3. LOGARITMO. SISTEMA DE LOGARITMO
|
|
|
- Luísa Filipe Lima
- 8 Há anos
- Visualizações:
Transcrição
1 0. LOGARITMO. SISTEMA DE LOGARITMO.. LOGARITMO ritmo. Agor que já "semos" o que é, podemos formlizr definição de Definição Sejm e números reis positivos, om. Chm-se ritmo de n se, o epoente que stisfz equção =. = = é o ritmo é se é o ritmndo As restrições imposts à se e o ritmndo deorrem ds seguintes Oservções * + ) R, pr que tenh signifido R. 2), pois, so ontrário, só teri signifido pr =. ) R + * pois, omo > 0, temos que > 0. Rieiro A., Prtes E., Vergst E., Dominguez G., Freire I., Borges L., Msrenhs M.
2 Proposição.. Se, R + *,, eiste um únio número rel tl que Segue imeditmente d Propriedde P 9 ), onsiderndo que = = =. Eemplo Clule 02, 2 Solução: 2 2 = (0,2) = 2 (0,2) = ,2 4 = = 2 = = 2 = 2 0,2 2 Como onsequênis imedits d definição de ritmo temos que se, R * +, e α R, então: ) = 0 0 = = = 0. Rieiro A., Prtes E., Vergst E., Dominguez G., Freire I., Borges L., Msrenhs M.
3 2 2) = = = = ) α = α α α = = = α 4) = = = ) = = = = ( III ) = = ( IV ) De ( III ) e ( IV ) onluímos que =. * + Sejm,,, R, e α e β R, β 0. Temos s seguintes proprieddes P ) () = + Rieiro A., Prtes E., Vergst E., Dominguez G., Freire I., Borges L., Msrenhs M.
4 Consideremos que () = = = = Então, = z = z z + z + z = = = = = + z P 2 ) = Consideremos, = = = = Então, = z = z z z = = = = = z z Temos o seguinte so prtiulr: = = = Rieiro A., Prtes E., Vergst E., Dominguez G., Freire I., Borges L., Msrenhs M.
5 4 P ) α = α Consideremos, = = e α α Então, Cso prtiulr: ( ) = = α α α α = = = = = α. n = n n = n = n P 4 ) β = β Consideremos, Então, β β ( ) β () = = = e = = β = = β = = β Csos prtiulres: i) () = Rieiro A., Prtes E., Vergst E., Dominguez G., Freire I., Borges L., Msrenhs M.
6 ii) n =n i) () = = ii) n = / n () = / n =n Eemplo Aplindo s proprieddes de ritmos, desenvolv e são números reis positivos. 2 ( + ), supondo que, Solução: 2 ( + ) 2 ( ) 2 / ( ) ( ) = + = + + = = 2 2 () + ( + ) = = ( + ).2. SISTEMAS DE LOGARITMOS DE BASE. MUDANÇA DE BASE. Rieiro A., Prtes E., Vergst E., Dominguez G., Freire I., Borges L., Msrenhs M.
7 6 Chmmos de sistem de ritmos de se, o onjunto de todos os ritmos n se ( > 0 e ). Qundo trlhmos om ritmos podemos utilizr qulquer se, > 0 e. Nturlmente não preismos onstruir tels dos vlores dos ritmos pr todos os sistems. Conheendo-se em um sistem, podemos prtir d tel oter o vlor do ritmo de um número em qulquer se. Pr isto, preismos de um fórmul que relione ritmos de ses diferentes. A fórmul é seguinte: = É válid se,, R * +, e. De fto, onsiderndo temos que =. Assim, Como, segue-se que A fórmul onstnte. = = e ( ) ( ) = = = = = 0 e, portnto, = = = nos diz que ritmos em diferentes ses diferem por um Consequênis: Rieiro A., Prtes E., Vergst E., Dominguez G., Freire I., Borges L., Msrenhs M.
8 7. = Segue imeditmente d propriedde dd im. = = = Eemplos ) Se, e são números reis positivos, e, então ( )( ) = + ( )( ) ( ) = (+ ) = + = + + = ( ) + + = 2) Se, e são reis positivos om, então =. Sejm = e =. Vmos mostrr que =. = =. ( V ) = =. ( VI ) De ( V ) e ( VI ), temos que = e, portnto, =. Rieiro A., Prtes E., Vergst E., Dominguez G., Freire I., Borges L., Msrenhs M.
9 8 ) Se,, e d são reis positivos diferentes de e, então d d + d d + d d = d d d d Prtindo do 2 o memro d epressão, hegremos o o memro. Vejmos: d. d. d d = d. d. d = d ( ) = d. d. d + + d d d = d. d+ d. d+ d. d. Dentre infinidde de vlores que pode ssumir se, e portnto dentre infinidde de sistems de ritmos, dois se destm por sus plições prátis: o sistem de ritmos deimis e o sistem de ritmos neperinos. = O SISTEMA DE LOGARITMOS DECIMAIS A preferêni pelos ritmos deimis nos álulos se deve, evidentemente de usrmos um sistem de numerção de se 0. Os ritmos deimis tmém são hmdos de ritmos de Briggs, por ter sido o inglês Henr Briggs (6-6) quem primeiro utilizou o número 0 pr onstrução de táus de ritmos. Briggs puliou su primeir táu em 67; depois em versão em mis mplid, em 624 (Arithmeti Logrithmi) que ontinh o ritmo dos primeiros inteiros e dos números entre e luldos om 4 ss deimis! O espço deido por Briggs entre e foi preenhido por Adrin Vlq, um mtemátio holndês que puliou um táu dos ritmos dos primeiros números inteiros, ind em 624. Rieiro A., Prtes E., Vergst E., Dominguez G., Freire I., Borges L., Msrenhs M.
10 9 Emor os ritmos deimis tenhm perdido su importâni omo instrumento de álulo mnul, eles ind estão presentes em váris situções prátis. Vejmos eemplos em lgums áres. Quími - O ftor ph é um índie muito usdo pelos químios pr medir onentrção de íons positivos num solução. Soluções Conentrção iôni áids moles por litro ásis moles por litro neutr 0-7 moles por litro Como esses números são muito pequenos, ou equivlentemente, têm denomindores muito grndes, seus ritmos são mis dequdos pr rterizr s onentrções. Isto é onsequêni do vgroso resimento dos ritmos. Um vez que os ritmos são negtivos ( já que os números são menores que ) prefere-se definir o ph omo o oposto do ritmo d onentrção. Temos ssim: Soluções ph áids < 7 neutr 7 ási >7 Rieiro A., Prtes E., Vergst E., Dominguez G., Freire I., Borges L., Msrenhs M.
11 40 Sismoi - Em sismoi, medid d intensidde ds onds que emnm de um entro sísmio se fz om um esl rítmi deiml, hmd de "esl Rihter". Como no so do ph em Quími, tmém qui oorrem números muito grndes ns medids d energi lierd nos terremotos, sendo, pois preferível trlhr om o ritmo pr onstruir esl de medição d intensidde dos los. Aústi - Tmém em Aústi os ritmos deimis são usdos n onstrução d esl deiel, que serve pr medir intensidde dos sons. As esls são onstruíds om ritmos deimis (poderi ser outr se) pr que os números d esl não fiquem muito grndes. É omum se utilizr notção em lugr de 0. Por terem sido stnte utilizdos no pssdo, e ind preerem em váris áres do onheimento, us-se notção io pr os ritmos deimis: Notção trdiionl pr os ritmos deimis: 0 = Rieiro A., Prtes E., Vergst E., Dominguez G., Freire I., Borges L., Msrenhs M.
12 4 SISTEMA DE LOGARITMOS NEPERIANOS Trt-se de um sistem de ritmos n se e =2, Este número é um número irrionl. O nome neperino vem de John Npier, mtemátio esoês, onsiderdo o ridor dos ritmos. Este sistem é tmém hmdo de sistem de ritmos nturis, pois no estudo dos fenômenos d nturez gerlmente pree um lei eponenil de se e. Em gerl us-se seguinte notção: Notção trdiionl pr os ritmos neperinos: e = ln No Cpítulo 6 fremos um estudo mis detlhdo sore o número e e os ritmos neperinos... EXERCÍCIOS.. Clule: (2- ) 2 6 ) 0 ) ) 4 d) Determine E nos seguintes sos: ) E = ( - ) - 2( + ) + 4 ) E =.. Sendo 42 = p e 648 = q, lule 6. Rieiro A., Prtes E., Vergst E., Dominguez G., Freire I., Borges L., Msrenhs M.
13 42.4. Sendo ( - ) = m e ( ) = n, lule ( + ).. Sendo m = 2, m = e m =, lule m. n n n.6. Pr d inteiro n, n >, mostre que: n n n =.7. Mostre que se três números positivos estão em P.G. então seus ritmos, num se, estão n ordem orrespondente, em um P.A. Se q é rzão d P.G. e r rzão d P.A., qul relção entre q e r? 2.8. As rízes d equção + = 0 são = e 2 =. Mostre que. =.9. As rízes d equção 2 - s + p = 0 são () e (). As rízes d equção 2-2S + P = 0 são () e (/). Clule p e P em função de s e S..0. Se = e ( Sugestão: Esrev s igulddes n se ) =,, mostre que ( ) = ( ).. Dd equção 2 p+ B m om rízes reis e, prove que: B + B + B + B = mp 4.2. Sejm, e s medids dos ldos de um triângulo retângulo de hipotenus, tis que - e +. Mostre que + = Rieiro A., Prtes E., Vergst E., Dominguez G., Freire I., Borges L., Msrenhs M.
c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule:
Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe Definição Clule pel efinição os seguintes ritmos: ) (/8) ) 8 ) 0,5 Clule pel efinição os seguintes ritmos: ) 6 ) 7 (/7) ) 9 (/7) ) (/9) e) 7 8 f) 0,5 8
3. CÁLCULO INTEGRAL EM IR
3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo
1. Conceito de logaritmo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério
RESPOSTAS DA LISTA 2 - Números reais: propriedades algébricas e de ordem
List de Mtemáti Bási 009- (RESPOSTAS) 4 RESPOSTAS DA LISTA - Números reis: proprieddes lgéris e de ordem Pr filitr onsult, repetimos qui os xioms e s proprieddes lgéris e de ordem listds em ul. À medid
INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.
INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo
C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO
Pr Ordendo RACIOCÍNIO LÓGICO AULA 06 RELAÇÕES E FUNÇÕES O pr ordendo represent um ponto do sistem de eixos rtesinos. Este sistem é omposto por um pr de rets perpendiulres. A ret horizontl é hmd de eixo
Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA
Professor Muriio Lutz LOGARITMO ) Defiição FUNÇÃO LOGARÍTMICA Chm-se ritmo de um úmero N, positivo, um se positiv e diferete de um, todo úmero, devemos elevr pr eotrr o úmero N Ou sej ÎÂ tl que é o epoete
Teorema 1 (critério AAA de semelhança de triângulos) Se os ângulos de um triângulo forem respectivamente congruentes aos ângulos correspondentes
SÉTIM LIST DE EXERÍIOS Fundmentos d Mtemáti II MTEMÁTI DET UES Humerto José ortolossi http://www.ues.r/relos/ Semelhnç de triângulos Dizemos que o triângulo é semelhnte o triângulo XY Z e esrevemos XY
TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 7 _ Função Modular, Exponencial e Logarítmica Professor Luciano Nóbrega
1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aul 7 _ Função Modulr, Eponencil e Logrítmic Professor Lucino Nóbreg FUNÇÃO MODULAR 2 Módulo (ou vlor bsolutode um número) O módulo (ou vlor bsoluto) de um número rel, que
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O :
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : 1 DEFINIÇÃO LOGARITMOS = os(rzão) + rithmos(números) Sejm e números reis positivos diferentes de zero e 1. Chm-se ritmo
Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Pkrd O ESTUDO DO PONTO Auls 0 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário INTRODUÇÃO AO PLANO CARTESIANO... Alguns elementos do plno rtesino... Origem... Eios... Qudrntes... Bissetrizes
Álgebra Linear e Geometria Analítica D
3 Deprtmento de Mtemáti Álgebr Liner e Geometri Anlíti D Segundo Teste 6 de Jneiro de 2 PREENCHA DE FORMA BEM LEGÍVEL Nome: Número de derno: Grelh de Resposts A B C D 2 3 4 5 Atenção Os primeiros 5 grupos
Aula 27 Integrais impróprias segunda parte Critérios de convergência
Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:
MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Equções do Segundo Gru Professor : Dêner Roh Monster Conursos 1 Equções do segundo gru Ojetivos Definir equções do segundo gru. Resolver equções do segundo gru. Definição Chm-se equção do º
EQUAÇÕES E INEQUAÇÕES POLINOMIAIS
EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje
Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU
FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5
AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática
1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos
Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está,
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Introdução Se integrl
6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2]
6 Cálculo Integrl. (Eercício VI. de []) Considere função f definid no intervlo [, ] por se [, [ f () = se = 3 se ], ] () Mostre que pr tod decomposição do intervlo [, ], s soms superior S d ( f ) e inferior
Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a.
O segundo, o sétimo e o vigésimo sétimo termos de um Progressão Aritmétic (PA) de números inteiros, de rzão r, formm, nest ordem, um Progressão Geométric (PG), de rzão q, com qer ~ (nturl diferente de
Progressões Aritméticas
Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo
as raízes de ( ) Então resolver Q( x ) = 0 é equivalente a resolver as equações:
(9) 5-0 O ELITE RESOLVE IME 0 DISURSIVS MTEMÁTI MTEMÁTI QUESTÃO 0 5 O polinômio P ( ) + 0 0 + 8 possui rízes comples simétrics e um riz com vlor igul o módulo ds rízes comples. Determine tods s rízes do
DESIGUALDADES Onofre Campos
OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL II SEMANA OLÍMPICA Slvdor, 9 6 de jeiro de 00 DESIGUALDADES Oofre Cmpos oofrecmpos@olcomr Vmos estudr lgums desigulddes clássics, como s desigulddes etre s médis
log = logc log 2 x = a https://ueedgartito.wordpress.com P2 logc Logaritmos Logaritmos Logaritmos Logaritmos Logaritmos Matemática Básica
Mtemáti Bái Unidde 8 Função Logrítmi RANILDO LOPES Slide diponívei no noo SITE: http://ueedgrtito.wordpre.om Logritmndo Be do ritmo Logritmo Condição de Eitêni > > Logritmo Logritmo Logritmo Logritmndo
FUNÇÃO DO 2º GRAU OU QUADRÁTICA
FUNÇÃO DO º GRAU OU QUADRÁTICA - Definição É tod função do tipo f() = + + c, com *, e c. c y Eemplos,, c números e coeficient termo vr vr iável iável es independen reis indepemdem dependente de te ou te
3 Teoria dos Conjuntos Fuzzy
0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy
AULA 7 EFICIÊNCIA E EFETIVIDADE DE ALETAS
49 UL 7 EFICIÊNCI E EFETIVIDDE DE LETS Efiiêni de let teori desenvolvid n ul nterior é stnte útil pr um nálise em detlhes pr o projeto de novs onfigurções e geometris de lets. Pr lguns sos simples, existem
Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.
MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função
Aula 5 Plano de Argand-Gauss
Ojetivos Plno de Argnd-Guss Aul 5 Plno de Argnd-Guss MÓDULO - AULA 5 Autores: Celso Cost e Roerto Gerldo Tvres Arnut 1) presentr geometricmente os números complexos ) Interpretr geometricmente som, o produto
Os números racionais. Capítulo 3
Cpítulo 3 Os números rcionis De modo informl, dizemos que o conjunto Q dos números rcionis é composto pels frções crids prtir de inteiros, desde que o denomindor não sej zero. Assim como fizemos nteriormente,
AULA: Superfícies Quádricas
AULA: Superfíies Quádris Definição : Um equção gerl do gru em três vriáveis é um equção do tipo: A B C D E F G H I J (I), om pelo menos um ds onstntes A, B, C, D, E ou F é diferente de ero. Definição :
LISTA 100 EXERCÍCIOS COMPLEMENTARES
LISTA 00 EXERCÍCIOS COMPLEMETARES LOGARITMOS: Definição e Proprieddes PROF.: GILSO DUARTE Questão 0 Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proim de log 46 é 0),0
GEOMETRIA DESCRITIVA PASSO A PASSO PROF. JAIR ROBERTO BÄCHTOLD UDESC
GEOMETRIA DESCRITIVA PASSO A PASSO PROF. JAIR ROBERTO BÄCHTOLD UDESC Tópio 01 Tópio 02 Tópio 03 Tópio 04 Tópio 05 Tópio 06 Tópio 07 Tópio 08 Tópio 09 Tópio 10 Tópio 11 ÍNDICE Sistems de Projeções Estudo
( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B.
Mtemátic A Etensivo V. Eercícios 0) B 0) B f() = I. = y = 6 6 = ftorndo 6 = = II. = y = 6 = 6 = pel propriedde N = N = De (I) e (II) podemos firmr que =, então: ) 6 = = 6 ftorndo 6 = = pel propriedde N
Introdução ao estudo de equações diferenciais
MTDI I - 2007/08 - Introdução o estudo de equções diferenciis 63 Introdução o estudo de equções diferenciis Existe um grnde vriedde de situções ns quis se desej determinr um quntidde vriável prtir de um
Adriano Pedreira Cattai
Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos
Exercícios. setor Aula 25. f(2) = 3. f(3) = 0. f(11) = 12. g(3) = 14. Temos: 2x 1 = 5 x = 3 Logo, f(5) = 3 2 = 9
setor 07 070409 070409-SP Aul 5 FUNÇÃO (COMPOSIÇÃO DE FUNÇÕES) FUNÇÃO COMPOSTA Sej f um função de A em B e sej g um função de B em C. Chm-se função compost de g com f função h definid de A em C, tl que
1 Assinale a alternativa verdadeira: a) < <
MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )
obtendo 2x x Classifique como Verdadeiro (V) ou Falso (F) cada uma das seguintes afirmações: é um número racional.
UFJF ICE Dertmento de Mtemáti CÁLCULO I - LISTA DE EXERCÍCIOS Nº 1 1- Sejm e números reis ositivos tis ue
Funções do 1 o Grau. Exemplos
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do o Gru. Função
Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 DETERMINANTES
INTRODUÇÃO... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... PROPRIEDADES DOS DETERMINANTES... 8 REGRA DE CHIÓ... MENOR COMPLEMENTAR... COFATOR...
Bhaskara e sua turma Cícero Thiago B. Magalh~aes
1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como
Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i
Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos
xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0
EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos
Conjuntos Numéricos. Conjuntos Numéricos
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA.. Proprieddes dos números
COLÉGIO OBJETIVO JÚNIOR
COLÉGIO OJETIVO JÚNIOR NOME: N. o : DT: / /0 FOLHETO DE MTEMÁTIC (V.C. E R.V.) 9. o NO Este folheto é um roteiro pr você recuperr o conteúdo trblhdo em 0. Como ele vi servir de bse pr você estudr pr s
Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras - Parte 2. Nono Ano
Mteril Teórico - Módulo Teorem de itágors e plicções lgums demonstrções do Teorem de itágors - rte 2 Nono no utor: rof. Ulisses Lim rente Revisor: rof. ntonio minh M. Neto 27 de ril de 2019 1 lgums plicções
Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia.
ª AVALIAÇÃO DA ª UNIDADE ª SÉRIE DO ENSINO MÉDIO DISCIPLINA: MATEMÁTICA Prov elord pelo prof. Otmr Mrques. Resolução d prof. Mri Antôni Coneição Gouvei.. Dispondo de livros de mtemáti e de físi, qunts
f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1;
Curso Teste - Eponencil e Logritmos Apostil de Mtemátic - TOP ADP Curso Teste (ii) cso qundo 0 < < 1 EXPONENCIAL E LOGARITMO f() é decrescente e Im = R + 1. FUNÇÃO EXPONENCIAL A função f: R R + definid
Desigualdades - Parte II. n (a1 b 1 +a 2 b a n b n ) 2.
Polos Olímpicos de Treinmento Curso de Álgebr - Nível Prof. Mrcelo Mendes Aul 9 Desigulddes - Prte II A Desiguldde de Cuchy-Schwrz Sejm,,..., n,b,b,...,b n números reis. Então: + +...+ ) n b +b +...+b
(x, y) dy. (x, y) dy =
Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores
Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 3
Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere n um número nturl.
Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 4
Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere s funções f e
Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ
Li. Ciênis d Computção 2009/10 Exeríios de Teori ds Lingugens Universidde do Minho Folh 6 2. Autómtos finitos 2.1 Considere o utómto A = (Q,A,δ,i,F) onde Q = {1,2,,4}, A = {,}, i = 1, F = {4} e função
Mania de Pitágoras Euclides Rosa
Texto omplementr Mni de Pitágors Eulides Ros MTEMÁTI 1 Mtemáti ssunto: Geometri Mni de Pitágors Elish Sott Loomis, professor de Mtemáti em levelnd, Ohio (Estdos Unidos), er relmente um pixondo pelo teorem
V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág.
António: c ; Diogo: ( ) i e ; Rit: e c Pág Se s firmções dos três migos são verddeirs, firmção do António é verddeir, pelo que proposição c é verddeir e, consequentemente, proposição c é fls Por outro
DERIVADAS DAS FUNÇÕES SIMPLES12
DERIVADAS DAS FUNÇÕES SIMPLES2 Gil d Cost Mrques Fundentos de Mteátic I 2. Introdução 2.2 Derivd de y = n, n 2.2. Derivd de y = / pr 0 2.2.2 Derivd de y = n, pr 0, n =,, isto é, n é u núero inteiro negtivo
UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA
UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm
Exercícios. . a r. 2º Caso: Agrupamento. É uma aplicação do 1º caso, só que o termo comum aparece em grupos. 3º Caso: Diferença de dois quadrados
Mtemátic Básic Ftorção Aul. Definição Ftorr um epressão lgéric consiste em trnsformá-l num produto. É um prolem de grnde interesse n Álger, nálogo o d decomposição de um número em ftores primos. º Cso:
CÁLCULO INTEGRAL. e escreve-se
Primitivs CÁLCULO INTEGRAL Prolem: Dd derivd de um função descorir função inicil. Definição: Chm-se primitiv de um função f, definid num intervlo ] [ à função F tl que F = f e escreve-se,, F = P f ou F
4. APLICAÇÃO DA PROTEÇÃO DIFERENCIAL À PROTEÇÃO DE TRANSFORMADORES DE POTÊNCIA
lever Pereir 4. PLÇÃO D PROTEÇÃO DFEREL À PROTEÇÃO DE TRSFORMDORES DE POTÊ 4.. Prinípio ásio s orrentes primáris e seundáris de um trfo de potêni gurdm entre si um relção onheid em ondições de operção
Extrapolação de Richardson
Etrpolção de Rirdson Apesr de todos os visos em relção à etrpolção, qui temos um eepção, em que, prtir de dus determinções de um integrl se lul um tereir, mis preis. 3/5/4 MN Etrpolção de Rirdson E é epressão
- Departamento de Matemática Aplicada (GMA) Notas de aula Prof a. Marlene Dieguez Fernandez. Integral definida
Interl Deinid Nots de ul - pro. Mrlene - 28-2 1 - Deprtmento de Mtemáti Aplid (GMA) Nots de ul - 28-2 Pro. Mrlene Dieuez Fernndez Interl deinid Oservção: esse teto ontém pens prte teóri desse ssunto, não
Material Teórico - Módulo de Razões e Proporções. Proporções e Conceitos Relacionados. Sétimo Ano do Ensino Fundamental
Mteril Teórico - Módulo de Rzões e Proporções Proporções e Conceitos Relciondos Sétimo Ano do Ensino Fundmentl Prof. Frncisco Bruno Holnd Prof. Antonio Cminh Muniz Neto Portl OBMEP 1 Introdução N ul nterior,
UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA
UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,
GRANDEZAS PROPORCIONAIS
Hewlett-Pkrd GRANDEZAS PROPORCIONAIS Auls 01 03 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário GRANDEZAS... 1 O QUE É UMA GRANDEZA?... 1 PRELIMINAR 1... 1 PRELIMINAR 2... 1 GRANDEZAS DIRETAMENTE PROPORCIONAIS
