AULA 07 LOGARITMOS EXERCÍCIOS
|
|
|
- Lorenzo Fidalgo Ribas
- 9 Há anos
- Visualizações:
Transcrição
1 FUNÇÃO LOGARÍTMICA Itroução Cosieremos os seguites prolems: A que epoete se eve elevr o úmero pr se oter? Pelo euio, temos: = = = Esse vlor eotro pr o epoete eomi-se ritmo o úmero se e se represet por: = A que epoete se eve elevr o úmero pr se oter? Pelo euio, temos: = = - = = = = - Aplio efiição, lule o vlor os ritmos: ) ) 0, ) ) e) 0,0000 f) 9 Clule o vlor som S: g) h) 0, i) j) l) m) 0 ) S = 0, ) S = ) S = - 0,0 + ) S = - Clule o ritmo e se Esse vlor - eotro pr o epoete eomise ritmo o úmero se e se represet por: = - A solução equção - = é o úmero rel k Clule o ritmo e k se Seo que o ritmo e se é lule o vlor e ³ - - = - = DEFINIÇÃO CONDIÇÕES DE EXISTÊNCIA = form ritmi = form epoeil Cosiere efiição, lulr o vlor os ritmos: ) = = = = ) 0 0,0 0,0 = 0,0 = 0 0 = = 0 = ritmo positivo > 0 se positiv ou > 0 e se iferete e CONSEQÜÊNCIAS DA DEFINIÇÃO ) = 0 ) = m ) = m ) = ) = = Aul 0: Fução Logritmí Prof Cirço Mill
2 Dê o vlor e: ) e) ) ) ) - f) g) h) 0 0 Determir o vlor s epressões: - = Determir ojuto solução Coição e Eistêi: ² - > 0 - = - = ' = - - = 0 '' = - p/ = 9 - > 0 > 0 (vereiro) Verifição: p/ = - + > 0 > 0 (vereiro) Respost: S = {-, } ) ) - - ) ) Ahe s igules: ) = ) 0 = 00 EQUAÇÕES LOGARÍTMICAS Equções rítmis são equções que evolvem ritmos Resolver um equção rítmi é etermir o vlor ou os vlores iógit que tor seteç vereir Pr resolver um equção rítmi, otremos o seguite métoo: Resolv s equções: ) = ) = - + ) 0, = ) = - Determie o ojuto solução equção - = - + = Resolv equção Resolv equção + - = - º Iiremos s oições e eistêi º Resolveremos equção º Fremos verifição om s soluções equção s oições e eistêi PROPRIEDADES OPERACIONAIS DOS LOGARITMOS ª Logritmo o prouto O ritmo e um prouto é igul à som os ritmos os ftores tomos mesm se, isto é: Resolver equção = Coição e Eistêi: > 0 = = = Verifição: > 0 Respost: S = { } > 0 (vereiro) - - = + om > 0, > 0 e > 0 ª Logritmo e um quoiete O ritmo e um quoiete é igul o ritmo o umeror meos o ritmo o eomior tomos mesm se, isto é: = - om > 0, > 0 e > 0 Aul 0: Fução Logritmí Prof Cirço Mill
3 ª Logritmo e um potêi O ritmo e um potêi é igul o prouto o epoete pelo ritmo se potêi, isto é: = Cso prtiulr om > 0, e > 0 Seo = e =, eotre o vlor e: ) ( ) ) ) ) = = Com =, = e = -, lule: ) ) Seo =, = e = -, lulr = - ritmo e um quoiete = + - ritmo e um prouto = + - (-) = Respost: = Seo = e = y, lulr: ) = ( ) = + = + = + y Respost: = + y ) ( 9 ) 9 = = + 9 = + 9 = y + y + 9 = y + Respost: ( 9 ) = - - Clule, seo = e = (FEI-SP) Seo que = = - =, lule MUDANÇA DE BASE > 0 = 0 < e 0 < Seo = 0, e = 0,, lulr + = = = 0, + 0, 0, = = = 0, 0, Respost: = Seo que =, lulr Psso pr se, temos: = = = = Respost: = Aul 0: Fução Logritmí Prof Cirço Mill
4 Resolv equção + = Coição Eistêi: > 0 N epressão preem ritmos s ses e ; eiremos mos om se + = Como: =, vem: + + = = + = = = = Verifição: > 0 > 0 Respost: S = { } (UFRGS) O vlor e é: (A) - (B) - (C) 0 (D) (E) (CESGRANRIO) Se 0 =,09 lule o vlor e 0, é: Seo = 0,; = 0, e = 0,, lule: ) 0 ) ) 9 ) 00 Seo ( ) = m, lule Dos = m e =, lule Soluioe s equções: ) + = ) + + = ) + - = - ) ( - ) - ( - ) = (FEI-SP) Resolv equção = (UNIFOR-CE) Se = 0,0 lule o vlor rel e + que stisfz seteç = Resolv, em IR, s equções ) ( + ) = ) + = ) ( + ) + ( ) = (UF-SE) Eotre o ojuto e vlores reis > stisfzem o sistem ( + ) > 0 Eotre os vlores e que stisfzem + ( ) = Qul é o tempo eessário pr que um pitl iiil emprego t e % o mês e juros ompostos, que são pitlizos meslmete, ore e vlor? (osiere:,0 = 0,00 ; = 0,00) 9 (CESGRANRIO) O ph e um solução é efiio por ph = (/H + ) oe H + é oetrção e hirogêio em íos-grm por litro e solução Clule o ph e um solução tl que H + =,0 0 - QUESTÕES DE VESTIBULARES (FUVEST) O vlor epressão - (-)² - é: 0 ( + ) - (A) - (B) - (C) (D) (E) - - 0(ERJ) A iez e fruts ítris é etermi pel oetrção e íos hirogêio Um mostr e polp e lrj preset ph =, Cosiero = 0, lule oetrção e íos hirogêio ess mostr, em moll - (UEL) O vlor epressão ) / ) / ) /9 ) / e) / 0 + 0,0 é: Aul 0: Fução Logritmí Prof Cirço Mill
5 (UEL) Supoo que eist, o ritmo e se é: ) o úmero o qul se elev pr se oter ) o úmero o qul se elev pr se oter ) potêi e se e epoete ) potêi e se e epoete e) potêi e se 0 e epoete (PUC) Assile propriee váli sempre: ) ( ) = ) ( + ) = + ) m = m ) m = m e) m = m (Supor vális s oições e eistêis os ritmos) (ENEM/000) João esej omprr um rro ujo preço à vist, om toos os esotos possíveis, é e R$ 000,00, e esse vlor ão será rejusto os próimos meses Ele tem R$ 0000,00, que poem ser plios um t e juros ompostos e % o mês, e esolhe eir too o seu iheiro plio té que o motte tij o vlor o rro Pr ter o rro, João everá esperr: ) ois meses, e terá quti et ) três meses, e terá quti et ) três meses, e i sorrão, proimmete, R$,00 ) qutro meses, e terá quti et e) qutro meses, e i sorrão, proimmete, R$ 0,00 Após io is lierção o preor, o úmero e iivíuos esse grupo presetes o miete será igul : ) ) ) 00 ) 00 e) 00 0(FESP) Em um olôi, o úmero e formigs prolifer e oro om fução f(p) = 00() 0,p, oe p é o períoo em is Clule o vlor e p o qul o úmero e formigs hegrá 000 (UEL-PR) Um empresário omprou um prtmeto om iteção e ivestir seu iheiro Seo-se que este imóvel vlorizou % o o, é orreto firmr que seu vlor upliou em, proimmete: (os: = 0,0 e = 0,) ) os ) os e meses ) os ) os e meses e) os e meses (ITA-SP) Clule o vlor e (UCS-RS) Clule o vlor e ( ) (UF-AL) A epressão N(t)= 00 0,t permite o álulo o úmero e téris eistetes em um ultur, o ompletr t hors o iíio e su oservção (t = 0) Após quts hors primeir oservção hverá 0000 téris ess ultur? (Dos: = 0,0 = 0,) 9 (UERJ) O úmero, em etes e iivíuos, e um etermio grupo e imis, is pós lierção e um preor em seu miete, e epresso f()= pel seguite fução: - - C B 0,09 0, ) { } GABARITO S = ) { } S=, - S = { 9} meses 9 0 0,0 C B E C E / - hs 9 etes = 00 0 is S = ) S = {, -} Aul 0: Fução Logritmí Prof Cirço Mill
Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA
Professor Muriio Lutz LOGARITMO ) Defiição FUNÇÃO LOGARÍTMICA Chm-se ritmo de um úmero N, positivo, um se positiv e diferete de um, todo úmero, devemos elevr pr eotrr o úmero N Ou sej ÎÂ tl que é o epoete
c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule:
Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe Definição Clule pel efinição os seguintes ritmos: ) (/8) ) 8 ) 0,5 Clule pel efinição os seguintes ritmos: ) 6 ) 7 (/7) ) 9 (/7) ) (/9) e) 7 8 f) 0,5 8
1. Associe cada igualdade a uma das afirmações escrevendo o símbolo romano correspondente.
COLÉGIO MCHDO DE SSIS Disipli MTEMÁTIC Professor TLI RETZLFF Turm 8 o ( ) ( )B ( )C Dt / / Pupilo ssoie igule um s firmções esreveo o símolo romo orrespoete I ( + ) = + + II ( ) = + III ( + ) ( ) = ) O
PROPRIEDADES DAS POTÊNCIAS
EXPONENCIAIS REVISÃO DE POTÊNCIAS Represetos por, potêci de bse rel e epoete iteiro. Defiios potêci os csos bio: 0) Gráfico d fução f( ) 0 Crescete I ]0, [.....,, ftores 0, se 0 PROPRIEDADES DAS POTÊNCIAS
Unidade: 2) Dê a fração de ano correspondente a: a) 9 meses b) 5 trimestres. c) 2 semestres d) 3 meses e 10 dias
EXERCÍCIOS DE MATEMÁTICA Prof Mário e-mil: mrioffer@yhooomr - Números riois É too pr e úmeros turis ujos termos e são esritos form om 0 ( Lei : sore Oe: = umeror e ii quts prtes tommos uie = eomior e ii
Geometricamente, um esboço da interpolante g(x) sobre a função f(x) é visto na figura 3.1.
4 APROXIMAÇÃO DE FUNÇÕES 4- INTERPOAÇÃO POINOMIA Itroução: A iterpolção Iterpolr um ução () cosiste em proimr ess ução por um outr ução g() escolhi etre um clsse e uções eii priori e que stisç lgums propriees
FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais
FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)
f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1;
Curso Teste - Eponencil e Logritmos Apostil de Mtemátic - TOP ADP Curso Teste (ii) cso qundo 0 < < 1 EXPONENCIAL E LOGARITMO f() é decrescente e Im = R + 1. FUNÇÃO EXPONENCIAL A função f: R R + definid
FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo
57 FUÇÃO LOGARITMICA Professor Lur 1 Definição de Logritmo Chm se logritmo de um número > 0 em relção um bse (0 < 1), o expoente que se deve elevr bse, fim de que potênci obtid sej igul. log, onde: > 0,
3. LOGARITMO. SISTEMA DE LOGARITMO
0. LOGARITMO. SISTEMA DE LOGARITMO.. LOGARITMO ritmo. Agor que já "semos" o que é, podemos formlizr definição de Definição Sejm e números reis positivos, om. Chm-se ritmo de n se, o epoente que stisfz
POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes
Sej, e. Defiimos: E0: Clcule: d) e) Defiição.... vezes 0 f) ( ) g) h) 0 6 ( ) i) ( ) j) E0: Dos úmeros bio, o que está mis próimo de (,).(0,) é: (9,9) 0,6 6, 6, d) 6 e) 60 E0: O vlor de 0, (0,6) é: 0,06
PROVA MATRIZ DE MATEMÁTICA EFOMM-2009
PROVA MATRIZ DE MATEMÁTICA EFOMM-009 ª Questão: Qul é o número inteiro ujo prouto por 9 é um número nturl omposto pens pelo lgrismo? (A) 459 4569 (C) 45679 (D) 45789 (E) 456789 ª Questão: O logotipo e
MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =
MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (
LOGARITMOS DEFINIÇÃO. log b. log 2 2. log61 0. loga. logam N logam. log N N. log. f ( x) log a. log FUNÇÃO LOGARITMICA
LOGARITMOS DEFIIÇÃO log 0,, 0 FUÇÃO LOGARITMICA f ( ) log Eelos. Esoce o gráfico d fução 0,, 0 y log Eelos: log 8 ois 8 log log6 0 ois 0 ois 6 CODIÇÃO DE EXISTÊCIA 0 log eiste 0, EXEMPLO: Deterie os vlores
e b ij = , se i = j i 2 + j 2 i 3 j 3 b ij =
Universie Feerl e Ouro Preto List e GAAL/MTM730 Professor: Antônio Mros Silv Oservção: Muitos os exeríios ixos form retiros s lists o professor Wenerson 0 Revej os exemplos feitos em sl e ul Sejm ij e
Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2
Resolução ds tividdes copleentres Mteátic M0 Função rític p. 7 Sendo ƒ u função dd por f(), clcule o vlor de f(). f() f()??? f() A epressão é igul : ) c) 0 e) b) d)? 0 0 Clcule y, sendo. y y Resolv epressão.
Inequação Logarítmica
Inequação Logarítmica. (Fuvest 05) Resolva as inequações: 3 a) 6 0; 3 b) log 6.. (Uerj 05) Ao digitar corretamente a epressão log 0( ) em uma calculadora, o retorno obtido no visor corresponde a uma mensagem
Exercícios. . a r. 2º Caso: Agrupamento. É uma aplicação do 1º caso, só que o termo comum aparece em grupos. 3º Caso: Diferença de dois quadrados
Mtemátic Básic Ftorção Aul. Definição Ftorr um epressão lgéric consiste em trnsformá-l num produto. É um prolem de grnde interesse n Álger, nálogo o d decomposição de um número em ftores primos. º Cso:
AULAS 7 A 9 MÉDIAS LOGARITMO. Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições:
009 www.cursoglo.com.br Treimeto pr Olimpíds de Mtemátic N Í V E L AULAS 7 A 9 MÉDIAS Coceitos Relciodos Pr úmeros reis positivos ddos,,...,, temos s seguites defiições: Médi Aritmétic é eésim prte d som
Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).
POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o
Função Logarítmica 2 = 2
Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O :
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : 1 DEFINIÇÃO LOGARITMOS = os(rzão) + rithmos(números) Sejm e números reis positivos diferentes de zero e 1. Chm-se ritmo
FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um).
FUNÇÃO EXPONENCIAL - Iicilmete, pr estudr fução epoecil e, coseqüetemete, s equções epoeciis, devemos rever os coceitos sore Potecição. - POTENCIAÇÃO Oserve o produto io.... = 6 Este produto pode ser revido
Professora: Profª Roberta Nara Sodré de Souza
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA-CAMPUS ITAJAÍ Professor: Profª Robert Nr Sodré de Souz Função
é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9
0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: - n = b - n- = - n+ n n c d - n = -- n e - n- = -- n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : b c d 7 e 0. O vlor de 6
Curso de linguagem matemática Professor Renato Tião. 1. Resolver as seguintes equações algébricas: GV. Simplifique a expressão 2 GV.
Curso de liguge teátic Professor Reto Tião. Resolver s seguites equções lgébrics: ) x + = b) x = c) x = d) x = e) x = f) x = g) x = ) x = i) x = j) = k) logx = l) logx= x GV. GV. Siplifique expressão 8
FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.
49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo
PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UFBA VESTIBULAR Fse Prof. Mri Atôi Gouvei. QUESTÕES DE A 8 Istrução: Assile s proposições vereirs, some os úmeros els ssocios e mrque o resulto Folh e Resposts. Questão. Um reservtório
o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2.
Mtemátic I - Gestão ESTG/IPB Resolução. (i).0 : r 0.000.0 00.0 00 0 0.0 00 0 00.000 00 000.008 90 0.000.000 00 000 008 90.00 00 00 00 9 Dividedo = Divisor x Quociete + Resto.0 = x.008 + 0.000. Num divisão
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ao Versão Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods s justificções ecessáris. Qudo, pr um resultdo, ão é pedid um proimção,
Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2.
Mtemátic Aotno-se os vlores log = 0,30 e log 3 = 0,48, riz equção x = 60 vle proximmente: ), b),8 c) 4 ),4 e),67 x = 60 log x = log 60 x. log = log (. 3. ) x = x = log + log 3 + log log 0 log + log 3 +
TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 7 _ Função Modular, Exponencial e Logarítmica Professor Luciano Nóbrega
1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aul 7 _ Função Modulr, Eponencil e Logrítmic Professor Lucino Nóbreg FUNÇÃO MODULAR 2 Módulo (ou vlor bsolutode um número) O módulo (ou vlor bsoluto) de um número rel, que
CAPÍTULO 3 DEPENDÊNCIA LINEAR
CAPÍTUO DEPENDÊNCIA INEAR Comiação iear Defiição: Seja V um espaço etorial sore um orpo K Um etor omiação liear os etores que u a a a De forma areiaa poe-se esreer: u a i i i u V é ito uma V se existem
MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta
MÉTODOS MATEMÁTICOS Aul Clui Mzz Dis Snr Mr C. Mlt Introução o Conceito e Derivs Noção: Velocie Méi Um utomóvel é irigio trvés e um estr cie A pr cie B. A istânci s percorri pelo crro epene o tempo gsto
Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor
EQUAÇÕES E INEQUAÇÕES POLINOMIAIS
EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje
FICHA DE TRABALHO N.º 3 MATEMÁTICA A - 10.º ANO RADICAIS E POTÊNCIAS DE EXPOENTE RACIONAL
Rdicis e Potêcis de Expoete Rciol Site: http://recursos-pr-mtemtic.webode.pt/ FIH E TRLHO N.º MTEMÁTI - 0.º NO RIIS E POTÊNIS E EXPOENTE RIONL ohece Mtemátic e domirás o Mudo. Glileu Glilei GRUPO I ITENS
DESIGUALDADES Onofre Campos
OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL II SEMANA OLÍMPICA Slvdor, 9 6 de jeiro de 00 DESIGUALDADES Oofre Cmpos oofrecmpos@olcomr Vmos estudr lgums desigulddes clássics, como s desigulddes etre s médis
Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia.
ª AVALIAÇÃO DA ª UNIDADE ª SÉRIE DO ENSINO MÉDIO DISCIPLINA: MATEMÁTICA Prov elord pelo prof. Otmr Mrques. Resolução d prof. Mri Antôni Coneição Gouvei.. Dispondo de livros de mtemáti e de físi, qunts
Uma situação muito comum de função exponencial é aquela em que uma determinada grandeza, que pra um instante t = 0 ela apresenta uma medida y y0
FUNÇÃO EXPONENCIAL REPRESENTAÇÃO Atenção y y x x y y : bse x Um situção muito comum de função exponencil é quel em que um determind grndez, que pr um instnte t = el present um medid y y, prtir deste instnte,
LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2
LISTA DE EXERCÍCIOS Questões de Vestiulres ) UFBA 9 Considere s mtries A e B Sendo-se que X é um mtri simétri e que AX B, determine -, sendo Y ( ij) X - R) ) UFBA 9 Dds s mtries A d Pode-se firmr: () se
Geometria Analítica e Álgebra Linear
NOS DE U Geometri líti e Álger ier Mtrizes e Determites Professor: uiz Ferdo Nues, Dr 8/Sem_ Geometri líti e Álger ier ii Ídie Mtrizes e Determites Mtrizes Determites e Mtriz Ivers 8 Referêis iliográfis
LOGARÍTMOS 1- DEFINIÇÃO. log2 5
-(MACK) O vlor de o, é : 00 LOGARÍTMOS - DEFINIÇÃO ) -/ b)-/6 c) /6 d) / e) -(UFPA) O vlor do ( 5 5 ) é: ) b) - c) 0 d) e) 0,5 -( MACK) Se y= 5 :. ( 0,0),etão 00 y vle : 5 )5 b) c)7 d) e)6 - ( MACK) O
A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto n fatores
POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO DEFINIÇÃO DE POTENCIAÇÃO A poteição idi ultiplições de ftores iguis Por eeplo, o produto pode ser idido for Assi, o síolo de ftores iguis : - é se; - é o epoete; -
Fatoração e Produtos Notáveis
Ftorção e Produtos Notáveis 1. (G1 - cftmg 014) Simplificndo epressão 1 4 6 4 5 4 16 48 obtém-se ). b) 4 +. c). d) 4 +.. (G1 - ifce 014) O vlor d epressão: b b ) b. b) b. c) b. d) 4b. e) 6b. é. (Upf 014)
TÓPICOS DE MATEMÁTICA
INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE COIMBRA SOLICITADORIA E ADMINISTRAÇÃO TÓPICOS DE MATEMÁTICA CÁLCULO EM R I.Revisões Cálulo om frções Reore que, pr, Not:...3.4 R e, R \ {0}: + + pois
MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Equções do Segundo Gru Professor : Dêner Roh Monster Conursos 1 Equções do segundo gru Ojetivos Definir equções do segundo gru. Resolver equções do segundo gru. Definição Chm-se equção do º
( 7) ( 3) Potenciação
Poteciação Defiição: Calcular a potêcia de um úmero real a equivale a multiplicar a, por ele mesmo, vezes. A otação da operação de poteciação é equivalete a: Eemplos: 6; 7 9 a a. a. a... a vezes Propriedades:
Vascaínos 300 3 100% MATEMÁTICA FINANCEIRA PROFESSORES: EDU/VICENTE 1,32. Escola SESC de Ensino Médio. Definição: Porcentagem ou razão percentual é
MATEMÁTICA FINANCEIRA PROFESSORES: EDU/VICENTE Defiição: Porcetgem ou rzão percetul é um rzão e eomior. A porcetgem é represet pelo símbolo % (por ceto. Ftor e Acumulção e Cpitl(Ftor e umeto Ex.: Num escol
uma função real SOLUÇÃO 20 Temos f(x)
Priipis otções o ojuto de todos os úmeros reis [,b] = { : b} ],b[ = { : < < b} (,b) pr ordedo gof fução omposto de g e f - mtri ivers d mtri T mtri trspost d mtri det () determite d mtri s uestões de ão
Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU
FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5
TP052-PESQUISA OPERACIONAL I Método Simplex. Prof. Volmir Wilhelm Curitiba, Paraná, Brasil
TP05-PESQUISA OPERACIONAL I Método Simple Prof. Volmir Wilhelm Curitib, Prá, Brsil Limitções d progrmção lier m (mi) s. Z m, m,, 0 m b b m. Coefiietes osttes. Divisibilidde 3. Proporiolidde 4. Aditividde
Função Logaritmo - Teoria
Fução Logritmo - Teori Defiição: O ritmo de um úmero rel positivo, bse IR { } podemos escrever Resumido temos: +, é o úmero rel tl que, equivletemete E: 7 8 8 8 8 7 * { }, IR { } * +, IR + Usdo que fução
SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA
SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(
3 ) x = 3 3 pela propriedade (a n ) m = a
Mteátic A Etesivo V. 7 Eercícios 0) A 0) B 0,) pel propriedde 00. ftordo, 00. e ) pel propriedde.. ) ) pel propriedde. +. 0 ) ) pel propriedde ). ultiplicdo equção por 8 8 8 X 9 + ftordo 9 e 7 7 ) + pel
Z = {, 3, 2, 1,0,1,2,3, }
Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv
CURSO DE MATEMÁTICA ÁLGEBRA AULA
CURSO DE MATEMÁTICA ÁLGEBRA AULA 7 POLINÔMIOS & EQUAÇÕES POLINOMIAIS PROF. MARCELO RENATO Outuro/8 mrcelorento.com RESUMO TEÓRICO Prof. Mrcelo Rento. SOMA DOS COEFICIENTES DE UM POLINÔMIO Pr clculr som
SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA
SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA Coeficiete costte. SISTEMAS LIT CARACTERIZADOS POR EQUAÇÕES A DIFEREÇA COM COEFICIETES COSTATES Sistems descritos por equções difereç com coeficiete
POTENCIAÇÃO RADICIAÇÃO
POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO E RADICIAÇÃO O ódulo II é oposto por eeríios evolvedo poteição e rdiição. Estos dividido-o e dus prtes pr elhor opreesão. ª PARTE: POTENCIAÇÃO. DEFINIÇÃO DE POTENCIAÇÃO
Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME
Prof.(s): Judson Sntos - Lucino Sntos y 0) Sbendo que (,,, ) estão em progressão ritmétic nest ordem y stisfendo s condições de eistênci dos ritmos. Então o vlor d epressão y é igul : ) b) y 0) Sej,, 4,,
INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.
INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo
EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9
EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é
a x = é solução da equação b = 19. O valor de x + y é: a + b é: Professor Docente I - CONHECIMENTOS ESPECÍFICOS 26. A fração irredutível
CONHECIMENTOS ESPECÍFICOS 6. A frção irredutível O vlor de A) 8 B) 7 66 8 9 = 6. + b = é solução d equção b 7. Sejm e ynúmeros reis, tis que + y A) 6 B) 7 78 8 88 = 9. O vlor de + y e 8. Sejm e b números
Matemática. Resolução das atividades complementares. M13 Progressões Geométricas
Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto
As funções exponencial e logarítmica
As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,
MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES
MATEMÁTICA BÁSICA FRAÇÕES EXERCÍCIOS DE AULA ) Clcule o vlor de x em: A som e sutrção de frções são efetuds prtir d oteção do míimo múltiplo comum dos deomidores. É difícil respoder de imedito o resultdo
LISTA 100 EXERCÍCIOS COMPLEMENTARES
LISTA 00 EXERCÍCIOS COMPLEMETARES LOGARITMOS: Definição e Proprieddes PROF.: GILSO DUARTE Questão 0 Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proim de log 46 é 0),0
Análise de Algoritmos Gabarito da Primeira Prova
Análise e Algoritmos Gbrito Primeir Prov Tópios: Funmentos e nálise e lgoritmos e lgoritmos pr orenção Instituto e Ciênis Exts, Universie e Brsíli 22 e bril e 2009 Prof. Muriio Ayl-Rinón Funmentos: relções
Transformada z. A transformada z é a TFTD da sequência r -n x[n] e a ROC é determinada pelo intervalo de valores de r para os quais.
Trsformd A TFTD de um sequêci é: Pr covergir série deve ser solutmete somável. Ifelimete muitos siis ão podem ser trtdos: A trsformd é um geerlição d TFTD que permite o trtmeto desses siis: Ζ Defiição:
3n 3 3 3n. R = k(1,1) t. Pessoa Anos de Formação (t) Fator de Carreira (k) A B C
Aul 0 Potencição 0) (PUC-SP) Simplificndo epressão ) n 9 ) n + n d) 6 7 6 9 n n n, otém-se 0) (Insper) Um nlist de recursos humnos desenvolveu o seguinte modelo mtemático pr relcionr os nos de formção
05 - (MACK SP) O coeficiente do termo em x -3 no BINÔMIO DE NEWTON. desenvolvimento de (UNIFOR CE) No desenvolvimento do binômio.
BINÔMIO DE NEWTON 0 - (UNIFOR CE) No desevolvimeto do biômio 4 ( ) 4 8 4, o termo idepedete de é 0 - (PUC RJ) O coeficiete de o desevolvimeto 7 0 5 5 0 0 - (PUC RJ) No desevolvimeto do biômio 4 8 ( ),
1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial
º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d
