveis de integração

Leia mais

8 -SISTEMA DE PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR - UTM

8 -SISTEMA DE PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR - UTM 8 -SISTEMA DE PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR - UTM Introdução: histórico; definições O Sistema de Projeção UTM é resultado de modificação da projeção Transversa de Mercator (TM) que também é

Leia mais

Prof. Michel Sadalla Filho

Prof. Michel Sadalla Filho Referências MECÂNICA APLICADA Prof. Michel Sadalla Filho Centros de Gravidade, Centro de Massa, Centróides de uma figura plana DOC 06 14 Fev 2013 Ver. 01 HIBBELER, R. C. Mecânica Estática. 10 ed. São Paulo:

Leia mais

Exemplos: sen(36º)=0.58, cos(36º)=0.80 e tg(36º)=0.72, Calcular o valor de x em cada figura:

Exemplos: sen(36º)=0.58, cos(36º)=0.80 e tg(36º)=0.72, Calcular o valor de x em cada figura: REVISÃO RELAÇÕES TRIGONOMÉTRICAS E REDUÇÃO AO PRIMEIRO QUADRANTE DO CICLO TRIGONOMÉTRICO TURMA: ª SÉRIE DO ENSINO MÉDIO PROF. LUCAS FACTOR Trigonometria no Triangulo Retângulo Considere o triangulo retângulo

Leia mais

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ) P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a

Leia mais

Função. Adição e subtração de arcos Duplicação de arcos

Função. Adição e subtração de arcos Duplicação de arcos Função Trigonométrica II Adição e subtração de arcos Duplicação de arcos Resumo das Principais Relações I sen cos II tg sen cos III cotg tg IV sec cos V csc sen VI sec tg VII csc cotg cos sen Arcos e subtração

Leia mais

Ondas EM no Espaço Livre (Vácuo)

Ondas EM no Espaço Livre (Vácuo) Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM

Leia mais

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando volume de sólidos geométricos. Elizabete Alves de Freitas

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando volume de sólidos geométricos. Elizabete Alves de Freitas C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O 06 matemática Calculando volume de sólidos geométricos Elizabete Alves de Freitas Governo Federal Ministério da Educação Projeto Gráfico

Leia mais

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime

Leia mais

0.1 Introdução Conceitos básicos

0.1 Introdução Conceitos básicos Laboratório de Eletricidade S.J.Troise Exp. 0 - Laboratório de eletricidade 0.1 Introdução Conceitos básicos O modelo aceito modernamente para o átomo apresenta o aspecto de uma esfera central chamada

Leia mais

UNIVERSIDADE FEDERAL DO AMAPÁ UNIFAP PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIENCIAS EXATAS E TECNOLÓGICAS-DCET CURSO DE FÍSICA

UNIVERSIDADE FEDERAL DO AMAPÁ UNIFAP PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIENCIAS EXATAS E TECNOLÓGICAS-DCET CURSO DE FÍSICA UNIVERSIDADE FEDERAL DO AMAPÁ UNIFAP PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIENCIAS EXATAS E TECNOLÓGICAS-DCET CURSO DE FÍSICA Disciplina: Física Básica III Prof. Dr. Robert R.

Leia mais

Unidade 10 Trigonometria: Conceitos Básicos. Arcos e ângulos Circunferência trigonométrica

Unidade 10 Trigonometria: Conceitos Básicos. Arcos e ângulos Circunferência trigonométrica Unidade 10 Trigonometria: Conceitos Básicos Arcos e ângulos Circunferência trigonométrica Arcos e Ângulos Quando em uma corrida de motocicleta um piloto faz uma curva, geralmente, o traçado descrito pela

Leia mais

DESENHO TÉCNICO ( AULA 03)

DESENHO TÉCNICO ( AULA 03) Sólidos Geométricos DESENHO TÉCNICO ( AULA 03) Você já sabe que todos os pontos de uma figura plana localizam-se no mesmo plano. Quando uma figura geométrica tem pontos situados em diferentes planos, temos

Leia mais

Aula 2 Sistemas de Coordenadas & Projeções Cartográficas. Flávia F. Feitosa

Aula 2 Sistemas de Coordenadas & Projeções Cartográficas. Flávia F. Feitosa Aula 2 Sistemas de Coordenadas & Projeções Cartográficas Flávia F. Feitosa Disciplina PGT 035 Geoprocessamento Aplicado ao Planejamento e Gestão do Território Junho de 2015 Dados Espaciais são Especiais!

Leia mais

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades

Leia mais

Física Experimental III

Física Experimental III Física Experimental III Unidade 4: Circuitos simples em corrente alternada: Generalidades e circuitos resistivos http://www.if.ufrj.br/~fisexp3 agosto/26 Na Unidade anterior estudamos o comportamento de

Leia mais

4. Álgebra Booleana e Simplificação Lógica. 4. Álgebra Booleana e Simplificação Lógica 1. Operações e Expressões Booleanas. Objetivos.

4. Álgebra Booleana e Simplificação Lógica. 4. Álgebra Booleana e Simplificação Lógica 1. Operações e Expressões Booleanas. Objetivos. Objetivos 4. Álgebra Booleana e Simplificação Lógica Aplicar as leis e regras básicas da álgebra Booleana Aplicar os teoremas de DeMorgan em expressões Booleanas Descrever circuitos de portas lógicas com

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

COBRANÇA BANCÁRIA CAIXA

COBRANÇA BANCÁRIA CAIXA COBRANÇA BANCÁRIA CAIXA ESPECIFICAÇÃO DE CÓDIGO DE BARRAS PARA BLOQUETOS DE COBRANÇA COBRANÇAS RÁPIDA E SEM REGISTRO GESER NOVEMBRO/2000 ÍNDICE PÁGINA 1 INTRODUÇÃO... 3 2 ESPECIFICAÇÕES...4 2.1 FORMATO......

Leia mais

Aula 9. Superfícies de Revolução. Seja C uma curva e r uma reta contidas num plano π.

Aula 9. Superfícies de Revolução. Seja C uma curva e r uma reta contidas num plano π. Aula 9 Superfícies de Revolução Seja C uma curva e r uma reta contidas num plano π. Fig. 1: Superfície de revolução S, geratriz C e eixo r contidos no plano π A superfície de revolução S de geratriz C

Leia mais

Professor Dacar Lista de Revisão - Trigonometria

Professor Dacar Lista de Revisão - Trigonometria 1. Obtenha a medida, em graus, de um arco AB de comprimento 3 metros, sabendo que ele está contido em uma circunferência de diâmetro igual a 24 metros. 45 2. (UFPR) Em uma circunferência de 12 dm de comprimento,

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 0 1 Matriz de Mudança de Base Bases Ortonormais 3 Matrizes Ortogonais 1 Matriz de Mudança de Base Os próximos problemas que estudaremos são os seguintes (na verdade são o mesmo

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferentes Para Números Complexos Capítulo II Aplicação 2: Complexos na Geometria Na rápida revisão do capítulo I desse artigo mencionamos

Leia mais

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30

Leia mais

COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.

COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº. COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. Trabalho de Recuperação E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que felicidade

Leia mais

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando áreas de figuras geométricas planas

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando áreas de figuras geométricas planas C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O 05 matemática Calculando áreas de figuras geométricas planas Elizabete Alves de Freitas Governo Federal Ministério da Educação Projeto

Leia mais

Especificação do Código de Barras para Bloquetos de Cobrança Sem Registro e Registrada no SIGCB

Especificação do Código de Barras para Bloquetos de Cobrança Sem Registro e Registrada no SIGCB 1 INTRODUÇÃO... 2 2 ESPECIFICAÇÕES GERAIS... 2 2.1 FORMATO... 2 2.2 GRAMATURA DO PAPEL... 2 2.3 DIMENSÃO... 2 2.4 NÚMERO DE VIAS OU PARTES... 2 2.5 DISPOSIÇÃO DAS VIAS OU PARTES... 2 2.6 COR DA VIA/IMPRESSÃO...

Leia mais

A integral indefinida

A integral indefinida A integral indefinida Introdução Prof. Méricles Thadeu Moretti MTM/CFM/UFSC. A integração é uma operação fundamental na resolução de problemas de matemática, física e outras disciplinas, além de fazer

Leia mais

TRIGONOMETRIA CICLO TRIGONOMÉTRICO

TRIGONOMETRIA CICLO TRIGONOMÉTRICO TRIGONOMETRIA CICLO TRIGONOMÉTRICO Arcos de circunferência A e B dividem a circunferência em duas partes. Cada uma dessas partes é um arco de circunferência (ou apenas arco). A e B são denominados extremidades

Leia mais

RESISTÊNCIA DOS MATERIAIS APOSTILA 01

RESISTÊNCIA DOS MATERIAIS APOSTILA 01 Engenaria da Computação º / 5 Semestre RESSTÊNC DOS TERS POSTL 0 Prof Daniel Hasse Características Geométricas de Figuras Planas SÃO JOSÉ DOS CPOS, SP 5 CRCTERÍSTCS GEOÉTRCS DE FGURS PLNS O dimensionamento

Leia mais

e-mail: ederaldoazevedo@yahoo.com.br

e-mail: ederaldoazevedo@yahoo.com.br Assunto: Cálculo de Lajes Prof. Ederaldo Azevedo Aula 3 e-mail: ederaldoazevedo@yahoo.com.br 3.1. Conceitos preliminares: Estrutura é a parte ou o conjunto das partes de uma construção que se destina a

Leia mais

CARTOGRAFIA SISTEMÁTICA

CARTOGRAFIA SISTEMÁTICA CARTOGRAFIA SISTEMÁTICA PROJEÇÃO Universal Transversa de Mercator (UTM) COORDENADAS UTM Elaborado por: Andréia Medinilha Pancher e Maria Isabel Castreghini de Freitas SISTEMA DE PROJEÇÃO UNIVERSAL TRANSVERSA

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner. Projeto AIPRA (Processo CNPq 559912/2010-2)

Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner. Projeto AIPRA (Processo CNPq 559912/2010-2) Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner 1 ÍNDICE Uma palavra inicial... 2 Instruções iniciais... 3 Retângulo... 5 Quadrado... 6 Triângulo...

Leia mais

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada Resumo: Estudo do Comportamento das Funções O que fazer? 1º - Explicitar o domínio da função estudada 2º - Calcular a primeira derivada e estudar os sinais da primeira derivada 3º - Calcular a segunda

Leia mais

para x = 111 e y = 112 é: a) 215 b) 223 c) 1 d) 1 e) 214 Resolução Assim, para x = 111 e y = 112 teremos x + y = 223.

para x = 111 e y = 112 é: a) 215 b) 223 c) 1 d) 1 e) 214 Resolução Assim, para x = 111 e y = 112 teremos x + y = 223. MATEMÁTICA d Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância entre duas

Leia mais

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f 5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de

Leia mais

4. DIMENSIONAMENTO DE ESCADAS EM CONCRETO ARMADO

4. DIMENSIONAMENTO DE ESCADAS EM CONCRETO ARMADO 4. DIMENSIONAMENTO DE ESCADAS EM CONCRETO ARMADO 4.1 Escada com vãos paralelos O tipo mais usual de escada em concreto armado tem como elemento resistente uma laje armada em uma só direção (longitudinalmente),

Leia mais

MA211 - Lista 09. Coordenadas Esféricas e Mudança de Variáveis 7 de outubro de 2015

MA211 - Lista 09. Coordenadas Esféricas e Mudança de Variáveis 7 de outubro de 2015 MA2 - Lista 9 Coordenadas sféricas e Mudança de Variáveis 7 de outubro de 25. Marque o ponto cujas coordenadas esféricas é (,, ) e encontre as coordenadas retangulares do ponto. 2. Mude o ponto (, 3, 2

Leia mais

PROFESSOR: Guilherme Franklin Lauxen Neto

PROFESSOR: Guilherme Franklin Lauxen Neto ALUNO TURMA: 2 Ano DATA / /2015 PROFESSOR: Guilherme Franklin Lauxen Neto DEVOLUTIVA: / /2015 1) Dado um cilindro de revolução de altura 12 cm e raio da base 4 cm, determine: a) a área da base do cilindro.

Leia mais

MATEMÁTICA APLICADA FIGURAS PLANAS

MATEMÁTICA APLICADA FIGURAS PLANAS MATEMÁTICA APLICADA FIGURAS PLANAS Áreas e Perímetros de Figuras Planas Quadrado A = L x L A = L² Onde: A = Área (m², cm², mm²,...) L = Lado (m, cm, mm,...) P = Perímetro P = L + L + L + L P =. L Retângulo

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 1 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 1 Professor Marco Costa 1 1. (Fgv 2005) No plano cartesiano, considere o feixe de paralelas 2x + y = c em que c Æ R. a) Qual a reta do feixe com maior coeficiente linear que intercepta a região determinada pelas inequações: ýx

Leia mais

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos:

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Lei dos Cossenos Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Triângulo Obtusângulo Tomemos um triângulo Obtusângulo qualquer,

Leia mais

Universidade Federal de Ouro Preto UFOP. Instituto de Ciências Exatas e Biológicas ICEB. Departamento de Computação DECOM

Universidade Federal de Ouro Preto UFOP. Instituto de Ciências Exatas e Biológicas ICEB. Departamento de Computação DECOM Programação de Computadores I BCC 701 2012-02 Lista de Exercícios 02 Desvio do Fluxo de Execução - Parte A Exercício 01 Codifique um programa que faça a entrada de um número qualquer pelo teclado. A seguir

Leia mais

RELAÇÕES TRIGONOMÉTRICAS

RELAÇÕES TRIGONOMÉTRICAS REAÇÕES TRIGONOMÉTRICAS As relações trigonométricas, são estudadas no triângulo retângulo que você já viu é um triângulo que tem um ângulo reto e seus lados indicados por hipotenusa e dois catetos. No

Leia mais

Cinemática Bidimensional

Cinemática Bidimensional Cinemática Bidimensional INTRODUÇÃO Após estudar cinemática unidimensional, vamos dar uma perspectiva mais vetorial a tudo isso que a gente viu, abrangendo mais de uma dimensão. Vamos ver algumas aplicações

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundária/ da Sé-Lamego Ficha de Trabalho de Matemática no Lectivo 00/0 Geometria - Revisões º no Nome: Nº: Turma: região do espaço definida, num referencial ortonormado, por + + = é: [] a circunferência

Leia mais

A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s.

A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s. Movimento Circular Uniforme Um movimento circular uniforme (MCU) pode ser associado, com boa aproximação, ao movimento de um planeta ao redor do Sol, num referencial fixo no Sol, ou ao movimento da Lua

Leia mais

Lista de Exercícios Campo Elétrico

Lista de Exercícios Campo Elétrico Considere k o = 9,0. 10 9 N. m 2 /C 2 Lista de Exercícios Campo Elétrico 1. Uma partícula de carga q = 2,5. 10-8 C e massa m = 5,0. 10-4 kg, colocada num determinado ponto P de uma região onde existe um

Leia mais

O Plano. Equação Geral do Plano:

O Plano. Equação Geral do Plano: O Plano Equação Geral do Plano: Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = (a, b, c), n 0, um vetor normal (ortogonal) ao plano (figura ao lado). Como n π, n é ortogonal a todo vetor

Leia mais

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

a 21 a 22... a 2n... a n1 a n2... a nn

a 21 a 22... a 2n... a n1 a n2... a nn Projeto TEIA DO SABER 2006 UNESP Campus de Guaratinguetá Secretaria de Estado da Educação, SP. Diretoria de Ensino da Região de Guaratinguetá Coordenador Prof. Dr. José Ricardo Zeni Metodologias de Ensino

Leia mais

1 CLASSIFICAÇÃO 2 SOMA DOS ÂNGULOS INTERNOS. Matemática 2 Pedro Paulo

1 CLASSIFICAÇÃO 2 SOMA DOS ÂNGULOS INTERNOS. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA IV 1 CLASSIFICAÇÃO De acordo com o gênero (número de lados), os polígonos podem receber as seguintes denominações: Na figura 2, o quadrilátero foi dividido em triângulos.

Leia mais

Modelo Entidade Relacionamento (MER) Professor : Esp. Hiarly Alves

Modelo Entidade Relacionamento (MER) Professor : Esp. Hiarly Alves Tópicos Apresentação Entidade, Atributo e Relacionamento Cardinalidade Representação simbólica Generalizações / Especializações Agregações Apresentação O Modelo Entidade-Relacionamento tem o objetivo de

Leia mais

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário Prova resolvida Material de uso exclusivo dos alunos do Universitário Prova de Matemática - UFRGS/00 0. Durante os jogos Pan-Americanos de Santo Domingo, os rasileiros perderam o ouro para os cuanos por

Leia mais

PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm

PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm PROVA PARA OS ALUNOS DE º ANO DO ENSINO MÉDIO 1ª Questão: Um cálice com a forma de um cone contém V cm de uma bebida. Uma cereja de forma esférica com diâmetro de cm é colocada dentro do cálice. Supondo

Leia mais

Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010

Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 65) ª fase 9 de Julho de 00 Grupo I. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é, existem tantas bolas roxas

Leia mais

PUC-Rio Desafio em Matemática 15 de novembro de 2008

PUC-Rio Desafio em Matemática 15 de novembro de 2008 PUC-Rio Desafio em Matemática 5 de novembro de 2008 Nome: Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão.0 2.0 3.0 4.0 5a.0 5b.0 6a.0 6b.0 7 2.0 Nota final 0.0 Instruções Mantenha seu celular

Leia mais

Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2

Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2 Trigonometria Relação fundamental C b a A c B Sabemos que a = b + c, dividindo os dois membros por a : a b c = + a a a sen + cos = Temos também que: b c senα= e cosα= a a Como b tgα= c, concluímos que:

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO D PROV DE MTEMÁTIC DO VESTIBULR 0 D UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. Em de outubro de 0, Feli Baumgartner uebrou o recorde de velocidade em ueda livre. O salto foi monitorado oficialmente

Leia mais

PROVA DE MATEMÁTICA DA UFBA. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VETIBULAR 0 a Fase Profa. Maria Antônia Gouveia. Questão 0 Um lote de livros foi impresso nas gráficas A, B, e C, satisfazendo os percentuais de impressão sobre o total de 5%,

Leia mais

UFPR 2012 2ª Fase. Matemática. Página1. 01 - Considere as funções f(x) = x 1 e g(x) = 2/3 (x 1)(x 2)

UFPR 2012 2ª Fase. Matemática. Página1. 01 - Considere as funções f(x) = x 1 e g(x) = 2/3 (x 1)(x 2) Página UFPR 0 ª Fase Matemática 0 - Considere as funções f() = e g() = / ( )( ) y 0 a) Esoce o gráfico de f() e g() no sistema cartesiano ao lado. ) Calcule as coordenadas (,y) dos pontos de interseção

Leia mais

GEOMETRIA DO TAXISTA. (a -b )² + (a -b )²

GEOMETRIA DO TAXISTA. (a -b )² + (a -b )² GEOMETRI O TXIST Geometria do Taxista é uma geometria não-euclidiana, no sentido em que a noção de distância não é a mesma e acordo com o desenho abaixo, suponhamos um motorista de táxi que apanha um cliente

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

ASPECTOS CONSTRUTIVOS DE ROBÔS

ASPECTOS CONSTRUTIVOS DE ROBÔS ASPECTOS CONSTRUTIVOS DE ROBÔS Tipos de robôs Classificação de robôs Definições importantes: O arranjo das hastes e juntas em um braço manipulador tem um importante efeito nos graus de liberdade da ferramenta

Leia mais

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação . Isolar os zeros da função f ( )= 9 +. Resolução: Pode-se construir uma tabela de valores para f ( ) e analisar os sinais: 0 f ( ) + + + + + Como f ( ) f ( ) < 0, f ( 0 ) f ( ) < 0 e f ( ) f ( ) < 0,

Leia mais

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é:

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: Lista de Exercícios: Geometria Plana Questão 1 Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: A( ) 20 cm 2. B( ) 10 cm 2. C( ) 24 cm 2. D( )

Leia mais

FUNÇÕES. É uma seqüência de dois elementos em uma dada ordem. 1.1 Igualdade. Exemplos: 2 e b = 3, logo. em. Represente a relação.

FUNÇÕES. É uma seqüência de dois elementos em uma dada ordem. 1.1 Igualdade. Exemplos: 2 e b = 3, logo. em. Represente a relação. PR ORDENDO É uma seqüência de dois elementos em uma dada ordem Igualdade ( a, ( c,d) a c e b d Eemplos: E) (,) ( a +,b ) a + e b, logo a e b a + b a b 6 E) ( a + b,a (,6), logo a 5 e b PRODUTO CRTESINO

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes Equações básicas Uma análise de qualquer problema em Mecânica dos Fluidos, necessariamente se inicia, quer diretamente ou indiretamente, com a definição das leis básicas que governam o movimento do fluido.

Leia mais

Matemática Básica Intervalos

Matemática Básica Intervalos Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números

Leia mais

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA Departamento de Análise - IME UERJ 2 Copyright by Mauricio A. Vilches Todos os direitos reservados Proibida a reprodução parcial ou total 3

Leia mais

Vestibular Comentado - UVA/2013.1 Conhecimentos Específicos

Vestibular Comentado - UVA/2013.1 Conhecimentos Específicos Vestiular Comentado - UV/1.1 MTEMÁTIC Comentários: Profs. Marcos urélio e Eliano Bezerra 1. Uma seuência de (vinte) números reais é tal ue: - o primeiro elemento é igual a zero. - os 1 (dez) primeiros

Leia mais

Aula 8 Distância entre pontos do plano euclidiano

Aula 8 Distância entre pontos do plano euclidiano Distância entre pontos do plano euclidiano MÓDULO - AULA 8 Aula 8 Distância entre pontos do plano euclidiano Objetivos Nesta aula, você: Usará o sistema de coordenadas para calcular a distância entre dois

Leia mais

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares.

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares. Solução dos Exercícios de ALGA 2ª Avaliação EXEMPLO 8., pág. 61- Uma reta L passa pelos pontos P 0 (, -2, 1) e P 1 (5, 1, 0). Determine as equações paramétricas, vetorial e simétrica dessa reta. Determine

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais