Primeiro Desao Mestre Kame

Tamanho: px
Começar a partir da página:

Download "Primeiro Desao Mestre Kame"

Transcrição

1 Primeiro Desao Mestre Kame Alan Anderson 8 de julho de 2017 O propósito dessa lista é gerar uma intuição numérica das demonstrações abstratas do teoremas famosos de Teoria dos números, de modo que alguns dos enunciados de teoremas sejam deduzidos pelos estudantes e que as demonstração pareça simples quando vistas, por isso faça todas as contas completas. As soluções devem ser todas organizadamente e completamente escrita em um caderninho do Desao Mestre Kame, não precisa escrever na ordem da lista. 1 Divisibilidade 1. Encontre todos os inteiros positivos tais que a) 2n n 3 + 9n 17; b) 2n n 4 + n + 1; c) n + 1 n 3 1; d) 2n 1 n 3 + 1; e) 1 m + 1 n = Algoritmo de Euclides 1. Encontre soluções inteiras para as seguintes equações: a) 4x + 7y = 1 b) 231x + 144y = 12 1

2 2. Use o teorema de Bachèt-Bezout para mostrar que a) Se mdc(a, b) = 1 e a bc, então a c; b) Existe b com ab 1(mod.n) mdc(a, n) = 1. 3 Teorema Fundamental da Aritimética 1. Mostre que existem innitos primos. 2. Mostre que existem innitos primos com as formas 4k + 3 e 6k Mostre que 1 + a + a a n = an+1 1. Você pode fazer isso por a 1 indução ou pode escrever S n = 1 + a a n e analizar as n. 4. Fatore 600 em primos. a) Explicite o conjunto dos divisores de 600 b) Expanda a multiplicação a seguir, sem executar as somas: ( )( )( ). c) Compare os exercícios a) e b). 5. Repita o processo do exercício anterior com Congruência 1. Calcule x 2 (mod.11) para x = 2,..., Mostre que x 2 1(mod.147) x ±1(mod.147). 3. Mostre que se p é primo, então x 2 1(mod.p) x ±1(mod.p). Você não pode usar esse exercício para provar o anterior (ou seja, você vai fazer a mesma prova duas vezes pra car com ela na cabeça para sempre!) 4. Calcule ( 7 k) /7, para k = 1,..., 6 2

3 5. Mostre que se p é primo e 0 < k < p então ( p k) 0(mod.p). 6. Use o exercício anterior para mostrar que se p é primo, então (a + b) p a p + b p (mod.p). 7. Use o exercício anteriro para provar por indução em a que a p a(mod.p). 5 Base Veja que 2017 = Escreva n = 723 na base d = 6, ou seja, na forma 723 = a a a k 6 k, com a i {0,..., 5}. 2. Resolva o exercício acima com a) n = 234 e d = 3 b) n = 127 e d = 4 3. Mostre que cada representação acima é única. 4. Prove o Teorema O Anel dos inteiros módulo n 1. Calcule o resto da divisão de (n 1)! por n para cada n = 7, 8, 9, 10, 11, 12, 13, 14, Mostre que se n é composto então o resultado acima é 0 (se você não fez a conta acima você é um moleque 06!) 7 Teorema de Euler 7.1 Função ϕ A função ϕ : N N é a função que associa a cada n o a quantidade de números naturais k n que são primos com n. 3

4 1. Denote por Φ(n) = {x N : x n, mdc(x, n) = 1}. Explicite Φ(n) para n = 1, 2,..., Seja p um número primo, calcule a)ϕ(p) b)ϕ(p 2 ) c)ϕ(p 3 ) d) ϕ(p n ) 3. Encontre todos os n para os quais ϕ(n) = n 1. Lemma 1 Se mdc(m, n) = 1, então ϕ(mn) = ϕ(m)ϕ(n). 4. Mostre que se n = p α 1 1 p α k k então ϕ(n) = n k j=1 (1 1pj ). 5. Mostre que ϕ(n) é par para todo n 3 (você pode usar a fórmula para ϕ(n)). 6. Se n = ab com a 3, b 3, inteiros tais que mdc(a, b) = 1, então k ϕ(n)/2 1(mod.a) (analogo para b). Conclua que k ϕ(n)/2 1(mod.n). 7.2 Prova do Teorema de Euler 7. Determine todos os m n = 10 tais que mdc(m, 10) = 1. Calcule o resto da divisão de cada elemento por 10. Em seguida multiplique cada um deles por k = 3, e calcule o resto da divisão de cada produto por 10. Note que o conjunto dos restos é o mesmo. 8. Resolva o exercício acima com a) n = 12, k = 7 b) n = 13, k = 8 d) n = 14, k = 5 4

5 9. Seja (Z/180Z) = {k Z/180Z : mdc(k, 180) = 1}, e tome x, y (Z/180Z). Mostre que se mdc(a, 180) = 1, então ax ay(mod.180) x y(mod.180). (Z/nZ é outra notação para Z n ) 10. Troque 180 por n e generalize o resultado acima. 11. Sejam a (Z/nZ) e A = {a k : k (Z/nZ) }. Mostre que A = (Z/nZ) 12. Multiplique todos os elementos de A e prove o teorema de Euler. 8 Polinômios Os problemas sobre mdc requerem que se saiba resolver equações diofantinas ans. As contas para polinômios são análogas às contas com números inteiros. 1. Calcule p(x) q(x) em cada item a seguir: a) p(x) = a 0 + a 1 x + a 2 x 2, q(x) = b 0 + b 1 x + b 2 x 2 b) p(x) = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + c 4 x 4, q(x) = b 0 + b 1 x + b 2 x 2 c) Observe os subindices de cada monômio do polinômio produto. 2. Calcule o resto da divisão de p(x) por q(x) a) p(x) = 3x 4 + 4x 3 + 2x 2 + x + 1, q(x) = x 2 + 1; b) p(x) = 2x 5 + x 3 + x, q(x) = x Encontre o mdc entre p(x) e q(x). a) p(x) = x 3 + 2x e q(x) = x 4 + 3x b) p(x) = x 2 + x + 2 e q(x) = x 3 + x + 2 c) p(x) = x 3 + x 2 + x + 1 e q(x) = x Encontre f(x), g(x) tais que f(x)p(x) + g(x)q(x) = mdc(p(x), q(x)). a) p(x) = x 3 + x e q(x) = x b) p(x) = x 3 + 2x e q(x) = x 4 + 3x

6 5. Sejam σ i (p) as somas dos produtos de i termos distintos em {1,, p 1}, por exemplo, σ 2 (3) = Calcule σ i (p), i = 1,, p 1 para p = 5 e para p = 7. Para quais valores de i p σ i (p) para p = 5 e p = 7? 9 Ordem e Raiz primitiva 9.1 Ordem O menor t tal que a t 1(mod.n) é denotado por ord n a. 1. Encontre o menor t tal que 3 t 1(mod.n) para cada n {10, 13, 14, 16, 17}. 2. Resolva o exercício acima trocando 3 por 4, 5, Suponha que mdc(a, n) = 1. Mostre que se t = ord n a então não existem 0 < x < y < t temos a x a y (mod.n). (Sugestão: Lembre-se que t é o menor valor com certa propriedade.) 4. Prove que ord ϕ(170), ord ϕ(1000). (Sugestão: Analize o resto da divisão de φ(170) por ord e use a sugestão do exercício acima) 9.2 Raiz primitiva Dizemos que a é raiz primitiva de n se ord n a = ϕ(n). 5. Encontre todas as raízes primitivas de n = 8, 9, 10, 11, 12, 18, Para cada n acima, escolha uma raíz primitiva a (se existir) e veja quem é o conjunto formado por {a t : t = 1, 2,..., ϕ(n)}. Compare esses conjuntos com os conjuntos de resíduos de cada n. 7. Mostre que se n = ab com a, b 3 e mdc(a, b) = 1, então não existe raiz primitiva mod.n 6

7 10 Teorema Chinês dos Restos 1. Sejam a, b, c, d N dois a dois primos entre si a) Encontre x tal que x 0(mod.a), x 0(mod.b) e x 1(mod.c) b) Encontre x tal que x 0(mod.a), x 0(mod.b) e x d(mod.c). 2. Vamos resolver um sistema de congruências: k 8(mod.17) k 3(mod.13) k 9(mod.12) a) Encontre um número x tal que o resto da divisão de x por 12 é 0, por 13 é 0 e por 17 é é 8. b) Encontre um número y tal que o resto da divisão de y por 12 é 0, por 13 é 3 e por 17 é é 0. c) Encontre um número z tal que o resto da divisão de z por 12 é 9, por 13 é 0 e por 17 é é 0. d) Qual é o resto da divisão de x + y + z por cada um dos valores 12, 13, 17? 3. Resolva o sistema k 5(mod.17) k 1(mod.12) k 0(mod.7) 11 Reciprocidade Quadrática Para resolver alguns problemas abaixo é necessário saber as propriedades do símbolo de Legendre. 1. Seja p um primo. Mostre que se ax 2 + bx + c 0(mod.p) então b 2 4ac é resíduo quadrático mod.p. 7

8 2. Calcule ( ) 90 a) ( 1019 ) 44 b) ( 103 ) 2010 c) Seja p = 60k + 7 um número primo. Mostre que se 6 10 n é resíduo quadrático módulo p, então n e k são pares. 12 Equação de Pell 1. Dados x 1, y 1 Z e faça x n + y n d = (x1 + y 1 d) n e x n ỹ n d = (x 1 y 1 d) n, com x n, y n, x n, ỹ n Z. a) Calcule x 4, y 4, x 4, ỹ 4 para x 1 = 1, y 1 = 5 b) Calcule x 5, y 5, x 5, ỹ 5 para x 1 = 2, y 1 = 3 2. Suponha que a equação x 2 dy 2 = m possua innitas soluções inteiras positivas. Mostre que é possível encontrar duas soluções (x 1, y 1 ) e (x 2, y 2 ) tais que x 1 x 2, y 1 y 2, x 1 x 2 (mod.m) e y 1 y 2 (mod.m). 8

Note-se que pelo Teorema de Euler. a φ(n) 1 (mod n) logo existe k nas condições da definição acima e. Raízes Primitivas. Ordem de um elemento

Note-se que pelo Teorema de Euler. a φ(n) 1 (mod n) logo existe k nas condições da definição acima e. Raízes Primitivas. Ordem de um elemento Ordem de um elemento Definição Sejam a e n inteiros tais que m.d.c.(a, n) = 1. O menor inteiro positivo k tal que tal que a k 1 (mod n) diz-se a ordem de a módulo n e representa-se por ord n (a). Note-se

Leia mais

Teorema. Existe alguma raiz primitiva módulo n se, e só se, n = 2, n = 4, n = p k ou n = 2p k onde p é primo ímpar.

Teorema. Existe alguma raiz primitiva módulo n se, e só se, n = 2, n = 4, n = p k ou n = 2p k onde p é primo ímpar. raízes primitivas Uma raiz primitiva módulo n é um inteiro b tal que {1, b, b 2,... ( mod n)} = U(n). Teorema. Existe alguma raiz primitiva módulo n se, e só se, n = 2, n = 4, n = p k ou n = 2p k onde

Leia mais

MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (6/6) Carlos Luz. EST Setúbal / IPS Maio 2012

MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (6/6) Carlos Luz. EST Setúbal / IPS Maio 2012 MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (6/6) Carlos Luz EST Setúbal / IPS 21 27 Maio 2012 Carlos Luz (EST Setúbal / IPS) Aritmética Racional (6/6) 21 27 Maio 2012 1 / 15 Congruências Lineares De nição

Leia mais

TEOREMA DE LEGENDRE GABRIEL BUJOKAS

TEOREMA DE LEGENDRE GABRIEL BUJOKAS TEOREMA DE LEGENDRE GABRIEL BUJOKAS A nossa meta hoje é responder a seguinte questão: Questão. Para a, b Z, determine se a equação ( ) tem uma solução com x, y, z Z, além da solução trivial x = y = z =

Leia mais

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011 Lic. em Ciências da Computação Matemática Discreta Introdução à Teoria de Números - Exercícios 1 o ano - 2010/2011 1. Determine o quociente e o resto na divisão de: (a) 310156 por 197; (b) 32 por 45; (c)

Leia mais

CRITÉRIO DE EISENSTEIN. Marília Martins Cabral Orientador: Igor Lima

CRITÉRIO DE EISENSTEIN. Marília Martins Cabral Orientador: Igor Lima CRITÉRIO DE EISENSTEIN 1 Marília Martins Cabral Orientador: Igor Lima NOTAÇÕES a b a divide b. a b a não divide b x n a variável x elevado a potência n. a n coeficiente de x n 2 INTRODUÇÃO: POLINÔMIOS

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos 1 - Algoritmo de Euclides; Indução Matemática; Teorema Fundamental da Aritmética 1. Considere os inteiros a 406 e b 654. (a) Encontre d mdc(a,b), o

Leia mais

Universidade do Minho

Universidade do Minho Teórica n o 1 2007-02-22 Apresentação do docente e da disciplina. Algumas revisões de teoria de números elementar. O algoritmo de Euclides estendido; demonstração do teorema que fundamenta o algoritmo.

Leia mais

XIX Semana Olímpica de Matemática. Nível 3. Polinômios Ciclotômicos e Congruência Módulo p. Samuel Feitosa

XIX Semana Olímpica de Matemática. Nível 3. Polinômios Ciclotômicos e Congruência Módulo p. Samuel Feitosa XIX Semana Olímpica de Matemática Nível 3 Polinômios Ciclotômicos e Congruência Módulo p Samuel Feitosa O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Semana Olímpica 2016 Polinômios

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

MA14 - Aritmética Lista 1. Unidades 1 e 2

MA14 - Aritmética Lista 1. Unidades 1 e 2 MA14 - Aritmética Lista 1 Unidades 1 e 2 Abramo Hefez PROFMAT - SBM 05 a 11 de agosto 2013 Unidade 1 1. Mostre, por indução matemática, que, para todo n N {0}, a) 8 3 2n + 7 b) 9 10 n + 3.4 n+2 + 5 2.

Leia mais

Elementos de Matemática Finita ( ) Exercícios resolvidos

Elementos de Matemática Finita ( ) Exercícios resolvidos Elementos de Matemática Finita (2016-2017) Exercícios resolvidos Ficha 3-2. Em que classes de congruência mod 8 estão os quadrados perfeitos? 4926834923 poderá ser a soma de dois quadrados perfeitos? Resolução:

Leia mais

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que: Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que

Leia mais

UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática

UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática Segunda Lista de Exercícios de ITN: Números Inteiros Prof. Marnei Luis Mandler Segundo

Leia mais

Polinômios irredutíveis

Polinômios irredutíveis Polinômios irredutíveis Sérgio Tadao Martins 23 de janeiro de 2009 1 Introdução: polinômios em uma variável Um polinômio de grau n em uma variável x é uma expressão da forma p(x) = a 0 + a 1 x + a 2 x

Leia mais

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1.

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1. Como seria de esperar, o Teorema Fundamental da Aritmética tem imensas consequências importantes. Por exemplo, dadas factorizações em potências primas de dois inteiros, é imediato reconhecer se um deles

Leia mais

5 Congruências lineares. Programa. 1 Parte 1 - Conjuntos e Aplicações. 1 Conjuntos. 4 Indução matemática e divisibilidade

5 Congruências lineares. Programa. 1 Parte 1 - Conjuntos e Aplicações. 1 Conjuntos. 4 Indução matemática e divisibilidade Matemática Discreta 2008/09 Jorge André & Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Programa 1 Parte 1 - Conjuntos e Aplicações 1 Conjuntos 2 Relações Binárias 3 Aplicações 4 Indução matemática

Leia mais

Anéis quocientes k[x]/i

Anéis quocientes k[x]/i META: Determinar as possíveis estruturas definidas sobre o conjunto das classes residuais do quociente entre o anel de polinômios e seus ideais. OBJETIVOS: Ao final da aula o aluno deverá ser capaz de:

Leia mais

Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides

Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides 1 Máximo Divisor Comum Definição 1.1 Sendo a um número inteiro, D a indicará o conjunto de seus divisores positivos,

Leia mais

Soma de Quadrados. Faculdade de Matemática, UFU, MG

Soma de Quadrados. Faculdade de Matemática, UFU, MG Soma de Quadrados Stela Zumerle Soares 1 Antônio Carlos Nogueira (stelazs@gmailcom (anogueira@ufubr Faculdade de Matemática, UFU, MG 1 Resultados Preliminares Historicamente, um problema que tem recebido

Leia mais

CIC 111 Análise e Projeto de Algoritmos II

CIC 111 Análise e Projeto de Algoritmos II CIC 111 Análise e Projeto de Algoritmos II Prof. Roberto Affonso da Costa Junior Universidade Federal de Itajubá AULA 21 Number theory Primes and factors Modular arithmetic Solving equations Other results

Leia mais

1 Congruências e aritmética modular

1 Congruências e aritmética modular 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

Criptografia e Segurança de Rede Capítulo 4. Quarta Edição por William Stallings

Criptografia e Segurança de Rede Capítulo 4. Quarta Edição por William Stallings Criptografia e Segurança de Rede Capítulo 4 Quarta Edição por William Stallings Capítulo 4 Corpos Finitos Na manhã seguinte, ao nascer o dia, Star entrou em casa, aparentemente ávida por uma lição. Eu

Leia mais

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y).

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y). MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016.1 Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] (a) Seja x 0, y 0 uma solução da equação diofantina ax + by = c, onde a, b são inteiros

Leia mais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais 1. Verifique, recorrendo ao algoritmo da divisão, que: 6 4 0x 54x + 3x + é divisível por x 1.. De um modo geral, que relação

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Tópicos de Matemática Elementar 2 a série de exercícios 2004/05. A seguinte prova por indução parece correcta, mas para n = 6 o lado esquerdo é igual a 2 + 6 + 2 + 20 + 30 = 5 6, enquanto o direito é igual

Leia mais

XIX Semana Olímpica de Matemática. Nível 2. Divisibilidade. Carlos Shine

XIX Semana Olímpica de Matemática. Nível 2. Divisibilidade. Carlos Shine XIX Semana Olímpica de Matemática Nível 2 Divisibilidade Carlos Shine O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Divisibilidade Carlos Shine 1 Alguns princípios básicos Combinação

Leia mais

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco MATEMÁTICA Professor Matheus Secco MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA 1. DIVISIBILIDADE Definição: Sejam a, b inteiros com a 0. Diz-se que a divide b (denota-se por a b) se existe c inteiro tal que

Leia mais

Aritmética dos Restos. Problemas com Congruências. Tópicos Adicionais

Aritmética dos Restos. Problemas com Congruências. Tópicos Adicionais Aritmética dos Restos Problemas com Congruências Tópicos Adicionais Aritmética dos Restos Problemas com Congruências 1 Exercícios Introdutórios Exercício 1. inteiro n Prove que n 5 + 4n é divisível por

Leia mais

a = bq + r e 0 r < b.

a = bq + r e 0 r < b. 1 Aritmética dos Inteiros 1.1 Lema da Divisão e o Algoritmo de Euclides Recorde-se que a, o módulo ou valor absoluto de a, designa a se a N a = a se a / N Dados a, b, c Z denotamos por a b : a divide b

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos - Princípio de Indução; Algoritmo de Euclides 1. Seja ( n) k n! k!(n k)! o coeficiente binomial, para n k 0. Por convenção, assumimos que, para outros

Leia mais

Polos Olímpicos de Treinamento. Aula 9. Curso de Teoria dos Números - Nível 2. O Teorema de Euler. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 9. Curso de Teoria dos Números - Nível 2. O Teorema de Euler. Prof. Samuel Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 9 O Teorema de Euler Nesta aula, obteremos uma generalização do teorema de Fermat. Definição 1. Dado n N,

Leia mais

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ] MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere

Leia mais

1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo).

1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo). 1 a Lista de Exercícios de Álgebra II - MAT 231 1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo). 2. Seja A um anel associativo. Dado a A, como você definiria a m, m IN?

Leia mais

Algoritmo da divisão em k[x] 2

Algoritmo da divisão em k[x] 2 AULA Algoritmo da divisão em k[x] 2 META: Introduzir um algoritmo de divisão para anéis de polinômios definidos sobre corpos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Aplicar o algoritmo

Leia mais

Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição

Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Função polinomial Parte 6 Parte 6 Pré-Cálculo 1 Parte 6 Pré-Cálculo 2 Função polinomial Função polinomial:

Leia mais

Teoria de Anéis Notas de Aula Departamento de Matemática Universidade Federal do Paraná

Teoria de Anéis Notas de Aula Departamento de Matemática Universidade Federal do Paraná Teoria de Anéis 2013 - Notas de Aula Departamento de Matemática Universidade Federal do Paraná Prof. Marcelo Muniz Silva Alves digitação: Marcelo Muniz Silva Alves Francieli Triches Milayne Guimarães 1.

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Inteiros e divisão Definição: Se a e b são inteiros com a 0, dizemos que a divide

Leia mais

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a

Leia mais

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Integração por Frações Parciais

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Integração por Frações Parciais MAT146 - Cálculo I - Integração por Frações Parciais Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Iremos agora desenvolver um método para resolver integrais de funções racionais,

Leia mais

parciais primeira parte

parciais primeira parte MÓDULO - AULA 3 Aula 3 Técnicas de integração frações parciais primeira parte Objetivo Aprender a técnica de integração conhecida como frações parciais. Introdução A técnica que você aprenderá agora lhe

Leia mais

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012 NÚMEROS INTEIROS PROF. FRANCISCO MEDEIROS Álgebra Abstrata - Verão 2012 Faremos, nessas notas, uma breve discussão sobre o conjunto dos números inteiros. O texto é basicamente a seção 3 do capítulo 1 de

Leia mais

ALGORITMO DE EUCLIDES

ALGORITMO DE EUCLIDES Sumário ALGORITMO DE EUCLIDES Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 25 de agosto de 2017 Sumário 1 Máximo Divisor Comum 2 Algoritmo

Leia mais

EQUAÇÕES BIQUADRADAS

EQUAÇÕES BIQUADRADAS EQUAÇÕES BIQUADRADAS Acredito que só pelo nome dar pra você ter uma idéia de como seja uma equação biquadrada, Se um time é campeão duas vezes, dizemos ele é bicampeão, se uma equação é do grau quando

Leia mais

37ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

37ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 37ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 3 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

XXXV Olimpíada Cearense de Matemática Nível 3 - Ensino Médio

XXXV Olimpíada Cearense de Matemática Nível 3 - Ensino Médio XXXV Olimpíada Cearense de Matemática Nível 3 - Ensino Médio Reservado para a correção Prova Probl. 1 Probl. Probl. 3 Probl. 4 Probl. 5 Total # 3000 Nota - - - - - - - - - - - - - - - - - - - - - - - -

Leia mais

DIVISÃO DE POLINÔMIOS

DIVISÃO DE POLINÔMIOS DIVISÃO DE POLINÔMIOS Prof. Patricia Caldana A divisão de polinômios estrutura-se em um algoritmo, podemos enuncia-lo como sendo: A divisão de um polinômio D(x) por um polinômio não nulo E(x), de modo

Leia mais

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 1 a Lista de Exercícios - Comentada - Estruturas Algébricas II Professor Márcio Nascimento

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 1 a Lista de Exercícios - Comentada - Estruturas Algébricas II Professor Márcio Nascimento UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática 1 a Lista de Exercícios - Comentada - Estruturas Algébricas II - 214.1 Professor Márcio Nascimento 1. Sejam a G com o(a) = n 1 e m Z. Se a

Leia mais

Notas de Aulas. Prof a Maria Julieta Ventura Carvalho de Araujo. Prof. Frederico Sercio Feitosa (colaborador)

Notas de Aulas. Prof a Maria Julieta Ventura Carvalho de Araujo. Prof. Frederico Sercio Feitosa (colaborador) Notas de Aulas Introdução à Álgebra Prof a Maria Julieta Ventura Carvalho de Araujo Prof. Frederico Sercio Feitosa (colaborador) 2009 ii i Introdução à Álgebra (MAT128) Introdução à Teoria dos Números

Leia mais

Erivaldo. Polinômios

Erivaldo. Polinômios Erivaldo Polinômios Polinômio ou Função Polinomial Definição: P(x) = a o + a 1.x + a 2.x 2 + a 3.x 3 +... + a n.x n a o, a 1, a 2, a 3,..., a n : Números complexos Exemplos: 1) f(x) = x 2 + 3x 7 2) P(x)

Leia mais

Divisibilidade e números Inteiros

Divisibilidade e números Inteiros Divisibilidade e números Inteiros Introdução à aritmética Modular Material Complementar Soluções e Observações Samuel Jurkiewicz Sumário i Capítulo 1 Material complementar A seqüência de Fibonacci A seqüência

Leia mais

TEORIA DOS NÚMEROS ****************************** Departamento de Matemática. Universidade de Aveiro

TEORIA DOS NÚMEROS ****************************** Departamento de Matemática. Universidade de Aveiro INTRODUÇÃO À TEORIA DOS NÚMEROS Vítor Neves ****************************** Departamento de Matemática Universidade de Aveiro 2001 Introdução O presente texto resulta da evolução de um conjunto de notas

Leia mais

MA14 - Aritmética Unidade 15 - Parte 1 Resumo. Congruências

MA14 - Aritmética Unidade 15 - Parte 1 Resumo. Congruências MA14 - Aritmética Unidade 15 - Parte 1 Resumo Congruências Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio do assunto.

Leia mais

Teoria da divisibilidade Em k[x]

Teoria da divisibilidade Em k[x] Teoria da divisibilidade Em k[x] META: Obter a propriedade de fatoração única para anéis de polinômios definidos sobre corpos. OBJETIVOS: Ao final da aula o aluno deverá ser capaz de: Estabelecer os principais

Leia mais

Divisibilidade e Números Inteiros

Divisibilidade e Números Inteiros Divisibilidade e Números Inteiros Introdução à Aritmética Modular Material Complementar Samuel Jurkiewicz Antes de começar Caros Professores e Estudantes Na primeira apostila enviada a voces tratamos de

Leia mais

Algoritmo de Euclides Estendido, Relação de Bézout e Equações Diofantinas. Tópicos Adicionais

Algoritmo de Euclides Estendido, Relação de Bézout e Equações Diofantinas. Tópicos Adicionais Algoritmo de Euclides Estendido, Relação de Bézout e Equações Diofantinas Relação de Bézout e Aplicações Tópicos Adicionais Algoritmo de Euclides Estendido, Relação de Bézout e Equações Diofantinas Relação

Leia mais

Definimos a soma de seqüências fazendo as operações coordenada-a-coordenada:

Definimos a soma de seqüências fazendo as operações coordenada-a-coordenada: Aula 8 polinômios (Anterior: chinês. ) 8.1 séries formais Fixemos um anel A. Denotaremos por A N o conjunto de todas as funções de N = {, 1, 2,... } a valores em A. Em termos mais concretos, cada elemento

Leia mais

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner Cálculo Numérico / Métodos Numéricos Solução de equações polinomiais Briot-Ruffini-Horner Equações Polinomiais p = x + + a ( x) ao + a1 n x n Com a i R, i = 0,1,, n e a n 0 para garantir que o polinômio

Leia mais

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0 Capítulo 3 Módulo e Função Módular A função modular é uma função que apresenta o módulo na sua lei de formação. No entanto, antes de falarmos sobre funções modulares devemos definir o conceito de módulo,

Leia mais

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: EQUAÇÕES POLINOMIAIS. EQUAÇÃO POLINOMIAL OU ALGÉBRICA Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: p(x) = a n x n + a n x n +a n x n +... + a x + a 0 = 0 onde

Leia mais

(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação

(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação Álgebra (Ciência de Computadores) 2005/2006 Números inteiros 1. Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação (a) {inteiros positivos impares}; (b) {inteiros negativos pares};

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2

Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2 Polinômios. (ITA 2005) No desenvolvimento de (ax 2 2bx + c + ) 5 obtém-se um polinômio p(x) cujos coeficientes somam 32. Se 0 e são raízes de p(x), então a soma a + b + c é igual a (A) 2 (B) 4 (C) 2 (D)

Leia mais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais MAT140 - Cálculo I - Método de integração: Frações Parciais 4 de outubro de 2015 Iremos agora desenvolver técnicas para resolver integrais de funções racionais, conhecido como método de integração por

Leia mais

Demonstração. Sabemosqueϕémultiplicativa. Poroutrolado,sen = p α pαm m é a fatoração canônica de n em primos então temos uma fórmula explícita

Demonstração. Sabemosqueϕémultiplicativa. Poroutrolado,sen = p α pαm m é a fatoração canônica de n em primos então temos uma fórmula explícita Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 15 Funções multiplicativas e a função de Möbius 1 Funções Multiplicativas Umafunçãof definidasobren >0 éditamultiplicativa

Leia mais

Cálculo do MDC e MMC

Cálculo do MDC e MMC META: Apresentar o algoritmo do Cálculo do MMC e do MDC entre dois números OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Executar de maneira correta os algoritmos do Cálculo do MMC e do MDC.

Leia mais

AULA 01 (A) 9. (B) 1. (C) 0. (D) 7. (E) 10. (E) Se k 5 então axterá ( ) grau 1. (D) d(3) 4. (E) d(4) 12.

AULA 01 (A) 9. (B) 1. (C) 0. (D) 7. (E) 10. (E) Se k 5 então axterá ( ) grau 1. (D) d(3) 4. (E) d(4) 12. AULA 01 Observe cada um dos polinômios a seguir: x p( x) x 9x 4x x x 7 3 (I) 7 6 5 3 x 3x (II) mx ( ) 5 4 3 (III) n( x) 8x 3x 10x 3 6 Se organizarmos estes polinômios em ordem crescente de grau teremos

Leia mais

Notas sobre os anéis Z m

Notas sobre os anéis Z m Capítulo 1 Notas sobre os anéis Z m Estas notas complementam o texto principal, no que diz respeito ao estudo que aí se faz dos grupos e anéis Z m. Referem algumas propriedades mais específicas dos subanéis

Leia mais

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes

Leia mais

Bézout e Outros Bizus

Bézout e Outros Bizus 1. Introdução Bézout e Outros Bizus Davi Lopes Olimpíada Brasileira de Matemática 18ª Semana Olímpica São José do Rio Preto, SP Neste material, iremos demonstrar o teorema de Bézout, que diz que, dados

Leia mais

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 2. Divisibilidade I. Samuel Barbosa Feitosa

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 2. Divisibilidade I. Samuel Barbosa Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Samuel Barbosa Feitosa Aula 1 Divisibilidade I Teorema 1. (Algoritmo da Divisão) Para quaisquer inteiros positivos a e b, existe um

Leia mais

complemento para a disciplina de Matemática Discreta versão 1 - Jerônimo C. Pellegrini Relações de Equivalência e de Ordem

complemento para a disciplina de Matemática Discreta versão 1 - Jerônimo C. Pellegrini Relações de Equivalência e de Ordem Relações de Equivalência e de Ordem complemento para a disciplina de Matemática Discreta versão 1 Jerônimo C. Pellegrini 5 de agosto de 2013 ii Sumário Sumário Nomenclatura 1 Conjuntos e Relações 1 1.1

Leia mais

1 Potências e raízes em Aritmética Modular. Seja p primo e a um inteiro primo com p; a aplicação

1 Potências e raízes em Aritmética Modular. Seja p primo e a um inteiro primo com p; a aplicação 1 Potências e raízes em Aritmética Modular 1.1 Os Teoremas de Fermat e Euler Seja p primo e a um inteiro primo com p; a aplicação Z /p Z /p, x ax definida pela multiplicação por a (ou mais precisamente

Leia mais

Portal da OBMEP. Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano

Portal da OBMEP. Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Máximo divisor comum Nesta aula, estudaremos métodos para

Leia mais

Polos Olímpicos de Treinamento. Aula 10. Curso de Álgebra - Nível 3. Diferenças finitas e o polinômio interpolador de Lagrange. 1. Diferenças Finitas

Polos Olímpicos de Treinamento. Aula 10. Curso de Álgebra - Nível 3. Diferenças finitas e o polinômio interpolador de Lagrange. 1. Diferenças Finitas Polos Olímpicos de Treinamento Curso de Álgebra - Nível 3 Prof. Cícero Thiago / Prof. Marcelo Aula 10 Diferenças finitas e o polinômio interpolador de Lagrange. 1. Diferenças Finitas Seja P(x) um polinômio

Leia mais

EQUAÇÕES POLINOMIAIS

EQUAÇÕES POLINOMIAIS EQUAÇÕES POLINOMIAIS Prof. Patricia Caldana Denominamos equações polinomiais ou algébricas, as equações da forma: P(x)=0, onde P(x) é um polinômio de grau n > 0. As raízes da equação algébrica, são as

Leia mais

MDC, MMC, Algoritmo de Euclides e o Teorema de Bachet-Bézout

MDC, MMC, Algoritmo de Euclides e o Teorema de Bachet-Bézout Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 3 MDC, MMC, Algoritmo de Euclides e o Teorema de Bachet-Bézout 1 mdc, mmc e Algoritmo de Euclides Dados

Leia mais

Exercícios Complementares de Matemática

Exercícios Complementares de Matemática Exercícios Complementares de Matemática Professora: Beatriz Dias dos Reis Nome: Nº: 1º trimestre - 018 Caro aluno, Aqui você encontra exercícios complementares das matérias que estamos estudando no caderno

Leia mais

4 ÁLGEBRA ELEMENTAR. 4.1 Monômios e polinômios: valor numérico e operações.

4 ÁLGEBRA ELEMENTAR. 4.1 Monômios e polinômios: valor numérico e operações. 4 ÁLGEBRA ELEMENTAR 4.1 Monômios e polinômios: valor numérico e operações. 4.1.1 - Introdução: As expressões algébricas que equacionam os problemas conduzem logicamente à sua solução são denominados polinômios

Leia mais

CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c

CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 11: Derivada de uma função. Continuidade e Derivabilidade. Derivada das Funções Elementares. Objetivos da Aula Denir

Leia mais

Relações de Girard - Parte II

Relações de Girard - Parte II Polos Olímpicos de Treinamento Curso de Álgebra - Nível 2 Prof. Marcelo Mendes Aula 19 Relações de Girard - Parte II Vamos continuar vendo mais exemplos das Relações de Girard. Veremos também um resultado

Leia mais

MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco

MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco MATEMÁTICA 1 Professor Matheus Secco MÓDULO 2 Divisibilidade 1. DIVISIBILIDADE 1.1 DEFINIÇÃO: Dizemos que o inteiro a é divisível pelo inteiro b (ou ainda que a é múltiplo de b) se existe um inteiro c

Leia mais

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental Material Teórico - Módulo Equações do Segundo Grau Equações de Segundo Grau: outros resultados importantes Nono Ano do Ensino Funcamental Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio

Leia mais

Polos Olímpicos de Treinamento. Aula 6. Curso de Teoria dos Números - Nível 2. Congruências II. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 6. Curso de Teoria dos Números - Nível 2. Congruências II. Prof. Samuel Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 6 Congruências II Na aula de hoje, aprenderemos um dos teoremas mais importantes do curso: o pequeno teorema

Leia mais

Equações Diofantinas I

Equações Diofantinas I Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula 8 Equações Diofantinas I Exemplo 1. Em Gugulândia, o jogo de basquete é jogado com regras diferentes. Existem

Leia mais

Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina):

Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina): Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina): Seja A um domínio. Mostre que se A[X] é Euclidiano então A é um corpo (considere o ideal (a, X) onde

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2017.1 Gabarito Questão 01 [ 1,25 ] Determine as equações das duas retas tangentes à parábola de equação y = x 2 2x + 4 que passam pelo ponto (2,

Leia mais

Matemática E Extensivo V. 8

Matemática E Extensivo V. 8 Matemática E Extensivo V. 8 Resolva Aula 9 9.) D x + x 7x 6 = x = é raiz. Aula.) x + px + = Se + i é raiz, então i também é. 5 7 6 Soma = b a = p p = + i + i p = p = Q(x) = x + 5x + Resolvendo Q(x) =,

Leia mais

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos. CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 02: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Listar as

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA. Ministério da Educação

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA. Ministério da Educação INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA Ministério da Educação Instituto Federal de Educação, Ciência e Tecnologia da Paraíba - Campus Cajazeiras Diretoria de Ensino / Coord. do Curso

Leia mais

Polinómios. Integração de Fracções Racionais

Polinómios. Integração de Fracções Racionais Polinómios. Integração de Fracções Racionais Escola Superior de Tecnologia e de Gestão, Instituto Politécnico de Bragança. Mário Abrantes 2016 1 / 17 Índice de Matérias 1. Polinómios Denição Factorização

Leia mais

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 Neste curso, consideraremos o conjunto dos números naturais como sendo o conjunto N = {0, 1, 2, 3,... }, denotando por N o conjunto N \ {0}. Como

Leia mais

Projecto Delfos: Escola de Matemática Para Jovens 1 Experiências com a Matemática Teoria dos Números

Projecto Delfos: Escola de Matemática Para Jovens 1 Experiências com a Matemática Teoria dos Números Projecto Delfos: Escola de Matemática Para Jovens 1 A teoria dos números (elementar) é no essêncial a teoria dos números inteiros Z = {..., 3, 2, 1, 0, 1, 2, 3,...}. Encontram-se de entre os problemas

Leia mais

Álgebra I. Volume 3 Módulo 1. Adilson Gonçalves Luiz Manoel Figueiredo. Apoio:

Álgebra I. Volume 3 Módulo 1. Adilson Gonçalves Luiz Manoel Figueiredo. Apoio: . Álgebra I Volume 3 Módulo 1 Adilson Gonçalves Luiz Manoel Figueiredo Apoio: Fundação Cecierj / Consórcio Cederj Rua Visconde de Niterói, 1364 Mangueira Rio de Janeiro, RJ CEP 20943-001 Tel.: (21) 2334-1569

Leia mais

Cálculo Diferencial e Integral Química Notas de Aula

Cálculo Diferencial e Integral Química Notas de Aula Cálculo Diferencial e Integral Química Notas de Aula João Roberto Gerônimo 1 1 Professor Associado do Departamento de Matemática da UEM. E-mail: jrgeronimo@uem.br. ÍNDICE 1. INTRODUÇÃO Esta notas de aula

Leia mais

POLINÔMIOS. Nível Básico

POLINÔMIOS. Nível Básico POLINÔMIOS Nível Básico. (Eear 07) Considere P(x) x bx cx, tal que P() e P() 6. Assim, os valores de b e c são, respectivamente, a) e b) e c) e d) e. (Epcar (Afa) 05) Considere o polinômio a) x 0 não é

Leia mais

EDOs lineares de coeficientes constantes via Álgebra Linear

EDOs lineares de coeficientes constantes via Álgebra Linear EDOs lineares de coeficientes constantes via Álgebra Linear Lucas Seco 26 de Dezembro de 2012 Sempre ouvi falar que a solução de EDOs lineares homogêneas de coeficientes constantes bem como o Método dos

Leia mais