MÓDULO XIII GRANDEZAS PROPORCIONAIS

Tamanho: px
Começar a partir da página:

Download "MÓDULO XIII GRANDEZAS PROPORCIONAIS"

Transcrição

1 MÓDULO XIII 1. Rzão GRANDEZAS PROPORCIONAIS A rzão entre ois números e 0, ness orem, é o quoiente. O número é hmo e nteeente ou primeiro termo e o número é hmo e onseqüente ou seguno termo. Eemplo: O número irrionl π poe ser otio trvés rzão entre mei o omprimento e um irunferêni e mei o seu iâmetro, ou sej, C π r EP.01) Um prouto que ust R$ 18,00 pr ser frio é venio por R$ 7,00. Determine rzão entre: ) o preço e ven e o preço e usto. ) o luro e o preço e ven. EP.0) Em um retângulo mei se é m mior que ltur. Clule áre esse retângulo seno que rzão entre mei se e mei ltur é.. Proporção Os números,, e, om 0 e 0, formm, ness orem, um proporção se, e somente se, rzão entre e for igul rzão entre e, ou sej: e lê-se está pr ssim omo está pr. Os números e são hmos e etremos e os números e são hmos e meios.. Propriees s proporções Se os números,, e formm, ness orem, um proporção, então: P1.. =. O prouto os etremos é igul o prouto os meios. P. A som os ois primeiros está pr o seguno, ssim omo som os ois últimos está pr o último. P. A som os nteeentes está pr som os onseqüentes ssim omo nteeente está pr o orresponente onseqüente. Eemplo: Determinno o vlor e n proporção 1, otemos: 6 1 ( ). = (6 ).1 6 = = = 1 =. EP.0) Um minitur e um utomóvel foi onstruí n esl 1:0. As imensões minitur são: omprimento 1,5m e lrgur 5m. Quis s imensões reis o utomóvel em metros? 5 EP.0) Determine o vlor e n proporção. EP.05) A som s ies e Pulo e José é igul 50 nos. Se ie e Pulo está pr e José ssim omo está pr, enontre ie e um eles.. Grnezs Entenemos por grnezs tuo quilo que poe ser meio, onto. O volume, mss, superfíie, o omprimento, pie, veloie, o tempo, são lguns eemplos e grnezs. No nosso i--i enontrmos váris situções em que relionmos us ou mis grnezs. Em um orri qunto mior for veloie, menor será o tempo gsto ness prov. Aqui s grnezs são veloie e tempo. Num onstrução, qunto mior for o número e funionários, menor será o tempo gsto pr que est fique pront. Nesse so, s grnezs são o número e funionários e o tempo. 5. Grnezs iretmente proporionis Dus grnezs são hms iretmente proporionis, quno, orno um els outr tmém or; triplino um els outr tmém tripli. Relionmos us grnezs iretmente y proporionis pel equção k ou y = k., one k é um número rel, hmo e onstnte e proporionlie. As grnezs iretmente proporionis possuem um vrição liner e seu gráfio é um ret que pss pel origem. Mtemáti Bási XIII. 1

2 Eemplo: Em um etermino mês o no o litro e gsolin ustv R$ 1,50. Tomno omo se esse o, poemos formr seguinte tel: Quntie e gsolin (em litros) 1 Vlor pgr (em reis) 1,50,00,50 E tmém otemos o seguinte gráfio: 6,0,5 Custos (Reis) 6. Grnezs inversmente proporionis Dus grnezs são hms inversmente proporionis, quno, orno um els outr se reuz pr mete; triplino um els outr se reuz pr terç prte e ssim por inte. Relionmos us grnezs inversmente k proporionis pel equção y. = k ou y one k é um número rel, hmo e onstnte e proporionlie. As grnezs inversmente proporionis possuem um vrição ujo gráfio é um hipérole. Eemplo: Um professor e mtemáti tem livros pr istriuir igulmente entre os seus melhores lunos. Se ele esolher pens lunos, um eles reeerá 1 livros. Se ele esolher lunos, um reeerá 6 livros. Se ele esolher 6 lunos, um eles reeerá livros. Oserve tel:,0 Números e lunos Números e livros 1,5 0 1 Litros esolhios 6 pr luno 1 6 Se quntie e gsolin or, o preço ser pgo tmém or. Se quntie e gsolin tripli, o preço ser pgo tmém tripli. Neste so s us grnezs envolvis, qunti ser pg e quntie e gsolin, são hms grnezs iretmente proporionis. De mneir gerl, se A = ( 1,,,... ) e B = ( 1,,,... ) forem grnezs iretmente proporionis, então: 1... k 1 one o número k é onstnte e proporionlie. EP.06) Se (,, 1,... ) e ( 6, 8, y,... ) forem grnezs iretmente proporionis, então o vlor e + y vle: EP.07) Quno um utomóvel é freo no momento em que su veloie é 7km/h, ele in perorre 9m té prr. Se-se que ess istâni perorri té prr é proporionl o quro veloie o momento fre. Determine istâni que o utomóvel perorrerá té prr, se freo 5km/h. E tmém otemos o seguinte gráfio: Livros Alunos Se o número e lunos or, quntie e livros i pel mete. Se o número e lunos tripli, quntie e livros i pr terç prte. Neste so s us grnezs envolvis, número e lunos e número e livros, são hms grnezs inversmente proporionis. De mneir gerl, se A = ( 1,,,... ) e B = ( 1,,,... ) forem grnezs inversmente proporionis, então: k one o número k é onstnte e proporionlie. Mtemáti Bási XIII.

3 EP.08) Determinr e y seno-se que (1,,,... ) e (1, y,,... ) são grnezs inversmente proporionis. EP.09) Seguno lei e Boyle-Mriotte, se-se que: "A um tempertur onstnte, os volumes e um mesm mss e gás estão n rzão invers s pressões que prouzem". Se so pressão e 5 tmosfers, um mss e gás oup um volume e 0,6m, epressão que permite lulr pressão P, em tmosfers, em função o volume V, em m, oupo por ess mss e gás, é ) P V V ) P 5 ) P 6V 6V ) P 5 5 e) P V 7. Divisão proporionl Diviir um número N em prtes iretmente proporionis os números,, e, signifi eterminr os números, y, e z, e tl moo que: (I) s seqüênis (, y, z) e (,,,) sejm iretmente proporionis; (II) +y+z = N No so ivisão o número N em prtes inversmente proporionis, terímos: (I) s seqüênis (, y, z) e (,,,) sejm inversmente proporionis; (II) +y+z = N EP.10) Diviir o número 160 em três prtes iretmente proporionis os números, e 5. EP.11) Diviir 188 em prtes inversmente proporionis, e Regr e três simples Os prolems que envolvem grnezs iretmente ou inversmente proporionis poem ser resolvios trvés e um métoo prátio, hmo e regr e três, one se lulm proporções entre s grnezs envolvis. Eeríios Resolvios ER.01) Com um áre e sorção e rios solres e 1,m, um lnh om motor movio à energi solr onsegue prouzir 00 wtts por hor e energi. Aumentno-se ess áre pr 1,5m, qul será energi prouzi? Montno tel, olono em olun s grnezs e mesm espéie e, em linh, s grnezs e espéies iferentes que se orresponem: Áre 1,m 1,5m Energi 00wtts Oserve que: umentno o vlor áre e sorção, eve umentr energi prouzi. Portnto relção é iretmente proporionl (ns us grnezs olomos sets no mesmo sentio). Então s grnezs ns seqüênis (1,, 00) e (1,5, ) são iretmente proporionis logo: 1, 00 1,. = (1,5).00 1,5 1,. = 600 = 500 wtts. Logo, energi prouzi será igul 500 wtts. ER.0) Um trem, eslono-se um veloie méi e 00km/h, fz um etermino perurso em hors. Em qunto tempo fri esse mesmo perurso, se veloie utiliz fosse e 80km/h? Montno tel, olono em olun s grnezs e mesm espéie e, em linh, s grnezs e espéies iferentes que se orresponem: Veloie 00 km h 80 km h Tempo hors Oserve que: umentno veloie o trem, eve iminuir o tempo o perurso. Portnto relção é inversmente proporionl (ns us grnezs olomos set om sentios ontrários). Então s grnezs ns seqüênis (00, ) (80, ) são inversmente proporionis logo: 80. = = 100 =,5 hors ou = h 0min. Logo, o tempo neessário no perurso n segun situção é igul hors e 0 minutos. 9. Váris grnezs proporionis. Regr e três ompost Se um grnez X é iretmente proporionl às grnezs 1,,... n e inversmente proporionl às grnezs i 1, i,... i m, então ests grnezs junts stisfzem um relção form n X k. i.i... i 1 m One k é um vlor onstnte hmo e proporionlie Chmremos epressão im e Função e Proporionlie. A função e proporionlie é útil, espeilmente, n Físi e n Quími quno queremos esrever mtemtimente relção entre váris grnezs proporionis. e Mtemáti Bási XIII.

4 Eeríio Resolvio ER.0) Em um gás pressão é iretmente proporionl à tempertur e inversmente proporionl o volume. Seno isso ) Esrev relção que epress este fto ) Ahe o vlor onstnte e proporionlie seno que à tempertur e 0 o volume é 60 e pressão é 5 )Com o vlor onstnte otio em () lule o volume se tempertur for 1 e pressão for 5 T ) P k. V ) om os os o prolem temos: 0 5 k. k ) gor semos função e proporionlie que é: T P 15. V Sustituino os vlores e P e T os: V 9 V Eeríios Proposto EP.1) Verifiou-se, eperimentlmente que resistêni elétri R e um fio onutor homogêneo e e seção trnsversl onstnte é iretmente proporionl o seu omprimento L e inversmente proporionl à áre S e su seção trnsversl. ) esrev relção que epress este fto ) se pr um fio e omprimento e seção trnsversl 5 resistêni é 1, qul o omprimento e um fio o mesmo mteril que represent seção e resistêni? A função e proporionlie é o métoo mis efiiente pr resolver prolems e Regr e Três Compost omo mostr o seguinte Eeríio Resolvio ER.0) Cino homens (H) trlhno 8 hors (h) por i levm 0 is () pr vr um vl e 10m e omprimento () m e lrgur(l) m e profunie (). Quntos homens serão neessários pr vr, em 10 is e 6h e trlho, um vl om 1m e omprimento 5 /m e lrgur e m e profunie? A função e proporionlie é H.l.p k..h Ahno K om os os iniiis o prolem: 10.. H k. k Então versão efinitiv função é.l.p H 10..h Pr resolver o prolem st sustituir o vlores finis os: 1.5. H 10. H = EP.1) N ul e um etermino reméio peiátrio reomen-se seguinte osgem: 5 gots pr kg o peso rinç. Se um rinç tem 1kg, qul será osgem orret? EP.1) Um rro à veloie e 100km/h, fz erto perurso em hors. Se veloie o rro fosse e 80km/h, em qunts hors seri feito o mesmo perurso? EP.15) A rção pr 1 nimis, urnte 8 is ust R$.000,00. O usto rção pr 18 nimis, urnte 6 is, é e: EP.16) Um inústri metlúrgi prouziu peçs em 0 is, om 1 máquins operno 10 hors por i. Quntos is serão neessários pr prouzir peçs om 18 esss máquins trlhno 8 hors por i? Eeríios Complementres EC.01) Determine o vlor e ns proporções io: 5 ) ) 7 0 ) EC.0) Diviino o número e 0 em prtes proporionis, 7 e 5, quis números oteremos? EC.0) Os números 5, 1 e são proporionis os números y, 16 e, ness orem. Determine e y. EC.0) Um pesso pliou R$ 80,00 em um ernet e poupnç e R$ 560,00 em outr, ms urnte o mesmo períoo, no mesmo no. Se no finl esse períoo s us junts renerm R$ 90,00, qul foi o renimento e um? EC.05) Reprt qunti e R$ 95,00 em prtes inversmente proporionis os números 6 e 8. EC.06) Dois sóios, Pulo e Rfel, reprtirm o luro finl e um negóio, que foi e R$.900,00, e form proporionl à qunti que um investiu. Se-se que Rfel investiu R$.000,00 mis que Pulo e seu luro foi e R$ 700,00 mis que o e Pulo. Qul foi o investimento e um nesse negóio? Mtemáti Bási XIII.

5 EC.07) Um etermino meimento eve ser ministro um oente três vezes o i, em oses e 5ml vez, urnte 10 is. Se frso ontém 100m o meimento, qul o número e frsos neessários? (lemre-se: 1ml = 1m ). EC.08) Um pesso omprou 10m e or por R$ 5,00. Qunto outr pesso pgrá por 16m mesm or? EC.09) Com 10 pereiros poemos onstruir um muro em is. Quntos is levrão 5 pereiros pr fzer o mesmo trlho? EC.10) Um torneir foi ert pr enher um i om águ mrel. A 15 minutos é mei ltur o nível e águ e os os s o registros n tel io: Tempo (minutos) Altur (entímetros) Num etermino momento o fzer meiç o, ltur o nível águ er e,5 metros. Qunto tempo hvi eorrio ese que torneir foi ert? EC.11) A somr e um pesso que tem 1,80m e ltur mee 60m. No mesmo momento, seu lo, somr projet e um poste mee,00m. Qul ltur o poste em metros. EC.1) A órit e um stélite é um elipse que tem Terr em um e seus foos. Esse stélite tinge veloie máim e mínim nos pontos e menor e mior istâni Terr respetivmente, quno então esss veloies são inversmente proporionis às istânis o stélite à Terr (om mesm onstnte e proporionlie). Clule eentriie órit o stélite, seno tmém que veloie máim é o oro veloie mínim. (A eentriie, omo se se, é o quoiente istâni entre os foos pelo omprimento o eio mior). EC.15) A som os tempos (em hors) gstos por três rros pr perorrerem etermin istâni foi igul 7, hors. Determine: ) Qunto tempo levou rro, seno-se que sus veloies méis form, respetivmente, 0km/h, 50km/h e 60km/h? ) Qul istâni perorri? N questão io nlise pens lterntiv 0 Eeríios Aiionis EA.01) Sore relção entre ertur os poros estomátios e onentrção e um íon espeífio ns éluls-gur, mostr no gráfio seguir, ssinle o que for orreto. EC.1) As ros inteirs e um trtor têm um perímetro e 1,80m e s trseirs têm m e perímetro. Enqunto ro menor á 90 volts, qunts volts rá ro mior? EC.1) A figur seguir mostr (esquemtimente e for e esl) Terr, ujo entro é o ponto T, Lu L e um stélite e omunições S. A Lu e o stélite (que pesos omo pontos) esrevem órits irulres que estão no plno figur e têm entros no ponto T. O rio e órit Lu é km e o períoo ess órit (tempo que Lu gst pr perorrê-l e um vez) será tomo igul 7 is. Já o stélite S tem órit geoestionári, isto é, o stélite ompnh o movimento e rotção Terr e form tl que o períoo e su órit é (um) i. A tereir Lei e Kepler iz que, pr orpos que esrevem órits irulres o reor Terr, o quro o períoo e um órit é proporionl o uo o rio mesm. Clule o rio órit o stélite. 01) O potássio é o íon que está ssoio om o menismo e ertur os estômtos. 0) A mior onentrção e potássio está ssoi om mior t e trnspirção os vegetis. 0) O umento n ertur os estômtos é iretmente proporionl à sorção e potássio. 08) A função que rteriz o umento n ertur os estômtos em relção à sorção e potássio é liner. 16) A função que rteriz o umento n ertur os estômtos em relção à sorção e potássio é resente. Mtemáti Bási XIII. 5

6 N questão io esrev epressão que relion s grnezs menions. (Não é preiso lulr o vlor onstnte e proporionlie pois o prolem não fornee os os pr isto) EA0)A lei e Fourier pr onução térmi firm que, Em um regime estionário, o fluo e lor por onução ( ) num m e mteril homogêneo é iretmente proporionl à áre seção trnsversl trvess e à iferenç e tempertur entre os etremos e inversmente proporionl à espessur m onsier (e). Fino um áre e seção om um iferenç e tempertur entre os etremos onstnte, ssinle qul s figurs seguir poe representr o gráfio o fluo e lor por onução em função espessur m onsier. N questão io nlise pens lterntiv (). EA.0) Anlise o gráfio io, que mostr o efeito e iferentes níveis e irriâni no úmulo e iomss em plnts e rquej, e ssinle lterntiv orret. ) ) ) e) ) O gráfio ini que o úmulo e iomss é inversmente proporionl o umento no nível e irriâni. ) O gráfio emonstr influêni luz n síntese e ompostos orgânios no proesso e respirção. ) O gráfio emonstr o efeito o nível e irriâni no proesso e fotossíntese. ) O gráfio ini que o úmulo e iomss é iretmente proporionl o umento no nível e irriâni. e) O gráfio ini o umento n quntie e lorofil eorrente o umento o nível e irriâni. ) GABARITO EP.01) ) ) 1 N questão io lemre que forç (F) é iretmente proporionl o longmento () EA) A figur seguir present gráfios relção entre forç F pli um mol e o longmento ess mol pr ino tipos iferentes e mols (I, II, III, IV, V). EP.0) 108m EP.0) 5m e m EP.0) = 6 ou = 1 EP.05) Pulo: 0 nos e José: 0 nos EP.06) + y = EP.07) 5m EP.08) = e y = 6 EP.09) A EP.10), 8 e 80 EP.11) 80, 60 e 8 EP.1) ) 08 EP.1) 0 gots EP.1) 5h EP.15) R$ 7.000,00 EP.16) 5 is A mol que present mior onstnte elásti é ) I. ) II. ) III. ) IV. e) V. Mtemáti Bási XIII. 6

7 Eeríios Complementres 7 EC.01) ) ) 10 ) 6,5 EC.0) 60, 10 e 150 EC.0) = 1 e y = 0 EC.0) R$ 9,00 e R$ 196,00 EC.05) R$ 50,00 e R$ 05,00 EC.06) R$ 8.000,00 e R$ 6.000,00 EC.07) 1,5 frso EC.08) R$ 8,00 EC.09) is EC.10) 15min ou h 15min EC.11) 6m EC.1) 5 volts EC.1).000km 1 EC.1) EC.15) ) h,,h e h ) 10km Eeríios Aiionis EA.01) Fls. EA.0) k. e EA.0) E EA.0) Fls Mtemáti Bási XIII. 7

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009 PROVA MATRIZ DE MATEMÁTICA EFOMM-009 ª Questão: Qul é o número inteiro ujo prouto por 9 é um número nturl omposto pens pelo lgrismo? (A) 459 4569 (C) 45679 (D) 45789 (E) 456789 ª Questão: O logotipo e

Leia mais

GRANDEZAS PROPORCIONAIS

GRANDEZAS PROPORCIONAIS Hewlett-Pkrd GRANDEZAS PROPORCIONAIS Auls 01 03 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário GRANDEZAS... 1 O QUE É UMA GRANDEZA?... 1 PRELIMINAR 1... 1 PRELIMINAR 2... 1 GRANDEZAS DIRETAMENTE PROPORCIONAIS

Leia mais

c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule:

c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule: Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe Definição Clule pel efinição os seguintes ritmos: ) (/8) ) 8 ) 0,5 Clule pel efinição os seguintes ritmos: ) 6 ) 7 (/7) ) 9 (/7) ) (/9) e) 7 8 f) 0,5 8

Leia mais

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia.

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia. ª AVALIAÇÃO DA ª UNIDADE ª SÉRIE DO ENSINO MÉDIO DISCIPLINA: MATEMÁTICA Prov elord pelo prof. Otmr Mrques. Resolução d prof. Mri Antôni Coneição Gouvei.. Dispondo de livros de mtemáti e de físi, qunts

Leia mais

Simulado 7: matrizes, determ. e sistemas lineares

Simulado 7: matrizes, determ. e sistemas lineares Simulo 7 Mtrizes, eterminntes e sistems lineres. b... e 6. 7. 8.. 0. b.. e. Simulo 8 Cirunferêni / Projeções / Áres. b 6. e 7. 8.. 0. Simulo Análise ombintóri / Probbilie / Esttísti. e.. e.. b... e.....

Leia mais

PV nrt V. (isocórico) P V. Resumo e Exemplos Resolvidos Processos Termodinâmicos - Física Prof. Dr. Cláudio S.

PV nrt V. (isocórico) P V. Resumo e Exemplos Resolvidos Processos Termodinâmicos - Física Prof. Dr. Cláudio S. Resumo e Exemplos Resolvios roessos Termoinâmios - Físi ro. Dr. láuio S. Srtori Lei termoinâmi: U W roessos termoinâmios omuns 2 Lei Termoinâmi: uno se inluem toos os sistems que tomm prte num proesso,

Leia mais

Sólidos semelhantes. Segmentos proporcionais Área Volume

Sólidos semelhantes. Segmentos proporcionais Área Volume Sólios semelntes Segmentos proporcionis Áre olume Sólios semelntes Consiere um pirâmie cuj se é um polígono qulquer: Se seccionrmos ess pirâmie por um plno prlelo à se, iiiremos pirâmie em ois outros sólios:

Leia mais

PROCESSO SELETIVO TURMA DE 2014 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2014 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCEO ELEIVO URMA DE 4 FAE PROVA DE FÍICA E EU ENINO Cro professor, r professor est prov tem prtes; primeir prte é ojetiv, onstituí por 4 questões e múltipl esolh, um vleno,5 pontos; segun prte, om vlor

Leia mais

Lista de Exercícios Vetores Mecânica da Partícula

Lista de Exercícios Vetores Mecânica da Partícula List de Eeríios Vetores Meâni d Prtíul 01) Ddos os vetores e, ujos módulos vlem, respetivmente, 6 e 8, determine grfimente o vetor som e lule o seu módulo notções 0) Ddos os vetores, e, represente grfimente:

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS CÁLCULO IFEENCIAL E INTEGAL II INTEGAIS MÚLTIPLAS A ierenç prinipl entre Integrl eini F ) F ) e s Integris Múltipls resie no to e que, em lugr e omeçrmos om um prtição o intervlo [, ], suiviimos um região

Leia mais

RELAÇÕES MÉTRICAS E TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

RELAÇÕES MÉTRICAS E TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO Mtemáti RELÇÕES MÉTRIS E TRIGONOMETRI NO TRIÂNGULO RETÂNGULO 1. RELÇÕES MÉTRIS Ddo o triângulo retângulo io:. RELÇÕES TRIGONOMÉTRIS Sej o triângulo retângulo io: n m Temos: e são os tetos; é ipotenus;

Leia mais

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos Sumário Conjuntos Neulosos - Introução rino Joquim e O Cruz NCE e IM UFRJ rino@ne.ufrj.r Se voê tem um mrtelo tuo irá preer um prego triuío Dinísio e gpunt (3 C) Conjuntos Clássios Função e Inlusão em

Leia mais

2.) O grafo de interseção de uma coleção de conjuntos A1;A2;...;An é o grafo que tem um vértice para cada um dos conjuntos da coleção e

2.) O grafo de interseção de uma coleção de conjuntos A1;A2;...;An é o grafo que tem um vértice para cada um dos conjuntos da coleção e UDESC DCC BCC DISCIPLINA : TEG0001 Teori os Grfos PRIMEIRA LISTA DE EXERCÍCIOS 1.) Ientifique pr um os três grfos ixo:. número e nós e ros;. o gru e nó;. Compre som e toos os grus os nós e grfo om o número

Leia mais

CURSO DE MATEMÁTICA ÁLGEBRA AULA

CURSO DE MATEMÁTICA ÁLGEBRA AULA CURSO DE MATEMÁTICA ÁLGEBRA AULA 7 POLINÔMIOS & EQUAÇÕES POLINOMIAIS PROF. MARCELO RENATO Outuro/8 mrcelorento.com RESUMO TEÓRICO Prof. Mrcelo Rento. SOMA DOS COEFICIENTES DE UM POLINÔMIO Pr clculr som

Leia mais

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Aul Clui Mzz Dis Snr Mr C. Mlt Introução o Conceito e Derivs Noção: Velocie Méi Um utomóvel é irigio trvés e um estr cie A pr cie B. A istânci s percorri pelo crro epene o tempo gsto

Leia mais

TÓPICOS DE MATEMÁTICA

TÓPICOS DE MATEMÁTICA INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE COIMBRA SOLICITADORIA E ADMINISTRAÇÃO TÓPICOS DE MATEMÁTICA CÁLCULO EM R I.Revisões Cálulo om frções Reore que, pr, Not:...3.4 R e, R \ {0}: + + pois

Leia mais

3. LOGARITMO. SISTEMA DE LOGARITMO

3. LOGARITMO. SISTEMA DE LOGARITMO 0. LOGARITMO. SISTEMA DE LOGARITMO.. LOGARITMO ritmo. Agor que já "semos" o que é, podemos formlizr definição de Definição Sejm e números reis positivos, om. Chm-se ritmo de n se, o epoente que stisfz

Leia mais

02. Resolva o sistema de equações, onde x R. x x Solução: (1 3 1) Faça 3x + 1 = y 2, daí: 02. Resolva o sistema de equações, onde x R e y R.

02. Resolva o sistema de equações, onde x R. x x Solução: (1 3 1) Faça 3x + 1 = y 2, daí: 02. Resolva o sistema de equações, onde x R e y R. GGE ESPONDE 7 ATEÁTICA Prov Disursiv. Sej um mtriz rel. Defin um função n qul element mtriz se eslo pr posição seguinte no sentio horário, sej, se,impli que ( ) f. Enontre tos s mtrizes simétris reis n

Leia mais

Cinemática de uma Partícula Cap. 12

Cinemática de uma Partícula Cap. 12 MECÂNIC - DINÂMIC Cinemáti e um Prtíul Cp. Objetios Introuzir os oneitos e posição, eslomento, eloie e elerção Estur o moimento e um ponto mteril o longo e um ret e representr grfimente esse moimento Inestigr

Leia mais

AULA 7 EFICIÊNCIA E EFETIVIDADE DE ALETAS

AULA 7 EFICIÊNCIA E EFETIVIDADE DE ALETAS 49 UL 7 EFICIÊNCI E EFETIVIDDE DE LETS Efiiêni de let teori desenvolvid n ul nterior é stnte útil pr um nálise em detlhes pr o projeto de novs onfigurções e geometris de lets. Pr lguns sos simples, existem

Leia mais

2.1. Integrais Duplos (definição de integral duplo)

2.1. Integrais Duplos (definição de integral duplo) Análise Mtemáti II- no letivo 6/7.. Integris uplos (efinição e integrl uplo) Pr melhor ompreener efinição e integrl uplo vmos omeçr por olor o seguinte esfio: Tene eterminr o volume o sólio que está im

Leia mais

e b ij = , se i = j i 2 + j 2 i 3 j 3 b ij =

e b ij = , se i = j i 2 + j 2 i 3 j 3 b ij = Universie Feerl e Ouro Preto List e GAAL/MTM730 Professor: Antônio Mros Silv Oservção: Muitos os exeríios ixos form retiros s lists o professor Wenerson 0 Revej os exemplos feitos em sl e ul Sejm ij e

Leia mais

obtendo 2x x Classifique como Verdadeiro (V) ou Falso (F) cada uma das seguintes afirmações: é um número racional.

obtendo 2x x Classifique como Verdadeiro (V) ou Falso (F) cada uma das seguintes afirmações: é um número racional. UFJF ICE Dertmento de Mtemáti CÁLCULO I - LISTA DE EXERCÍCIOS Nº 1 1- Sejm e números reis ositivos tis ue

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOS DE UL Geometri nlíti e Álger Liner rnsformções Lineres Professor: Lui Fernndo Nunes Dr 8/Sem_ Geometri nlíti e Álger Liner ii Índie 6 rnsformções Lineres 6 Definição 6 Imgem de um trnsformção liner

Leia mais

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais:

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais: Apênice A - Mtemátic Básic A.. Trigonometri A... Relções no triângulo qulquer A Mtemátic Básic C A α c β B γ Figur A. - Triângulo qulquer Leis Funmentis: c sen = sen = sen c A- Lei os cossenos: = + c -

Leia mais

A B C Para colocar letras nas figuras, escrevem-se as letras segundo o sentido contrário ao dos ponteiros do relógio.

A B C Para colocar letras nas figuras, escrevem-se as letras segundo o sentido contrário ao dos ponteiros do relógio. Ângulos e triângulos Unidde 6 PLIR 1. Oserv figur. Nos pontos e estão plntds árvores. Pretende-se plntr um árvore num ponto de modo que os pontos, e pertençm à mesm ret. z três desenhos indindo o ponto

Leia mais

Notas de aulas 1 IFSP Mecânica Técnica

Notas de aulas 1 IFSP Mecânica Técnica Nots de uls 1 IFSP Meâni Téni 1. Revisão de trigonometri. Sistems de uniddes. Algrismos signifitivos. 2. Coneito de vetor. Som de vetores. Deomposição de forçs. 3. Equilírio de um ponto mteril. 4. Digrm

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS DE AULA Geometri Anlíti e Álger Liner Cônis Professor: Luiz Fernndo Nunes Dr 8/Sem_ Geometri Anlíti e Álger Liner ii Índie 9 Curvs Cônis 9 Elipse 9 Hipérole 9 Práol 8 9 Eeríios propostos: Referênis

Leia mais

Física Teórica II. 2ª Lista 2º semestre de 2015 ALUNO TURMA PROF. NOTA:

Física Teórica II. 2ª Lista 2º semestre de 2015 ALUNO TURMA PROF. NOTA: Físic Teóric 2ª List 2º semestre e 2015 LUNO TURM PROF NOT: 01) O fio mostro n figur consiste e ois seguimentos com iâmetros iferentes, ms são feitos o mesmo metl corrente no seguimento 1 é 1 ) Compre

Leia mais

No mecanismo de Lindemann-Hinshelwood admite-se que a molécula do reagente A torna-se excitada em colisão com outra molécula de A.

No mecanismo de Lindemann-Hinshelwood admite-se que a molécula do reagente A torna-se excitada em colisão com outra molécula de A. Aul: 30 Temátic: Reções Unimoleculres e Ctlisores Vmos continur noss nálise cinétic em função e um mecnismo e reção. Depois fremos um introução um novo tópico isciplin, os ctlisores. 1. Reções unimoleculres

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 1

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 1 Mteril Teório - Módulo Triângulo Retângulo, Leis dos ossenos e dos Senos, Poĺıgonos Regulres Lei dos Senos e Lei dos ossenos - Prte 1 Nono no utor: Prof. Ulisses Lim Prente Revisor: Prof. ntonio min M.

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 DETERMINANTES

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 DETERMINANTES INTRODUÇÃO... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... PROPRIEDADES DOS DETERMINANTES... 8 REGRA DE CHIÓ... MENOR COMPLEMENTAR... COFATOR...

Leia mais

Análise de Algoritmos Gabarito da Primeira Prova

Análise de Algoritmos Gabarito da Primeira Prova Análise e Algoritmos Gbrito Primeir Prov Tópios: Funmentos e nálise e lgoritmos e lgoritmos pr orenção Instituto e Ciênis Exts, Universie e Brsíli 22 e bril e 2009 Prof. Muriio Ayl-Rinón Funmentos: relções

Leia mais

Retomada dos conceitos

Retomada dos conceitos etom os conceitos rofessor: s resoluções estes exercícios estão isponíveis no lno e uls este móulo. onsulte tmbém o nco e uestões e incentive os lunos usr o imulor e Testes. 1 N esc figur, os egrus istm

Leia mais

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO Pr Ordendo RACIOCÍNIO LÓGICO AULA 06 RELAÇÕES E FUNÇÕES O pr ordendo represent um ponto do sistem de eixos rtesinos. Este sistem é omposto por um pr de rets perpendiulres. A ret horizontl é hmd de eixo

Leia mais

Professora FLORENCE. e) repulsiva k0q / 4d. d) atrativa k0q / 4d. Resposta: [A]

Professora FLORENCE. e) repulsiva k0q / 4d. d) atrativa k0q / 4d. Resposta: [A] . (Ufrgs 0) Assinle lterntiv ue preenche corretmente s lcuns no fim o enuncio ue segue, n orem em ue precem. Três esfers metálics iêntics, A, B e C, são monts em suportes isolntes. A esfer A está positivmente

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

FÍSICA. Resoluções. 1 a Série Ensino Médio. Após a inversão dos movimentos, os módulos das velocidades foram trocados.

FÍSICA. Resoluções. 1 a Série Ensino Médio. Após a inversão dos movimentos, os módulos das velocidades foram trocados. LIMÍD DE FÍSIC Resoluções 01 0 E 03 D r o sistem vetoril cito n questão, tem-se o seguinte: + + c S c Inverteno qulquer um os vetores, tem-se seguinte situção: S S vetor som o inverter qulquer um os vetores,

Leia mais

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes: Colégio: Nome: nº Sem limite pr reser Professor(): Série: 1ª EM Turm: Dt: / /2013 Desonto Ortográfio: Not: Bteri de Exeríios Mtemáti II 1 Determine os vlores de x e y, sendo que os triângulos ABC e DEF

Leia mais

GGE RESPONDE IME MATEMÁTICA Determine os valores reais de x que satisfazem a inequação:

GGE RESPONDE IME MATEMÁTICA Determine os valores reais de x que satisfazem a inequação: . Determine os vores reis e x que stisfzem inequção: x IR e X og x og 9 x² x og x og Fzeno x og, temos: ( ) ( ) ( ) ² ² ² ² + + + + + + - - - - - - - - - - - - - - - - - - + + + - + + + - - - + + + + +

Leia mais

3. Juliano colou uma bandeirinha cinza em cada engrenagem, como mostra a figura abaixo:

3. Juliano colou uma bandeirinha cinza em cada engrenagem, como mostra a figura abaixo: XXII OLIMPÍD RSILEIR DE MTEMÁTI Primeir Fse Nível - urção prov é e hors. - Não é permitio o uso e clculors nem consult nots ou livros. - Você poe solicitr ppel pr rscunho. - Entregue pens folh e resposts.

Leia mais

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está,

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está, UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Introdução Se integrl

Leia mais

UNICAMP ª fase - Provas Q e X

UNICAMP ª fase - Provas Q e X UNICAMP 2014 1ª fse - Provs Q e X Questão 25 N reequção e lguns estáios e futeol, por ont e um titue eológi oerente, milhres e ssentos serão prouzios prtir e grrfs PET. Pr ssento serão neessáris er e 100

Leia mais

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff NOTA Tipo de Avlição: Mteril de Apoio Disciplin: Mtemátic Turm: Aulão + Professor (): Jefferson Cruz Dt: 24/05/2014 DICAS do Jeff Olhr s lterntivs ntes de resolver s questões, principlmente em questões

Leia mais

Medidas de Associação.

Medidas de Associação. Meis e Assoição. O álulo e meis propris frequêni e um oenç é bse pr omprção e populções, e, onsequentemente, pr ientifição e eterminntes oenç. Pr fzer isto e mneir mis efiz e informtiv, s us frequênis

Leia mais

1. Associe cada igualdade a uma das afirmações escrevendo o símbolo romano correspondente.

1. Associe cada igualdade a uma das afirmações escrevendo o símbolo romano correspondente. COLÉGIO MCHDO DE SSIS Disipli MTEMÁTIC Professor TLI RETZLFF Turm 8 o ( ) ( )B ( )C Dt / / Pupilo ssoie igule um s firmções esreveo o símolo romo orrespoete I ( + ) = + + II ( ) = + III ( + ) ( ) = ) O

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 1º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tem II Introdução o Cálulo Diferenil II Tref nº 1 do plno de trlho nº 7 Pr levr o est tref pode usr su luldor ou o sketh fmilis.gsp

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

Máximos e Mínimos Locais

Máximos e Mínimos Locais INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT B Limites e Derivds - Pro Grç Luzi Domiguez Sntos ESTUDO DA VARIAÇÃO DAS FUNÇÕES Máimos e Mínimos Lois Deinição: Dd um unção, sej D i possui

Leia mais

Teorema 1 (critério AAA de semelhança de triângulos) Se os ângulos de um triângulo forem respectivamente congruentes aos ângulos correspondentes

Teorema 1 (critério AAA de semelhança de triângulos) Se os ângulos de um triângulo forem respectivamente congruentes aos ângulos correspondentes SÉTIM LIST DE EXERÍIOS Fundmentos d Mtemáti II MTEMÁTI DET UES Humerto José ortolossi http://www.ues.r/relos/ Semelhnç de triângulos Dizemos que o triângulo é semelhnte o triângulo XY Z e esrevemos XY

Leia mais

x 3 x 3 27 x 4 x 9 3 x 4 3 x 5 3x x 2 AULA 3: EQUAÇÕES E INEQUAÇÕES (1º GRAU E 2º GRAU) (GABARITO) x 1 x 13 x 7 1. Resolver as seguintes equações x 5

x 3 x 3 27 x 4 x 9 3 x 4 3 x 5 3x x 2 AULA 3: EQUAÇÕES E INEQUAÇÕES (1º GRAU E 2º GRAU) (GABARITO) x 1 x 13 x 7 1. Resolver as seguintes equações x 5 AULA : EQUAÇÕE E INEQUAÇÕE (º GRAU E º GRAU) (GABARITO). Resolver s seguintes equções ) e) ) f),, ) g),,,, d) h) i) j) k) l) UNIP - Administrção - Mtemáti ási Profª Ptríi Alves Aul equções e inequções

Leia mais

Matemática B Superintensivo

Matemática B Superintensivo GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen

Leia mais

1a) QUESTÃO: ciclos 2a) QUESTÃO: estado inicial indefinidamente travar 4a) QUESTÃO: Anel 1ª) Questão

1a) QUESTÃO: ciclos 2a) QUESTÃO: estado inicial indefinidamente travar 4a) QUESTÃO: Anel 1ª) Questão 1 ) QUSTÃO: (3, pontos) Pr máquin e esto efini pel su tel e fluo io, pee-se: y\ 1 1 ) nontre um tel e fluo mínim; / /- /- / ) onstru um tel e eitção livre e /- /1 / /- orris ríti (rir ilos quno neessário);

Leia mais

MATEMÁTICA. Questões de 01 a 12

MATEMÁTICA. Questões de 01 a 12 GRUPO TIPO A MAT. MATEMÁTICA Questões e. Consiere seqüênci e funções f sen, f sen, n fn sen,... e s áres gráficos no intervlo,. A, A, A,..., f sen,..., A n,..., efinis pelos respectivos Um luno e Cálculo,

Leia mais

Máximos e Mínimos Locais

Máximos e Mínimos Locais INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT AO CÁLCULO A - Pro : Grç Luzi Domiguez Sntos ESTUDO DA VARIAÇÃO DAS FUNÇÕES Máimos e Mínimos Lois Deinição: Dd um unção, sej D i possui um

Leia mais

Razão entre dois números é o quociente do primeiro pelo segundo número. a : b ou. antecedente. a b. consequente

Razão entre dois números é o quociente do primeiro pelo segundo número. a : b ou. antecedente. a b. consequente 1 PROPORCIONALIDADE Rzão Rzão entre dois números é o quociente do primeiro pelo segundo número. Em um rzão A rzão temos que: ntecedente é lid como está pr. : ou consequente Proporção Chmmos de proporção

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

Vetores. Capítulo. UNIDADE C Vetores e grandezas vetoriais: Cinemática vetorial

Vetores. Capítulo. UNIDADE C Vetores e grandezas vetoriais: Cinemática vetorial UNI etores e grndezs vetoriis: inemáti vetoril pítulo 7 etores s vetores são entes mtemátios mplmente utilizdos em Físi. les representm grndezs que só fim definids qundo são onheidos seu módulo, su direção

Leia mais

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$ 81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como

Leia mais

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras. Nono Ano

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras. Nono Ano teril Teório - ódulo Teorem de Pitágors e plições lgums demonstrções do Teorem de Pitágors Nono no utor: Prof. Ulisses im Prente Revisor: Prof. ntonio minh. Neto 30 de mrço de 2019 1 Teorem de Pitágors

Leia mais

AULA 07 LOGARITMOS EXERCÍCIOS

AULA 07 LOGARITMOS EXERCÍCIOS FUNÇÃO LOGARÍTMICA Itroução Cosieremos os seguites prolems: A que epoete se eve elevr o úmero pr se oter? Pelo euio, temos: = = = Esse vlor eotro pr o epoete eomi-se ritmo o úmero se e se represet por:

Leia mais

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2.

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2. Mtemátic Aotno-se os vlores log = 0,30 e log 3 = 0,48, riz equção x = 60 vle proximmente: ), b),8 c) 4 ),4 e),67 x = 60 log x = log 60 x. log = log (. 3. ) x = x = log + log 3 + log log 0 log + log 3 +

Leia mais

Associação Catarinense das Fundações Educacionais ACAFE PARECER DOS RECURSOS

Associação Catarinense das Fundações Educacionais ACAFE PARECER DOS RECURSOS Assoição Ctrinense s Funções Euionis ACAFE EDITAL N 0 08/SED/00 Ensino Funmentl ) An e Antônio resolvem rinr e um jogo que envolve o lnçmento e um moe não vii. A moe é lnç ino vezes. Se sequêni presentr

Leia mais

Hewlett-Packard PORCENTAGEM. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard PORCENTAGEM. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Pckrd PORCENTAGEM Auls 01 04 Elson Rodrigues, Gbriel Crvlho e Pulo Luiz Rmos Sumário PORCENTAGEM... 1 COMPARANDO VALORES - Inspirção... 1 Porcentgem Definição:... 1... 1 UM VALOR PERCENTUAL DE

Leia mais

AULA: Superfícies Quádricas

AULA: Superfícies Quádricas AULA: Superfíies Quádris Definição : Um equção gerl do gru em três vriáveis é um equção do tipo: A B C D E F G H I J (I), om pelo menos um ds onstntes A, B, C, D, E ou F é diferente de ero. Definição :

Leia mais

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág.

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág. António: c ; Diogo: ( ) i e ; Rit: e c Pág Se s firmções dos três migos são verddeirs, firmção do António é verddeir, pelo que proposição c é verddeir e, consequentemente, proposição c é fls Por outro

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES SHWETZER ENGNEERNG LORTORES, OMERL LTD OMPENSÇÃO NGULR E REMOÇÃO D OMPONENTE DE SEQÜÊN ZERO N PROTEÇÃO DFERENL DE TRNSFORMDORES Por Rfel rdoso. NTRODUÇÃO O prinípio d proteção diferenil é de que som ds

Leia mais

Geometria Plana II - Respostas

Geometria Plana II - Respostas Geometri Pln II - Resosts Ensino de qulidde, qunto ntes, melor 01 Sej M o onto médio de DE, então BM é medin reltiv à iotenus do triângulo BDE Logo B DM ME BM Como BM é isóseles, temos que MB ˆ lém disso,

Leia mais

- Departamento de Matemática Aplicada (GMA) Notas de aula Prof a. Marlene Dieguez Fernandez. Integral definida

- Departamento de Matemática Aplicada (GMA) Notas de aula Prof a. Marlene Dieguez Fernandez. Integral definida Interl Deinid Nots de ul - pro. Mrlene - 28-2 1 - Deprtmento de Mtemáti Aplid (GMA) Nots de ul - 28-2 Pro. Mrlene Dieuez Fernndez Interl deinid Oservção: esse teto ontém pens prte teóri desse ssunto, não

Leia mais

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DA RETA Auls 01 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário EQUAÇÃO GERAL DA RETA... 2 Csos espeiis... 2 Determinção d equção gerl de um ret prtir de dois de seus pontos...

Leia mais

MATEMÁTICA. Capítulo 5 LIVRO 1. Teorema de Pitágoras Relações Métricas nos Triângulos. Páginas: 190 à 201

MATEMÁTICA. Capítulo 5 LIVRO 1. Teorema de Pitágoras Relações Métricas nos Triângulos. Páginas: 190 à 201 MATEMÁTICA LIVRO 1 Cpítulo 5 Teorem de Pitágors Relções Métris nos Triângulos Págins: 190 à 01 Teorem de Pitágors: II ² III IV ² II ² I I IV III "A áre do qudrdo formdo om o ldo d hipotenus é igul som

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DO PONTO Auls 0 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário INTRODUÇÃO AO PLANO CARTESIANO... Alguns elementos do plno rtesino... Origem... Eios... Qudrntes... Bissetrizes

Leia mais

20 29 c) 20 b) 3 5, é TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO. 1) No triângulo abaixo, o seno do ângulo B vale:

20 29 c) 20 b) 3 5, é TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO. 1) No triângulo abaixo, o seno do ângulo B vale: TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO ) (UNISINOS) O ldo do qudrdo ABCD, d figur ixo, mede m e M é o ponto médio do ldo CD. 1) No triângulo ixo, o seno do ângulo B vle: 9 ) 0 9 ) 1 0 ) 9 0 1 1 9 ) (UFRGS)

Leia mais

Proporção e Conceitos Relacionados. 7 ano E.F. Professores Tiago Miranda e Cleber Assis

Proporção e Conceitos Relacionados. 7 ano E.F. Professores Tiago Miranda e Cleber Assis Móulo e Rzões e Proporções Proporção e Conceitos Relcionos 7 no E.F. Professores Tigo Mirn e Cleber Assis Rzões e Proporções Proporção e Conceitos Relcionos Exercícios Introutórios Exercício. Dos os números

Leia mais

RESPOSTAS DA LISTA 2 - Números reais: propriedades algébricas e de ordem

RESPOSTAS DA LISTA 2 - Números reais: propriedades algébricas e de ordem List de Mtemáti Bási 009- (RESPOSTAS) 4 RESPOSTAS DA LISTA - Números reis: proprieddes lgéris e de ordem Pr filitr onsult, repetimos qui os xioms e s proprieddes lgéris e de ordem listds em ul. À medid

Leia mais

Vectores Complexos. Prof. Carlos R. Paiva

Vectores Complexos. Prof. Carlos R. Paiva Vectores Complexos Todos sem que se podem representr vectores reis do espço ordinário (tridimensionl) por sets Porém, qul será representção geométric de um vector complexo? Mis do que um questão retóric

Leia mais

Uma situação muito comum de função exponencial é aquela em que uma determinada grandeza, que pra um instante t = 0 ela apresenta uma medida y y0

Uma situação muito comum de função exponencial é aquela em que uma determinada grandeza, que pra um instante t = 0 ela apresenta uma medida y y0 FUNÇÃO EXPONENCIAL REPRESENTAÇÃO Atenção y y x x y y : bse x Um situção muito comum de função exponencil é quel em que um determind grndez, que pr um instnte t = el present um medid y y, prtir deste instnte,

Leia mais

Aula. Transformações lineares hlcs

Aula. Transformações lineares hlcs UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE Aul Álger Liner Trnsformções lineres hls Resumo Trnsformções lineres Definição Núleo Imgem Definição Relção entre espços vetoriis Preservção e operções* Aplição

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

Do programa... 2 Descobre o teu livro... 4

Do programa... 2 Descobre o teu livro... 4 Índice Do progrm........................................... Descobre o teu livro....................................... 4 Atividde zero: Record.................................. 6 1. T de vrição e otimizção...........................

Leia mais

facebook/ruilima

facebook/ruilima MATEMÁTICA UFPE ( FASE/008) 01. Sej áre totl d superfície de um cubo, e y, o volume do mesmo cubo. Anlise s firmções seguir, considerndo esss informções. 0-0) Se = 5 então y = 7. 1-1) 6y = 3 -) O gráfico

Leia mais

4. Qual é a principal exigência para soldar aços com baixo teor de carbono?

4. Qual é a principal exigência para soldar aços com baixo teor de carbono? Teste e Esolh múltipl 1. Qul os métoos listos se pli à oxição o ço? Meânio Injeção Químio Fís 2. Qul s frses ixo iz respeito à (per)furção? Reliz-se quente sem lterção signifitiv o volume peç Reliz-se

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos

Leia mais

TEMPERATURA DE SUBSTRATOS COM TORTA DE MAMONA, EM RELAÇÃO AO ESTERCO DE CURRAL, PARA PRODUÇÃO DE MUDAS DE CAFEEIRO (Coffea arabica L.).

TEMPERATURA DE SUBSTRATOS COM TORTA DE MAMONA, EM RELAÇÃO AO ESTERCO DE CURRAL, PARA PRODUÇÃO DE MUDAS DE CAFEEIRO (Coffea arabica L.). II Congresso Brsileiro e Plnts Oleginoss, Óleos, Gorurs e Bioiesel Relizção: Universie Feerl e Lvrs e Prefeitur Muniipl e Vrginh TEMPERATURA DE SUBSTRATOS COM TORTA DE MAMONA, EM RELAÇÃO AO ESTERCO DE

Leia mais

Material Teórico - Módulo de Razões e Proporções. Proporções e Conceitos Relacionados. Sétimo Ano do Ensino Fundamental

Material Teórico - Módulo de Razões e Proporções. Proporções e Conceitos Relacionados. Sétimo Ano do Ensino Fundamental Mteril Teórico - Módulo de Rzões e Proporções Proporções e Conceitos Relciondos Sétimo Ano do Ensino Fundmentl Prof. Frncisco Bruno Holnd Prof. Antonio Cminh Muniz Neto Portl OBMEP 1 Introdução N ul nterior,

Leia mais

02 e D são vértices consecutivos de um quadrado e PAB é um triângulo equilátero, sendo P interno ao quadrado ABCD. Qual é a medida do ângulo PCB?

02 e D são vértices consecutivos de um quadrado e PAB é um triângulo equilátero, sendo P interno ao quadrado ABCD. Qual é a medida do ângulo PCB? 0 Num prov de vinte questões, vlendo meio ponto cd um, três questões errds nulm um cert. Qul é not de um luno que errou nove questões em tod ess prov? (A) Qutro (B) Cinco (C) Qutro e meio (D) Cindo e meio

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º no Mtemátic FUNDMENTL tividdes complementres Este mteril é um complemento d obr Mtemátic 9 Pr Viver Juntos. Reprodução permitid somente pr uso escolr. Vend proibid. Smuel Csl Cpítulo 6 Rzões

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

20/04/2012. Estudo de Caso-ControleControle. Estudo de Coorte. Estudo de Coorte. Estudo de Caso Controle. Exposição. Doença. Exposição.

20/04/2012. Estudo de Caso-ControleControle. Estudo de Coorte. Estudo de Coorte. Estudo de Caso Controle. Exposição. Doença. Exposição. Estuo e Coorte Exposição Doenç Estuo e Coorte SIM Cso Cso NÃO Cso Cso Estuo e Coorte Exposição Doenç Populção livre e oenç SIM Cso Cso Estuo e Cso-ControleControle Pr Frente Cso exposto NÃO Cso Estuo e

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 CPES FUNÇÕES Prte B Prof. ntônio Murício Medeiros lves Profª Denise Mri Vrell Mrtinez UNIDDE FUNÇÕES PRTE B. FUNÇÂO

Leia mais

Dados dois conjuntos A e B, uma função de A em B é uma correspondência que a cada elemento de A faz corresponder um e um só elemento de B.

Dados dois conjuntos A e B, uma função de A em B é uma correspondência que a cada elemento de A faz corresponder um e um só elemento de B. TEMA IV Funções eis de Vriável el 1. evisões Ddos dois onjuntos A e B, um unção de A em B é um orrespondêni que d elemento de A z orresponder um e um só elemento de B. Dus unções e são iuis se e somente

Leia mais

FUNÇÃO DO 2º GRAU OU QUADRÁTICA

FUNÇÃO DO 2º GRAU OU QUADRÁTICA FUNÇÃO DO º GRAU OU QUADRÁTICA - Definição É tod função do tipo f() = + + c, com *, e c. c y Eemplos,, c números e coeficient termo vr vr iável iável es independen reis indepemdem dependente de te ou te

Leia mais

Exame II. Conhecimentos Básicos Processuais e do Programa SISAAE CURSO DE EMPREGADOS FORENSES DE AGENTE DE EXECUÇÃO. A preencher pelo formando:

Exame II. Conhecimentos Básicos Processuais e do Programa SISAAE CURSO DE EMPREGADOS FORENSES DE AGENTE DE EXECUÇÃO. A preencher pelo formando: CURSO DE EMPREGADOS FORENSES DE AGENTE DE EXECUÇÃO Exme II Conheimentos Básios Proessuis e o Progrm SISAAE Durção: 1 hor 4 e Mio A preenher pelo formno: Nome o formno (ompleto e legível): Ientifição o

Leia mais