MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (6/6) Carlos Luz. EST Setúbal / IPS Maio 2012

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (6/6) Carlos Luz. EST Setúbal / IPS Maio 2012"

Transcrição

1 MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (6/6) Carlos Luz EST Setúbal / IPS Maio 2012 Carlos Luz (EST Setúbal / IPS) Aritmética Racional (6/6) Maio / 15

2 Congruências Lineares De nição A congruência da forma ax b (mod m), diz-se uma congruência linear. Teorema mdc(a, m) = 1 =) 9x 0 2 Z : ax 0 b (mod m) Todas as outras soluções de ax b (mod m) são da forma x 0 + km, k 2 Z. Demonstração 1 a parte: Como mdc(a, m) = 1, existem inteiros s e t tais que as + mt = 1. Então, as 1 (mod m), donde, multiplicando ambos os membros por b, vem a(sb) b (mod m). Considerando x 0 = sb, tem-se que x 0 é solução de ax b (mod m). 2 a parte: Ver Sebenta. Carlos Luz (EST Setúbal / IPS) Aritmética Racional (6/6) Maio / 15

3 Algoritmo de Resolução 0. Dados: ax b (mod m) com mdc(a, m) = Determinar uma combinação linear inteira de a e m que seja igual a 1, isto é, inteiros s e t tais que as + mt = 1 (os coe cientes da combinação linear podem ser calculados a partir da retrosubstituição dos restos fornecidos pelo algoritmo de Euclides); 2. Utilizar o coe ciente s obtido no passo acima para calcular a solução da congruência x 0 = sb. Resolver a congruência linear 33x 38 (mod 280) e indicar o conjunto das suas soluções. Carlos Luz (EST Setúbal / IPS) Aritmética Racional (6/6) Maio / 15

4 Caso Geral Teorema Seja mdc(a, m) = d. Então, ax b (mod m) tem solução sse djb. Nesta situação, x 0 é solução de ax b (mod m) () x 0 é solução de a d x b d mod m d 6x 9 (mod 15) tem solução porque mdc(6, 15) = 3 e 3j9. As soluções coincidem com as da congruência 6 3 x 9 mod 15, 2x 3 (mod 5). 3 3 Dado que x 0 = 4 é solução de 2x 3 (mod 5), o conjunto das soluções de 6x 9(mod 15) é f4 + 5k : k 2 Zg. Carlos Luz (EST Setúbal / IPS) Aritmética Racional (6/6) Maio / 15

5 Observação Prova-se que o conjunto x 0 + k m d : k 2 Z das soluções da congruência ax b (mod m) é a união dos conjuntos das soluções das congruências x x 0 (mod m), x x 0 + m (mod m), d x x m (mod m),..., x x 0 + (d 1) m (mod m). d d Estes últimos conjuntos são disjuntos dois a dois, pelo que é costume dizer que, por exemplo, x 0, x 0 + m d,..., x 0 + (d 1) m d são soluções distintas módulo m da congruência ax b (mod m). Vimos no exemplo anterior que o conjunto das soluções da congruência 6x 9 (mod 15) é f4 + 5k : k 2 Zg. De acordo com a nota anterior, este conjunto é a união dos conjuntos das soluções de x 4 (mod 15), x 9 (mod 15) e x 14 (mod 15). Carlos Luz (EST Setúbal / IPS) Aritmética Racional (6/6) Maio / 15

6 Teorema Chinês dos Restos Existe um número natural que, quando dividido por 3, dá resto 2, quando dividido por 5, dá resto 4 e que, quando dividido por 7, dá resto 6? Teorema Sejam m 1, m 2,..., m k números naturais primos entre si dois a dois e a 1, a 2,..., a k inteiros quaisquer. Então, existe uma solução x que resolve simultaneamente as congruências 8 x a 1 (mod m 1 ) >< x a 2 (mod m 2 ) >:. x a k (mod m k ) Quaisquer duas soluções são congruentes módulo M = m 1 m 2 m k.. Carlos Luz (EST Setúbal / IPS) Aritmética Racional (6/6) Maio / 15

7 Algoritmo de Resolução de um Sistema de Congruências 1 Calcular M = m 1 m 2 m k, M 1 = M m 1, M 2 = M m 2,..., M k = M m k ; 2 Determinar soluções particulares s i de cada uma das congruências M i x 1 (mod m i ), i = 1, 2,..., k. 3 Formar a solução particular x 0 = M 1 s 1 a 1 + M 2 s 2 a M k s k a k. 4 As soluções do sistema são os valores de x tais que x x 0 (mod M). Resolver o sistema 8 < : x 2 (mod 3) x 4 (mod 5) x 6 (mod 7). Carlos Luz (EST Setúbal / IPS) Aritmética Racional (6/6) Maio / 15

8 Resolução 1 Sejam M = = 105 e M 1 = = 35, M 2 = = 21 e M 3 = = Procuremos então soluções particulares das congruências 8 < : 35x 1 (mod 3) 21x 1 (mod 5) 15x 1 (mod 7) Soluções procuradas: s 1 = 2, s 2 = 1 e s 3 = 1; 3 x 0 = (35 2 2) + (21 1 4) + (15 1 6) = 314; 4 O conjunto solução é f k : k 2 Zg ou equivalentemente, f k : k 2 Zg.. Carlos Luz (EST Setúbal / IPS) Aritmética Racional (6/6) Maio / 15

9 Função de Euler S n = fr 2 N 0 : 0 r n 1 ^ mdc(r, n) = 1g. De nição Função de Euler: φ : N! N n! φ(n) = js n j s n S n φ(n) 1 f0g 1 2 f1g 1 3 f1, 2g 2 4 f1, 3g 2 n S n φ(n) 5 f1, 2, 3, 4g 4 6 f1, 5g 2 7 f1, 2, 3, 4, 5, 6g 6 8 f1, 3, 5, 7g 4 Carlos Luz (EST Setúbal / IPS) Aritmética Racional (6/6) Maio / 15

10 Observações 1 Se p é um número primo, então todos os inteiros 1, 2,..., p 1 são relativamente primos com p. Logo, Mais geralmente: φ(p) = p 1. φ(p k ) = p k p k 1 = p k 1 1. p 2 Se m e n são números naturais primos entre si, então φ(mn) = φ(m)φ(n). Por exemplo, φ(341) = φ(11 31) = φ(11)φ(31) = = Das obs. 1 e 2 conclui-se mais geralmente que, se n = p e 1 1 φ(n) = n 1. r k=1 Se n = 108 = , φ(108) = p k 1 pe = 36. r, 2 pe r Carlos Luz (EST Setúbal / IPS) Aritmética Racional (6/6) Maio / 15

11 Teorema (de Euler) Sejam n 2 N e a 2 Z. Se mdc(a, n) = 1, então a φ(n) 1 (mod n). Calcular o resto da divisão de 2 60 por 77. O número 77 é composto pois 77 = Então, visto que 7 e 11 são primos entre si, φ(77) = φ(7)φ(11) = (7 1) (11 1) = 60. Como 2 é invertível módulo 77, isto é, mdc(2, 77) = 1, tem-se pelo teorema de Euler: 2 φ(77) 1(mod 77), (mod 77). Carlos Luz (EST Setúbal / IPS) Aritmética Racional (6/6) Maio / 15

12 (Pequeno) Teorema de Fermat Teorema Seja a um número inteiro e p um número primo. Se p - a então a p 1 1 (mod p). Vejamos a aplicação do teorema de Fermat ao cálculo do resto da divisão de por 101. Visto que 101 é primo e não divide 2, tem-se (mod 101) pelo teorema de Fermat. Como = , vem, pelas propriedades das congruências: = = (mod 101). Portanto, o resto requerido é 8. Carlos Luz (EST Setúbal / IPS) Aritmética Racional (6/6) Maio / 15

13 Corolário Se a é um número inteiro e p é um número primo, então a p por p, isto é, a p a (mod p). a é divisível Demonstração Consideremos os casos p - a e pja. No primeiro caso, o teorema de Fermat garante que a p 1 1 (mod p) ; então, multiplicando ambos os membros desta congruência por a, obtém-se a p a (mod p). No segundo cado, isto é, se pja, p também divide a p a e, portanto, a congruência a p a (mod p) é igualmente válida. Exercício Mostre que para todo o inteiro a, o número a 3 + (a + 1) 3 + (a + 2) 3 é divisível por 3. Carlos Luz (EST Setúbal / IPS) Aritmética Racional (6/6) Maio / 15

14 Calcular o resto da divisão de 2 40 por 77. Como 77 = 7 11 e 7 e 11 são primos entre si, vamos utilizar o resultado: 2 40 x(mod 7) 2 40 ) 2 x(mod 11) 40 x(mod 77) Pelo pequeno teorema de Fermat, 2 6 1(mod 7) ) 2 40 = = (mod 7) (mod 11) ) 2 40 = (mod 11). Recorrendo ao teorema chinês dos restos, podemos resolver x 2(mod 7). Obtém-se então x 23(mod 77) donde x 1(mod 11) (mod 7) (mod 11) ) (mod 77). Carlos Luz (EST Setúbal / IPS) Aritmética Racional (6/6) Maio / 15

15 De nição Os números naturais compostos n que satifazem a congruência a n 1 1 (mod n), para algum a, designam-se por pseudoprimos de Fermat relativos à base a. O número composto 341 = é um pseudoprimo de Fermat relativamente à base 2 pois veri ca De nição (mod 341). Os números compostos n que que satisfazem a congruência a n a (mod n), qualquer que seja o natural a, dizem-se números de Carmichael. s Os números compostos 561, 1105 e 1729 são os primeiros números de Carmichael. Carlos Luz (EST Setúbal / IPS) Aritmética Racional (6/6) Maio / 15

Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 42

Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 42 1 / 42 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 42 1 Combinatória 2 3 Grafos 3 / 42 Capítulo 2 4 / 42 Axiomática dos Inteiros Sejam a e b inteiros. Designaremos

Leia mais

Note-se que pelo Teorema de Euler. a φ(n) 1 (mod n) logo existe k nas condições da definição acima e. Raízes Primitivas. Ordem de um elemento

Note-se que pelo Teorema de Euler. a φ(n) 1 (mod n) logo existe k nas condições da definição acima e. Raízes Primitivas. Ordem de um elemento Ordem de um elemento Definição Sejam a e n inteiros tais que m.d.c.(a, n) = 1. O menor inteiro positivo k tal que tal que a k 1 (mod n) diz-se a ordem de a módulo n e representa-se por ord n (a). Note-se

Leia mais

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1.

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1. Como seria de esperar, o Teorema Fundamental da Aritmética tem imensas consequências importantes. Por exemplo, dadas factorizações em potências primas de dois inteiros, é imediato reconhecer se um deles

Leia mais

11.1) Noções Elementares 11.2) MDCs e algoritmos de Euclides 11.3) Aritmética modular 11.4) Aplics da MD: O sistema criptográfico RSA

11.1) Noções Elementares 11.2) MDCs e algoritmos de Euclides 11.3) Aritmética modular 11.4) Aplics da MD: O sistema criptográfico RSA Teoria de Números 11.1) Noções Elementares 11.2) MDCs e algoritmos de Euclides 11.3) Aritmética modular 11.4) Aplics da MD: O sistema criptográfico RSA Material extraído dos livros-textos (Cormen( Cormen)

Leia mais

MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (2/6) Carlos Luz. EST Setúbal / IPS Abril 2012

MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (2/6) Carlos Luz. EST Setúbal / IPS Abril 2012 MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (2/6) Carlos Luz EST Setúbal / IPS 16 22 Abril 2012 Carlos Luz (EST Setúbal / IPS) Aritmética Racional (2/6) 16 22 Abril 2012 1 / 15 Divisão Inteira Teorema Sendo

Leia mais

Teorema 1.1 (Teorema de divisão de Euclides). Dados n Z e d N, existe uma única dupla q Z, r. n = qd + r

Teorema 1.1 (Teorema de divisão de Euclides). Dados n Z e d N, existe uma única dupla q Z, r. n = qd + r Matemática Discreta September 18, 2018 1 1 Divisão de inteiros Teorema 1.1 (Teorema de divisão de Euclides). Dados n Z e d N, existe uma única dupla q Z, r {0,..., d 1} tal que n = qd + r Dizemos que a

Leia mais

1 Congruências e aritmética modular

1 Congruências e aritmética modular 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011 Lic. em Ciências da Computação Matemática Discreta Introdução à Teoria de Números - Exercícios 1 o ano - 2010/2011 1. Determine o quociente e o resto na divisão de: (a) 310156 por 197; (b) 32 por 45; (c)

Leia mais

MAT Álgebra I para Licenciatura 2 a Lista de exercícios

MAT Álgebra I para Licenciatura 2 a Lista de exercícios MAT0120 - Álgebra I para Licenciatura 2 a Lista de exercícios 1. Quais são os números de cifras iguais que são divisíveis por 3? Idem, por 9? Idem por 11? 2. Determinar mmc (56, 72) e mmc (119, 272). 3.

Leia mais

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco MATEMÁTICA Professor Matheus Secco MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA 1. DIVISIBILIDADE Definição: Sejam a, b inteiros com a 0. Diz-se que a divide b (denota-se por a b) se existe c inteiro tal que

Leia mais

Notas sobre teoria dos números - Aritmática Modular (2) Anjolina Grisi de Oliveira

Notas sobre teoria dos números - Aritmática Modular (2) Anjolina Grisi de Oliveira Notas sobre teoria dos números - Aritmática Modular (2) Anjolina Grisi de Oliveira 1 Introdução à Aritmética modular Definição 1 Sejam a e b inteiros positivos. Nós denotamos a mod m como o resto quando

Leia mais

NÚMEROS INTEIROS E CRIPTOGRAFIA UFRJ

NÚMEROS INTEIROS E CRIPTOGRAFIA UFRJ NÚMEROS INTEIROS E CRIPTOGRAFIA UFRJ GABARITO LISTA 6: ALGORITMO CHINÊS DO RESTO 1. Ver gabarito das questões do livro. 2. Aplique o Algoritmo de Fermat para encontrar 999367 = 911 1097. Como 911 e 1097

Leia mais

1 TESTE OPÇÃO II - TEORIA DE NÚMEROS COMPUTACIONAL

1 TESTE OPÇÃO II - TEORIA DE NÚMEROS COMPUTACIONAL 1 TESTE OPÇÃO II - TEORIA DE NÚMEROS COMPUTACIONAL Licenciatura em Matemática 30 de março de 2012 duração 1h 45m Responda, justificando cuidadosamente, às seguintes questões: 1. Calcule uma estimativa

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos 1 - Algoritmo de Euclides; Indução Matemática; Teorema Fundamental da Aritmética 1. Considere os inteiros a 406 e b 654. (a) Encontre d mdc(a,b), o

Leia mais

Teorema Chinês dos Restos. Tópicos Adicionais

Teorema Chinês dos Restos. Tópicos Adicionais Teorema Chinês dos Restos Teorema Chinês dos Restos Tópicos Adicionais Tópicos Adicionais Teorema Chinês dos Restos 1 Exercícios Introdutórios Exercício 1. Para cada um dos itens abaixo, encontre o menor

Leia mais

1 Congruência. 2. m mmc(n, m) m a b. De 1) e 2) segue que: a b mod n e a b mod m.

1 Congruência. 2. m mmc(n, m) m a b. De 1) e 2) segue que: a b mod n e a b mod m. 1 Congruência Exercício 1.1. Proposição 23. (7) a b mod n e a b mod m a b mod mmc(n, m) De fato, ( ) Se a b mod n n a b, se a b mod n m a b. nm a b, como mmc(n, m) nm então mmc(n, m) a b a b mod mmc(n,

Leia mais

Universidade do Minho

Universidade do Minho Teórica n o 1 2007-02-22 Apresentação do docente e da disciplina. Algumas revisões de teoria de números elementar. O algoritmo de Euclides estendido; demonstração do teorema que fundamenta o algoritmo.

Leia mais

MA14 - Aritmética Unidade 20 Resumo. Teoremas de Euler e de Wilson

MA14 - Aritmética Unidade 20 Resumo. Teoremas de Euler e de Wilson MA14 - Aritmética Unidade 20 Resumo Teoremas de Euler e de Wilson Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio

Leia mais

Primeiro Desao Mestre Kame

Primeiro Desao Mestre Kame Primeiro Desao Mestre Kame Alan Anderson 8 de julho de 2017 O propósito dessa lista é gerar uma intuição numérica das demonstrações abstratas do teoremas famosos de Teoria dos números, de modo que alguns

Leia mais

Se mdc(a,m) = 1, como a é invertível módulo m, a equação. ax b (mod m)

Se mdc(a,m) = 1, como a é invertível módulo m, a equação. ax b (mod m) Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 8 Equações lineares módulo n e o teorema chinês dos restos 1 Equações Lineares Módulo m Se mdc(a,m) = 1,

Leia mais

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1?

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1? 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

Existem infinitos números de Carmichael, mas não provaremos isso neste curso.

Existem infinitos números de Carmichael, mas não provaremos isso neste curso. 6 Pseudoprimos 6.1 O Pequeno Teorema de Fermat nos diz que, se n é primo, então temos b n b (mod n) para todo b Z. Portanto, a contrapositiva diz que se temos b n b (mod n) ( ) para algum b Z, então n

Leia mais

Matemática Discreta. Fundamentos e Conceitos da Teoria dos Números. Universidade do Estado de Mato Grosso. 4 de setembro de 2017

Matemática Discreta. Fundamentos e Conceitos da Teoria dos Números. Universidade do Estado de Mato Grosso. 4 de setembro de 2017 Matemática Discreta Fundamentos e Conceitos da Teoria dos Números Professora Dr. a Donizete Ritter Universidade do Estado de Mato Grosso 4 de setembro de 2017 Ritter, D. (UNEMAT) Matemática Discreta 4

Leia mais

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares Introdução à Teoria dos Números 2018 - Notas de Aulas 3 Prof Carlos Alberto S Soares 1 Números Primos e o Teorema Fundamental da Aritmética Em notas anteriores já definimos os números primos, isto é, números

Leia mais

Notas sobre teoria dos números (2)

Notas sobre teoria dos números (2) 1 / 29 Notas sobre teoria dos números (2) Fonte: livros do L. Lóvasz e Kenneth Rosen (ref. completa na página) Centro de Informática Universidade Federal de Pernambuco 2007.1 / CIn-UFPE 2 / 29 Maior divisor

Leia mais

Polos Olímpicos de Treinamento. Aula 9. Curso de Teoria dos Números - Nível 2. O Teorema de Euler. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 9. Curso de Teoria dos Números - Nível 2. O Teorema de Euler. Prof. Samuel Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 9 O Teorema de Euler Nesta aula, obteremos uma generalização do teorema de Fermat. Definição 1. Dado n N,

Leia mais

XIX Semana Olímpica de Matemática. Nível 3. Polinômios Ciclotômicos e Congruência Módulo p. Samuel Feitosa

XIX Semana Olímpica de Matemática. Nível 3. Polinômios Ciclotômicos e Congruência Módulo p. Samuel Feitosa XIX Semana Olímpica de Matemática Nível 3 Polinômios Ciclotômicos e Congruência Módulo p Samuel Feitosa O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Semana Olímpica 2016 Polinômios

Leia mais

Álgebra A - Aula 12 Sistemas de congruências

Álgebra A - Aula 12 Sistemas de congruências Álgebra A - Aula 12 Sistemas de congruências Elaine Pimentel Departamento de Matemática, UFMG, Brazil 2 o Semestre - 2010 Equações lineares ax b (mod n) Se a possui um inverso α em Z n, então: α(ax) αb

Leia mais

1 Potências e raízes em Aritmética Modular. Seja p primo e a um inteiro primo com p; a aplicação

1 Potências e raízes em Aritmética Modular. Seja p primo e a um inteiro primo com p; a aplicação 1 Potências e raízes em Aritmética Modular 1.1 Os Teoremas de Fermat e Euler Seja p primo e a um inteiro primo com p; a aplicação Z /p Z /p, x ax definida pela multiplicação por a (ou mais precisamente

Leia mais

Elementos de Matemática Finita ( ) Exercícios resolvidos

Elementos de Matemática Finita ( ) Exercícios resolvidos Elementos de Matemática Finita (2016-2017) Exercícios resolvidos Ficha 3-2. Em que classes de congruência mod 8 estão os quadrados perfeitos? 4926834923 poderá ser a soma de dois quadrados perfeitos? Resolução:

Leia mais

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares Introdução à Teoria dos Números 2018 - Notas de Aulas 3 Prof Carlos Alberto S Soares 1 Números Primos e o Teorema Fundamental da Aritmética Em notas anteriores já definimos os números primos, isto é, números

Leia mais

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que: Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que

Leia mais

Proposição 0 (Divisão Euclidiana): Dados a b, b b * existem q, r b unicamente determinados tais que 0 r < b e a = bq + r

Proposição 0 (Divisão Euclidiana): Dados a b, b b * existem q, r b unicamente determinados tais que 0 r < b e a = bq + r "!$#%& '!)( * +-,/.10 2/3"456387,:9;2 .1?/@.1, ACB DFEHG IJDLK8MHNLK8OHP Q RTSVUVWYXVZ\[^]_W Este artigo se roõe a ser uma referência sobre os temas citados no título, que aarecem naturalmente em diversos

Leia mais

MA14 - Aritmética Unidade 15 - Parte 1 Resumo. Congruências

MA14 - Aritmética Unidade 15 - Parte 1 Resumo. Congruências MA14 - Aritmética Unidade 15 - Parte 1 Resumo Congruências Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio do assunto.

Leia mais

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012 NÚMEROS INTEIROS PROF. FRANCISCO MEDEIROS Álgebra Abstrata - Verão 2012 Faremos, nessas notas, uma breve discussão sobre o conjunto dos números inteiros. O texto é basicamente a seção 3 do capítulo 1 de

Leia mais

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível

Leia mais

Este material é apenas um resumo de parte do conteúdo da disciplina.

Este material é apenas um resumo de parte do conteúdo da disciplina. Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 10 - Seções 10.1 e 10.2 do livro texto da disciplina: Aritmética, A.

Leia mais

a = bq + r e 0 r < b.

a = bq + r e 0 r < b. 1 Aritmética dos Inteiros 1.1 Lema da Divisão e o Algoritmo de Euclides Recorde-se que a, o módulo ou valor absoluto de a, designa a se a N a = a se a / N Dados a, b, c Z denotamos por a b : a divide b

Leia mais

Aritmética dos Restos. Problemas com Congruências. Tópicos Adicionais

Aritmética dos Restos. Problemas com Congruências. Tópicos Adicionais Aritmética dos Restos Problemas com Congruências Tópicos Adicionais Aritmética dos Restos Problemas com Congruências 1 Exercícios Introdutórios Exercício 1. inteiro n Prove que n 5 + 4n é divisível por

Leia mais

Roteiro da segunda aula presencial - ME

Roteiro da segunda aula presencial - ME PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência

Leia mais

Programa Combinatória Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 52

Programa Combinatória Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 52 1 / 52 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 52 Programa 1 Combinatória 2 Aritmética Racional 3 Grafos 3 / 52 Capítulo 1 Combinatória 4 / 52 Princípio

Leia mais

Resposta:

Resposta: Gabarito - Dia 1 Exercício 1. Utilizando a Cifra de ATBASH decifre a mensagem VHHV VCVIXRXRL V UZXRO. Esse exercício é fácil. Exercício 2. Utilize o código de Políbio para codicar a mensagem Pensar é um

Leia mais

MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco

MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco MATEMÁTICA 1 Professor Matheus Secco MÓDULO 2 Divisibilidade 1. DIVISIBILIDADE 1.1 DEFINIÇÃO: Dizemos que o inteiro a é divisível pelo inteiro b (ou ainda que a é múltiplo de b) se existe um inteiro c

Leia mais

Álgebra I. Volume 3 Módulo 1. Adilson Gonçalves Luiz Manoel Figueiredo. Apoio:

Álgebra I. Volume 3 Módulo 1. Adilson Gonçalves Luiz Manoel Figueiredo. Apoio: . Álgebra I Volume 3 Módulo 1 Adilson Gonçalves Luiz Manoel Figueiredo Apoio: Fundação Cecierj / Consórcio Cederj Rua Visconde de Niterói, 1364 Mangueira Rio de Janeiro, RJ CEP 20943-001 Tel.: (21) 2334-1569

Leia mais

Notas de Aulas. Prof a Maria Julieta Ventura Carvalho de Araujo. Prof. Frederico Sercio Feitosa (colaborador)

Notas de Aulas. Prof a Maria Julieta Ventura Carvalho de Araujo. Prof. Frederico Sercio Feitosa (colaborador) Notas de Aulas Introdução à Álgebra Prof a Maria Julieta Ventura Carvalho de Araujo Prof. Frederico Sercio Feitosa (colaborador) 2009 ii i Introdução à Álgebra (MAT128) Introdução à Teoria dos Números

Leia mais

Teorema Chinês dos Restos. Sistema de Congruências. Tópicos Adicionais

Teorema Chinês dos Restos. Sistema de Congruências. Tópicos Adicionais Teorema Chinês dos Restos Sistema de Congruências Tópicos Adicionais Teorema Chinês dos Restos Sistema de Congruências 1 Exercícios Introdutórios Exercício 1. Para cada um dos itens abaixo, encontre todos

Leia mais

Resolução do EXAME da ÉPOCA de RECURSO

Resolução do EXAME da ÉPOCA de RECURSO ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA DISCRETA Resolução do EXAME da ÉPOCA de RECURSO Curso: LEI o Semestre / Data: 8 de Julho de Duração: hm I Diga, justificando

Leia mais

MA14 - Aritmética Lista 1. Unidades 1 e 2

MA14 - Aritmética Lista 1. Unidades 1 e 2 MA14 - Aritmética Lista 1 Unidades 1 e 2 Abramo Hefez PROFMAT - SBM 05 a 11 de agosto 2013 Unidade 1 1. Mostre, por indução matemática, que, para todo n N {0}, a) 8 3 2n + 7 b) 9 10 n + 3.4 n+2 + 5 2.

Leia mais

Gabarito e Pauta de Correção ENQ

Gabarito e Pauta de Correção ENQ Gabarito e Pauta de Correção ENQ 015.1 Questão 01 [ 1,00 ::: (a=0,50; (b=0,50 ] (a Mostre que se x e y são números irracionais tais que x y seja racional não nulo, então x + y e x y são ambos irracionais.

Leia mais

PLANO DE ENSINO E APRENDIZAGEM

PLANO DE ENSINO E APRENDIZAGEM SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO DE E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR DA DISCIPLINA:

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos - Princípio de Indução; Algoritmo de Euclides 1. Seja ( n) k n! k!(n k)! o coeficiente binomial, para n k 0. Por convenção, assumimos que, para outros

Leia mais

5 Congruências lineares. Programa. 1 Parte 1 - Conjuntos e Aplicações. 1 Conjuntos. 4 Indução matemática e divisibilidade

5 Congruências lineares. Programa. 1 Parte 1 - Conjuntos e Aplicações. 1 Conjuntos. 4 Indução matemática e divisibilidade Matemática Discreta 2008/09 Jorge André & Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Programa 1 Parte 1 - Conjuntos e Aplicações 1 Conjuntos 2 Relações Binárias 3 Aplicações 4 Indução matemática

Leia mais

Notas de Aulas. Prof a Maria Julieta Ventura Carvalho de Araujo. Prof. Frederico Sercio Feitosa (colaborador)

Notas de Aulas. Prof a Maria Julieta Ventura Carvalho de Araujo. Prof. Frederico Sercio Feitosa (colaborador) Notas de Aulas Introdução à Teoria dos Números Prof a Maria Julieta Ventura Carvalho de Araujo Prof. Frederico Sercio Feitosa (colaborador) Prof a Beatriz Casulari da Motta Ribeiro (colaboradora) 2016

Leia mais

Valores e vectores próprios

Valores e vectores próprios ALGA - Eng Civil e EngTopográ ca - ISE - / - Valores e vectores próprios 5 Valores e vectores próprios Neste capítulo, sempre que não haja especi cação em contrário, todas as matrizes envolvidas são quadradas

Leia mais

UNIVERSIDADE FEDERAL DO MATO GROSSO DO SUL INSTITUTO DE MATEMÁTICA MATEMÁTICA EM REDE NACIONAL MESTRADO PROFISSIONAL. Nivaldo Alves de Souza Marques

UNIVERSIDADE FEDERAL DO MATO GROSSO DO SUL INSTITUTO DE MATEMÁTICA MATEMÁTICA EM REDE NACIONAL MESTRADO PROFISSIONAL. Nivaldo Alves de Souza Marques UNIVERSIDADE FEDERAL DO MATO GROSSO DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO MATEMÁTICA EM REDE NACIONAL MESTRADO PROFISSIONAL FATORAÇÃO DE INTEIROS Nivaldo Alves de Souza Marques CAMPO

Leia mais

3.3 Congruências e aritmética modular

3.3 Congruências e aritmética modular 40 CHAPTER 3. ELEMENTOS DE ARITMÉTICA DOS INTEIROS 3.3 Congruências e aritmética modular Consideremos primeiro o seguinte exemplo: o que podemos dizer sobre a imagem da função f : Z Z, f(x) =x 2 + x +

Leia mais

S. C. COUTINHO. = 2n 2 r 2 m 1. Como 2 n 2 r = 2 r (2 n r 1) = 2 r (2 mq 1), então 2 n 2 r 2 m 1 = 2r (2 m 1)(2 mq ) Q = (2n 1) (2 r 1) 2 m 1

S. C. COUTINHO. = 2n 2 r 2 m 1. Como 2 n 2 r = 2 r (2 n r 1) = 2 r (2 mq 1), então 2 n 2 r 2 m 1 = 2r (2 m 1)(2 mq ) Q = (2n 1) (2 r 1) 2 m 1 DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO UFRJ NÚMEROS INTEIROS E CRIPTOGRAFIA RSA S. C. COUTINHO 1. Respostas dos exercícios do capítulo 1 (1) (a) mdc(14, 35) = 7; α = 2 e β = 1; (b) mdc(252, 180) = 36, α

Leia mais

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn 4 Relações 4.1 Preliminares Definição 4.1. Sejam A e B conjuntos. Uma relação binária, R, de A em B é um subconjunto de A B. (R A B) Dizemos que a A está relacionado com b B sss (a, b) R. Notação: arb.

Leia mais

MA14 - Aritmética Unidade 22 Resumo. Aritmética das Classes Residuais

MA14 - Aritmética Unidade 22 Resumo. Aritmética das Classes Residuais MA14 - Aritmética Unidade 22 Resumo Aritmética das Classes Residuais Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA. Ministério da Educação

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA. Ministério da Educação INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA Ministério da Educação Instituto Federal de Educação, Ciência e Tecnologia da Paraíba - Campus Cajazeiras Diretoria de Ensino / Coord. do Curso

Leia mais

1 Congruências de Grau Superior. Dado um polinômio f(x) Z[x] e um número natural n, vamos estudar condições para que a congruência. f(x) 0 (mod n).

1 Congruências de Grau Superior. Dado um polinômio f(x) Z[x] e um número natural n, vamos estudar condições para que a congruência. f(x) 0 (mod n). Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 10 Congruências de Grau Superior 1 Congruências de Grau Superior Dado um polinômio f(x Z[x] e um número

Leia mais

CIC 111 Análise e Projeto de Algoritmos II

CIC 111 Análise e Projeto de Algoritmos II CIC 111 Análise e Projeto de Algoritmos II Prof. Roberto Affonso da Costa Junior Universidade Federal de Itajubá AULA 21 Number theory Primes and factors Modular arithmetic Solving equations Other results

Leia mais

ax + by 347 = 0 k = text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: DOCENTES: Gilda Ferreira e Ana Nunes

ax + by 347 = 0 k = text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: DOCENTES: Gilda Ferreira e Ana Nunes text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: 21082 DOCENTES: Gilda Ferreira e Ana Nunes Resolução e Critérios de Correção 1. Sejam a, b Z tais que mdc(a, b) = 12. Relativamente à equação ax + by

Leia mais

MATEMÁTICA DISCRETA COMBINATÓRIA (4/4) Carlos Luz. EST Setúbal / IPS Março 2012

MATEMÁTICA DISCRETA COMBINATÓRIA (4/4) Carlos Luz. EST Setúbal / IPS Março 2012 MATEMÁTICA DISCRETA COMBINATÓRIA (4/4) Carlos Luz EST Setúbal / IPS 25 31 Março 2012 Carlos Luz (EST Setúbal / IPS) Combinatória (4/4) 25 31 Março 2012 1 / 8 Princípio da Distribuição O princípio da distribuição

Leia mais

Semana Olímpica 2019

Semana Olímpica 2019 Semana Olímpica 2019 Prof a Ana Paula Chaves apchaves.math@gmail.com Nível 1 Congruência 1. Divisibilidade e Aritmética Modular Um dos tópicos mais fundamentais da teoria dos números é, sem dúvidas, a

Leia mais

Números Primos e Criptografia RSA

Números Primos e Criptografia RSA Números Primos e Criptografia RSA Jean Carlo Baena Vicente Matemática - UFPR Orientador: Carlos Henrique dos Santos 6 de outubro de 2013 Sumário Criptografia RSA Por que o RSA funciona? Fatoração Primalidade

Leia mais

Notas sobre os anéis Z m

Notas sobre os anéis Z m Capítulo 1 Notas sobre os anéis Z m Estas notas complementam o texto principal, no que diz respeito ao estudo que aí se faz dos grupos e anéis Z m. Referem algumas propriedades mais específicas dos subanéis

Leia mais

1 TESTE TEORIA DE NÚMEROS COMPUTACIONAL

1 TESTE TEORIA DE NÚMEROS COMPUTACIONAL 1 TESTE TEORIA DE NÚMEROS COMPUTACIONAL Licenciatura em Matemática 17 de abril de 2012 duração 1h 45m Responda, justificando cuidadosamente, às seguintes questões: 1. (a) Sem utilizar o Mathematica, calcule

Leia mais

Ordens e raízes primitivas

Ordens e raízes primitivas Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 7 Ordens e raízes primitivas 1 Polinômios Dado um anel comutativo K, definimos o anel comutativo K[x] como

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Inteiros e divisão Definição: Se a e b são inteiros com a 0, dizemos que a divide

Leia mais

Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II

Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II 1 Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II. 1 O Anel dos Inteiros Módulo n Consideremos um número natural n 2 fixado. Para cada número inteiro a definimos a = {x Z; x a mod n}. Como

Leia mais

Jo ao Filipe Queir o TEORIA DOS N UMEROS Departamento de Matem atica - Universidade de Coimbra 2008

Jo ao Filipe Queir o TEORIA DOS N UMEROS Departamento de Matem atica - Universidade de Coimbra 2008 João Filipe Queiró TEORIA DOS NÚMEROS Departamento de Matemática - Universidade de Coimbra 2008 As folhas que se seguem contêm um resumo das matérias estudadas na disciplina de Teoria dos Números. Esta

Leia mais

Teorema. Existe alguma raiz primitiva módulo n se, e só se, n = 2, n = 4, n = p k ou n = 2p k onde p é primo ímpar.

Teorema. Existe alguma raiz primitiva módulo n se, e só se, n = 2, n = 4, n = p k ou n = 2p k onde p é primo ímpar. raízes primitivas Uma raiz primitiva módulo n é um inteiro b tal que {1, b, b 2,... ( mod n)} = U(n). Teorema. Existe alguma raiz primitiva módulo n se, e só se, n = 2, n = 4, n = p k ou n = 2p k onde

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Matemática II - / - Sistemas de Equações Lineares Sistemas de equações lineares Introdução Uma equação linear nas incógnitas ou variáveis x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a

Leia mais

Valores e vectores próprios

Valores e vectores próprios Valores e Vectores Prórios - Matemática II- /5 Valores e vectores rórios De nem-se valores e vectores rórios aenas ara matrizes quadradas, elo que, ao longo deste caítulo e quando mais nada seja eseci

Leia mais

Fundamentos: Algoritmos, Inteiros e Matrizes. Inteiros e. Primos e. Divisor Comum. Inteiros e. Algoritmos. Teoria dos Centro de Informática UFPE

Fundamentos: Algoritmos, Inteiros e Matrizes. Inteiros e. Primos e. Divisor Comum. Inteiros e. Algoritmos. Teoria dos Centro de Informática UFPE , Fundamentos:, Centro de Informática UFPE , 1 2 3 4 , Sejam a e b inteiros, com a 0. a divide b se existe um inteiro c, tal que b = ac. a divide b a b Por exemplo, a = 3, b = 12 , Sejam a e b inteiros,

Leia mais

Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II

Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II 1 Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II 1 O Anel dos Inteiros Módulo n Consideremos um número natural n 2 fixado Para cada número inteiro a definimos a = {x Z; x a mod n} Como

Leia mais

Conjetura de Goldbach - Uma visão Aritmética

Conjetura de Goldbach - Uma visão Aritmética Universidade dos Açores Departamento de Matemática Conjetura de Goldbach - Uma visão Aritmética José Emanuel Sousa Ponta Delgada Abril de 2013 Universidade dos Açores Departamento de Matemática Mestrado

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Tópicos de Matemática Elementar 2 a série de exercícios 2004/05. A seguinte prova por indução parece correcta, mas para n = 6 o lado esquerdo é igual a 2 + 6 + 2 + 20 + 30 = 5 6, enquanto o direito é igual

Leia mais

Equa»c~oes diofantinas lineares

Equa»c~oes diofantinas lineares 7 Equa»c~oes diofantinas lineares Considere o seguinte problema. Se um trabalhador recebe 510 reais em t ³quetes de alimenta»c~ao, com valores de 20 reais ou 50 reais cada t ³quete, de quantas formas pode

Leia mais

Números Inteiros Algoritmo da Divisão e suas Aplicações

Números Inteiros Algoritmo da Divisão e suas Aplicações Números Inteiros Algoritmo da Divisão e suas Aplicações Diferentemente dos números reais (R), o conjunto dos inteiros (Z) não é fechado para a divisão. Esse não-fechamento faz com que a divisão entre inteiros

Leia mais

Divisibilidade e números Inteiros

Divisibilidade e números Inteiros Divisibilidade e números Inteiros Introdução à aritmética Modular Material Complementar Soluções e Observações Samuel Jurkiewicz Sumário i Capítulo 1 Material complementar A seqüência de Fibonacci A seqüência

Leia mais

Diagonal mais curta. Como d = mx e l = nx, teríamos: l 1 = d l = mx nx = (m n)x = n 1 x. d 1 = a:d + b:l = amx + bnx = (am + bn)x = m 1 x

Diagonal mais curta. Como d = mx e l = nx, teríamos: l 1 = d l = mx nx = (m n)x = n 1 x. d 1 = a:d + b:l = amx + bnx = (am + bn)x = m 1 x Diagonal mais curta Seja P um polígono regular de lados ( > 6), d a medida da sua diagonal mais curta e l a medida do seu lado. Supondo que d e l são comensuráveis, temos d mx e l nx, onde m e n são inteiros

Leia mais

ALGORITMO DE EUCLIDES

ALGORITMO DE EUCLIDES Sumário ALGORITMO DE EUCLIDES Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 25 de agosto de 2017 Sumário 1 Máximo Divisor Comum 2 Algoritmo

Leia mais

Criptografia com Maple

Criptografia com Maple Criptografia com Maple - Verão/2005 Fábio Borges & Renato Portugal Criptografia com Maple p.1/32 Simétrica versus Assimétrica Simétrica Criptografia com Maple p.2/32 Simétrica versus Assimétrica Simétrica

Leia mais

Semigrupos Numéricos e suas Características

Semigrupos Numéricos e suas Características Universidade Federal de Goiás Instituto de Matemática e Estatística Programa de Mestrado Profissional em Matemática em Rede Nacional Semigrupos Numéricos e suas Características Leonardo Alcântara Portes

Leia mais

na Base b The Function ϕ of Euler and the Periodic Expansion Fractions in the Base b

na Base b The Function ϕ of Euler and the Periodic Expansion Fractions in the Base b A Função ϕ de Euler e a Expansão Periódica de Frações na Base b The Function ϕ of Euler and the Periodic Expansion Fractions in the Base b Martinho da Costa Araujo Departamento de Matemática Universidade

Leia mais

UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática

UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática Segunda Lista de Exercícios de ITN: Números Inteiros Prof. Marnei Luis Mandler Segundo

Leia mais

Congruências I. Por exemplo, 7 2 (mod 5), 9 3 (mod 6), 37 7 (mod 10) mas 5 3 (mod 4). Veja que a b (mod m) se, e somente se, m a b.

Congruências I. Por exemplo, 7 2 (mod 5), 9 3 (mod 6), 37 7 (mod 10) mas 5 3 (mod 4). Veja que a b (mod m) se, e somente se, m a b. Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 6 Congruências I Definição 1. Dizemos que os inteiros a e b são congrentes módulo m se eles deixam o mesmo

Leia mais

Sequências recorrentes e testes de primalidade

Sequências recorrentes e testes de primalidade Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 18 Sequências recorrentes e testes de primalidade 1 A Sequência de Fibonacci A sequência de Fibonacci é

Leia mais

MATEMÁTICA DISCRETA. Cursos Ano/Semestre Ano Letivo Área Científica Dpt. Tipo de Aulas T TP P L Tipo de disciplina ECTS

MATEMÁTICA DISCRETA. Cursos Ano/Semestre Ano Letivo Área Científica Dpt. Tipo de Aulas T TP P L Tipo de disciplina ECTS MATEMÁTICA DISCRETA Cursos Ano/Semestre Ano Letivo Área Científica Dpt. Engenharia Informática Língua de Ensino 2º / 1º 2017/2018 Matemática Matemática Português Responsável da Unidade Curricular (UC)

Leia mais

MATEMÁTICA DISCRETA. Área Científica Engenharia Informática 2º / 1º 2016/2017 Matemática Matemática. Co-Responsável Carla Rodrigues

MATEMÁTICA DISCRETA. Área Científica Engenharia Informática 2º / 1º 2016/2017 Matemática Matemática. Co-Responsável Carla Rodrigues MATEMÁTICA DISCRETA Curso Ano/Semestre Ano Lectivo Área Científica Engenharia Informática 2º / 1º 2016/2017 Matemática Matemática Dpt. Responsável da Unidade Curricular (UC) Artur Cruz Co-Responsável Carla

Leia mais

Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição

Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Função polinomial Parte 6 Parte 6 Pré-Cálculo 1 Parte 6 Pré-Cálculo 2 Função polinomial Função polinomial:

Leia mais

37ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

37ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 37ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 3 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

TEORIA DOS NÚMEROS ****************************** Departamento de Matemática. Universidade de Aveiro

TEORIA DOS NÚMEROS ****************************** Departamento de Matemática. Universidade de Aveiro INTRODUÇÃO À TEORIA DOS NÚMEROS Vítor Neves ****************************** Departamento de Matemática Universidade de Aveiro 2001 Introdução O presente texto resulta da evolução de um conjunto de notas

Leia mais

MATEMÁTICA DISCRETA. Cursos Ano/Semestre Ano Letivo Área Científica Dpt. Tipo de Aulas T TP P L Tipo de disciplina ECTS

MATEMÁTICA DISCRETA. Cursos Ano/Semestre Ano Letivo Área Científica Dpt. Tipo de Aulas T TP P L Tipo de disciplina ECTS MATEMÁTICA DISCRETA Cursos Ano/Semestre Ano Letivo Área Científica Dpt. Engenharia Informática Língua de Ensino 2º / 1º 2017/2018 Matemática Matemática Português Responsável da Unidade Curricular (UC)

Leia mais

Números Primos, Fatores Primos, MDC e MMC

Números Primos, Fatores Primos, MDC e MMC Números primos são os números naturais que têm apenas dois divisores diferentes: o 1 e ele mesmo. 1) 2 tem apenas os divisores 1 e 2, portanto 2 é um número primo. 2) 17 tem apenas os divisores 1 e 17,

Leia mais

Já sabemos como determinar todas as soluções de uma equação diofantina linear, caso esta seja resolúvel. Para conguências temos:

Já sabemos como determinar todas as soluções de uma equação diofantina linear, caso esta seja resolúvel. Para conguências temos: Seguidamente vamos determinar valores de b (em termos de a e n) para os quais a congruência ax b (mod n) tem solução. Se a = 0 esta congruência tem solução x se e só se n b, e, neste caso, qualquer x Z

Leia mais

Este material é apenas um resumo de parte do conteúdo da disciplina.

Este material é apenas um resumo de parte do conteúdo da disciplina. Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 11 - Seção 1.3 do livro texto da disciplina: Aritmética, A. Hefez,

Leia mais

Portal da OBMEP. Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano

Portal da OBMEP. Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Máximo divisor comum Nesta aula, estudaremos métodos para

Leia mais