MA14 - Aritmética Unidade 22 Resumo. Aritmética das Classes Residuais

Tamanho: px
Começar a partir da página:

Download "MA14 - Aritmética Unidade 22 Resumo. Aritmética das Classes Residuais"

Transcrição

1 MA14 - Aritmética Unidade 22 Resumo Aritmética das Classes Residuais Abramo Hefez PROFMAT - SBM

2 Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio do assunto. O material completo a ser estudado encontra-se no do livro texto da disciplina: Capítulo 11 - Seção 11.3 Aritmética, A. Hefez, Coleção PROFMAT. Colaborou na elaboração desses resumos Maria Lúcia T. Villela. PROFMAT - SBM Aritmética - Unidade 22 - Resumo - Aritmética das Classes Residuais slide 2/18

3 Classes Residuais As congruências módulo um número natural m > 1 permitem definir novas aritméticas. Atualmente, essas aritméticas são a base de quase todos os procedimentos de cálculo dos computadores e possuem muitas aplicações na própria matemática e na tecnologia. Dado um inteiro m > 1, vamos repartir o conjunto Z dos números inteiros em subconjuntos, onde cada um deles é formado por todos os números inteiros que possuem o mesmo resto quando divididos por m. Isto nos dá a seguinte partição de Z: [0] = {x Z; x 0 mod m}, [1] = {x Z; x 1 mod m},. [m 1] = {x Z; x m 1 mod m}. Paramos em [m 1], pois tem-se que [m] = [0], [m + 1] = [1], etc. PROFMAT - SBM Aritmética - Unidade 22 - Resumo - Aritmética das Classes Residuais slide 3/18

4 O conjunto [a] = {x Z ; x a mod m} é chamado de classe residual módulo m do elemento a de Z. O conjunto de todas as classes residuais módulo m será representado por Z m. Portanto, Z m = { [0], [1],..., [m 1] }. Note que Z m é um conjunto de conjuntos. Por mais estranho que isto possa parecer, o conjunto Z m tem uma aritmética própria e tem a vantagem de ser finito, algo muito desejável em computação. PROFMAT - SBM Aritmética - Unidade 22 - Resumo - Aritmética das Classes Residuais slide 4/18

5 Exemplos Exemplo 1. Seja m = 2. Então, [0] = {x Z ; x 0 mod 2} = {x Z ; x é par}, e [1] = {x Z ; x 1 mod 2} = {x Z ; x é ímpar}. Temos também que [a] = [0] se, e somente se, a é par e [a] = [1] se, e somente se, a é ímpar. Exemplo 2. Seja n = 3. Então [0] = {3t ; t Z} [1] = {3t + 1 ; t Z} [2] = {3t + 2 ; t Z} Tem-se que [0], se a é múltiplo de 3 a [1], se a tem resto 1 quando dividido por 3 [2], se a tem resto 2 quando dividido por 3. PROFMAT - SBM Aritmética - Unidade 22 - Resumo - Aritmética das Classes Residuais slide 5/18

6 Representante de uma classe residual Dado [x] Z m, um número inteiro a tal que [x] = [a] será denominado de representante de [x]. Observe que [x] é determinado por a, mas há infinitos números inteiros b tais que [x] = [b], pois qualquer inteiro b [a] = {a + km; k Z} é tal que [b] = [a]. Exemplo 3. Se m = 2, então qualquer inteiro par é representante da classe residual [0] e qualquer inteiro ímpar é representante da classe residual [1]. Assim, 0, 2, 4, 6, 2, 4, 6 são representantes da classe residual [0], enquanto que 1, 3, 5, 1, 3, 5 são representantes da classe residual [1]. PROFMAT - SBM Aritmética - Unidade 22 - Resumo - Aritmética das Classes Residuais slide 6/18

7 Representante de uma classe residual Exemplo 4. Se m = 3, então qualquer múltiplo de 3 é representante da classe residual [0]. Temos que 1, 4, 7, 10, etc, são representantes da classe residual [1], enquanto 2, 5, 8, 11, etc., são representantes da classe residual [2]. Proposição Para cada a Z existe um, e somente um, r Z, com 0 r < m, tal que [a] = [r]. Corolário Existem exatamente m classes residuais distintas módulo m, a saber, [0], [1],..., [m 1]. Uma característica importante das classes residuais é que transformam a congruência a b mod m na igualdade [a] = [b]. PROFMAT - SBM Aritmética - Unidade 22 - Resumo - Aritmética das Classes Residuais slide 7/18

8 As Operações de Adição e Multiplicação de Z m Em Z m podemos definir as seguintes operações: Adição: [a] + [b] = [a + b] Multiplicação: [a] [b] = [a b] Note que, tendo sido definidas estas operações usando os representantes a e b para as classes residuais [a] e [b], respectivamente, temos que verificar que ao mudarmos os representantes das classes [a] e [b], não mudam os valores de [a + b] e de [a b]. Para verificar que isto acontece, basta notar que se a a mod m e b b mod m, então [a + b] = [a + b ] e [a b] = [a b ], o que se segue diretamente dos itens (i) e (ii) da Proposição 9.3 PROFMAT - SBM Aritmética - Unidade 22 - Resumo - Aritmética das Classes Residuais slide 8/18

9 Propriedades das Operações de Z m As operações que acabamos de definir, gozam das seguintes propriedades: Propriedades da Adição Para todos [a], [b], [c] Z m, temos A 1 ) Associatividade ([a] + [b]) + [c] = [a] + ([b] + [c]); A 2 ) Comutatividade [a] + [b] = [b] + [a]; A 3 ) Existência de zero [a] + [0] = [a] para todo [a] Z m ; A 4 ) Existência de simétrico [a] + [ a] = [0]. PROFMAT - SBM Aritmética - Unidade 22 - Resumo - Aritmética das Classes Residuais slide 9/18

10 Propriedades das Operações de Z m Propriedades da Multiplicação Para todos [a], [b], [c] Z m, temos M 1 ) Associatividade ([a] [b]) [c] = [a] ([b] [c]); M 2 ) Comutatividade [a] [b] = [b] [a]; M 3 ) Existência de unidade [a] [1] = [a]. AM) Distributividade [a] ([b] + [c]) = [a] [b] + [a] [c]. PROFMAT - SBM Aritmética - Unidade 22 - Resumo - Aritmética das Classes Residuais slide 10/18

11 Recorde que, no Capítulo 1, chamamos de anel a todo conjunto munido de uma operação de adição e de uma operação de multiplicação com as propriedades acima. Portanto, Z m, com as operações acima, é um anel, chamado anel das classes residuais módulo m, ou anel dos inteiros módulo m. Um elemento [a] Z m será dito invertível, quando existir [b] Z m tal que [a][b] = 1. Neste caso, diremos que [b] é o inverso de [a]. Exemplo 5. Em Z 7 temos, pela definição da multiplicação, que logo [2][4] = [8] = [1] [5][3] = [15] = [1] e [6][6] = [36] = [1], [4] é o inverso de [2], [3] é o inverso de [5] e [6] é o inverso de [6]. PROFMAT - SBM Aritmética - Unidade 22 - Resumo - Aritmética das Classes Residuais slide 11/18

12 Tabuada de Z 2 As tabelas da adição e da multiplicação em Z 2 = {[0], [1]} são + [0] [1] [0] [0] [1] [1] [1] [0] [0] [1] [0] [0] [0] [1] [0] [1] PROFMAT - SBM Aritmética - Unidade 22 - Resumo - Aritmética das Classes Residuais slide 12/18

13 Tabuada de Z 3 As tabelas da adição e da multiplicação em Z 3 = {[0], [1], [2]} são + [0] [1] [2] [0] [0] [1] [2] [1] [1] [2] [0] [2] [2] [0] [1] [0] [1] [2] [0] [0] [0] [0] [1] [0] [1] [2] [2] [0] [2] [1] Note que todo elemento não nulo de Z 3 é invertível pois, pela definição da multiplicação, [1][1] = [1] e [2][2] = [4] = [1]. PROFMAT - SBM Aritmética - Unidade 22 - Resumo - Aritmética das Classes Residuais slide 13/18

14 Tabuada de Z 4 Em Z 4 = {[0], [1], [2], [3]} temos + [0] [1] [2] [3] [0] [0] [1] [2] [3] [1] [1] [2] [3] [0] [2] [2] [3] [0] [1] [3] [3] [0] [1] [2] [0] [1] [2] [3] [0] [0] [0] [0] [0] [1] [0] [1] [2] [3] [2] [0] [2] [0] [2] [3] [0] [3] [2] [1] É interessante notar que em Z 4 existem dois elementos não nulos cujo produto é nulo: [2] [0] e, no entanto, [2] [2] = [4] = [0]. Os elementos [1] e [3] são invertíveis em Z 4 pois, pela definição da multiplicação, [1][1] = [1] e [3][3] = [9] = [1]. PROFMAT - SBM Aritmética - Unidade 22 - Resumo - Aritmética das Classes Residuais slide 14/18

15 Tabuada de Z 5 Em Z 5 = {[0], [1], [2], [3], [4]} temos + [0] [1] [2] [3] [4] [0] [0] [1] [2] [3] [4] [1] [1] [2] [3] [4] [0] [2] [2] [3] [4] [0] [1] [3] [3] [4] [0] [1] [2] [4] [4] [0] [1] [2] [3] [0] [1] [2] [3] [4] [0] [0] [0] [0] [0] [0] [1] [0] [1] [2] [3] [4] [2] [0] [2] [4] [1] [3] [3] [0] [3] [1] [4] [2] [4] [0] [4] [3] [2] [1] Note que todo elemento não nulo de Z 5 é invertível, pois [1][1] = [1], [2][3] = [1] e [4][4] = [1]. PROFMAT - SBM Aritmética - Unidade 22 - Resumo - Aritmética das Classes Residuais slide 15/18

16 Note que em Z 2, Z 3 e Z 5, todo elemento distinto de [0] é invertível. Mas isto não ocorre em todos os Z m. Por exemplo, em Z 4 temos que [2] não é invertível. Um anel onde todo elemento não nulo possui um inverso multiplicativo é chamado de corpo. Portanto, Z 2, Z 3 e Z 5, com as operações acima definidas, são corpos; mas Z 4 não é um corpo. As classes residuais permitem resolver as congruências do seguinte modo: Resolver uma congruência ax b mod m se reduz a resolver em Z m a seguinte equação: [a]z = [b]. PROFMAT - SBM Aritmética - Unidade 22 - Resumo - Aritmética das Classes Residuais slide 16/18

17 Exemplo 6. Resolver a congruência 4X 3 mod 5 equivale a resolver em Z 5 a equação [4]Z = [3]. (1) Pela definição da multiplicação de Z 5, temos que [4] [4] = [16] = [1]. Logo, [4] é invertível em Z 5 com inverso [4]. Portanto, multiplicando ambos os membros da equação (1) por [4] obtemos [1]Z = [4][4]Z = [4][3] = [2]. Portanto, Z = [2], o que nos diz que as soluções de (1) são x = 2 + t5, onde t Z. PROFMAT - SBM Aritmética - Unidade 22 - Resumo - Aritmética das Classes Residuais slide 17/18

18 Vemos, portanto, a importância de saber se um determinado elemento de Z m é invertível. Esses elementos serão caracterizados a seguir. Proposição Um elemento [a] Z m é invertível se, e somente se, (a, m) = 1. Corolário Z m é um corpo se, e somente se, m é primo. PROFMAT - SBM Aritmética - Unidade 22 - Resumo - Aritmética das Classes Residuais slide 18/18

Este material é apenas um resumo de parte do conteúdo da disciplina.

Este material é apenas um resumo de parte do conteúdo da disciplina. Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 11 - Seção 1.3 do livro texto da disciplina: Aritmética, A. Hefez,

Leia mais

MA14 - Aritmética Unidade 15 - Parte 1 Resumo. Congruências

MA14 - Aritmética Unidade 15 - Parte 1 Resumo. Congruências MA14 - Aritmética Unidade 15 - Parte 1 Resumo Congruências Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio do assunto.

Leia mais

MA14 - Aritmética Unidade 5 Resumo. Máximo Divisor Comum

MA14 - Aritmética Unidade 5 Resumo. Máximo Divisor Comum MA14 - Aritmética Unidade 5 Resumo Máximo Divisor Comum Abramo Hefez PROFMAT - SBM Julho 2013 Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio

Leia mais

MA14 - Aritmética Lista 1. Unidades 1 e 2

MA14 - Aritmética Lista 1. Unidades 1 e 2 MA14 - Aritmética Lista 1 Unidades 1 e 2 Abramo Hefez PROFMAT - SBM 05 a 11 de agosto 2013 Unidade 1 1. Mostre, por indução matemática, que, para todo n N {0}, a) 8 3 2n + 7 b) 9 10 n + 3.4 n+2 + 5 2.

Leia mais

MA14 - Aritmética Unidade 2 Resumo. Divisão Euclidiana

MA14 - Aritmética Unidade 2 Resumo. Divisão Euclidiana MA14 - Aritmética Unidade 2 Resumo Divisão Euclidiana Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte da disciplina e o seu estudo não garante o domínio do assunto. O material

Leia mais

Bases Matemáticas. Aula 4 Conjuntos Numéricos. Rodrigo Hausen. v /9

Bases Matemáticas. Aula 4 Conjuntos Numéricos. Rodrigo Hausen. v /9 Bases Matemáticas Aula 4 Conjuntos Numéricos Rodrigo Hausen v. 2016-6-10 1/9 Números Naturais, Inteiros e Racionais naturais: inteiros: racionais: N = {0, 1, 2,...} Z = {... 2, 1, 0, 1, 2,...} { } p Q

Leia mais

(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação

(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação Álgebra (Ciência de Computadores) 2005/2006 Números inteiros 1. Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação (a) {inteiros positivos impares}; (b) {inteiros negativos pares};

Leia mais

Aula 1. e o conjunto dos inteiros é :

Aula 1. e o conjunto dos inteiros é : Aula 1 1. Números reais O conjunto dos números reais, R, pode ser visto como o conjunto dos pontos da linha real, que serão em geral denotados por letras minúsculas: x, y, s, t, u, etc. R é munido de quatro

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos. Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes ivan@puc-rio.br

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundamentos de Matemática Discreta para a Computação 5) Relações 5.1) Relações e Dígrafos 5.2) Propriedades de Relações 5.3) Relações de Equivalência 5.4) Manipulação de Relações 5.5) Fecho de

Leia mais

Matemática Discreta - 07

Matemática Discreta - 07 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 07 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA

OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA Professora: Elisandra Figueiredo OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA DEFINIÇÃO 1 Sendo E um conjunto não vazio, toda aplicação f : E E E recebe o nome de operação sobre E (ou em E) ou lei de composição

Leia mais

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010 Notas de Aula Disciplina Matemática Tópico 0 Licenciatura em Matemática Osasco -010 Equações Polinomiais do primeiro grau Significado do termo Equação : As equações do primeiro grau são aquelas que podem

Leia mais

a 11 a a 1n a 21 a a 2n A = a m1 a m2... a mn

a 11 a a 1n a 21 a a 2n A = a m1 a m2... a mn Matrizes Definição Definição Uma matriz m n é uma tabela de mn números dispostos em m linhas e n colunas a 11 a 1 a 1n a 1 a a n a m1 a m a mn Embora a rigor matrizes possam ter quaisquer tipos de elementos,

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

Aula 11 IDEAIS E ANÉIS QUOCIENTES META. Apresentar o conceito de ideal e definir anel quociente. OBJETIVOS

Aula 11 IDEAIS E ANÉIS QUOCIENTES META. Apresentar o conceito de ideal e definir anel quociente. OBJETIVOS Aula 11 IDEAIS E ANÉIS QUOCIENTES META Apresentar o conceito de ideal e definir anel quociente. OBJETIVOS Aplicar as propriedades de ideais na resolução de problemas. Reconhecer a estrutura algébrica de

Leia mais

Matemática II /06 - Matrizes 1. Matrizes

Matemática II /06 - Matrizes 1. Matrizes Matemática II - 00/0 - Matrizes Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma função A : f; ; :::; mg f; ; :::; ng R: (i; j) A (i; j)

Leia mais

MÓDULO 2 POTÊNCIA. Capítulos do módulo:

MÓDULO 2 POTÊNCIA. Capítulos do módulo: MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida

Leia mais

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c Números Reais Víctor Arturo Martínez León (victor.leon@unila.edu.br) 1 Os números racionais Os números racionais são os números da forma a, sendo a e b inteiros e b 0; o conjunto b dos números racionais

Leia mais

NÚMEROS REAIS RELATIVOS

NÚMEROS REAIS RELATIVOS NÚMEROS REAIS RELATIVOS Os números negativos apareceram, primeiramente, na China antiga, na tentativa de formular um algoritmo para resolução de equações de segundo grau. O matemático grego Diofanto operava

Leia mais

Números Naturais: Continuação

Números Naturais: Continuação Números Naturais: Continuação AULA 2 META: Apresentar as propriedades de Multiplicação e o Princípio da Boa Ordem. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Entender o processo de multiplicação

Leia mais

Ordem dos Inteiros AULA. 4.1 Introdução. 4.2 Ordem Ordem dos Inteiros

Ordem dos Inteiros AULA. 4.1 Introdução. 4.2 Ordem Ordem dos Inteiros META: Apresentar ordem nos números inteiros e os Princípio de indução e do Menor elemento. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Usar o processo de indução finita dos Inteiros. Justificar

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA APOSTILA 1 ARITMÉTICA PARTE I INTRODUÇÃO Durante muitos períodos da história

Leia mais

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há 1 Produto Cartesiano Par Ordenado A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há casos entretanto em que a ordem é importante. Daí a necessidade de se introduzir

Leia mais

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 Neste curso, consideraremos o conjunto dos números naturais como sendo o conjunto N = {0, 1, 2, 3,... }, denotando por N o conjunto N \ {0}. Como

Leia mais

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Teoria de Conjuntos Um conjunto é uma colecção de objectos/elementos/membros. (Cantor

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

Matriz, Sistema Linear e Determinante

Matriz, Sistema Linear e Determinante Matriz, Sistema Linear e Determinante 1.0 Sistema de Equações Lineares Equação linear de n variáveis x 1, x 2,..., x n é uma equação que pode ser expressa na forma a1x1 + a 2 x 2 +... + a n x n = b, onde

Leia mais

Notas em Álgebra Linear

Notas em Álgebra Linear Notas em Álgebra Linear 1 Pedro Rafael Lopes Fernandes Definições básicas Uma equação linear, nas variáveis é uma equação que pode ser escrita na forma: onde e os coeficientes são números reais ou complexos,

Leia mais

UM CRITÉRIO DE PRIMALIDADE BASEADO NO TEOREMA DE WILSON

UM CRITÉRIO DE PRIMALIDADE BASEADO NO TEOREMA DE WILSON 015: Trabalho de Conclusão de Curso do Mestrado Profissional em Matemática - PROFMAT Universidade Federal de São João del-rei - UFSJ Sociedade Brasileira de Matemática - SBM UM CRITÉRIO DE PRIMALIDADE

Leia mais

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 REVISÃO

Leia mais

Apostila de Matemática 10 Matriz

Apostila de Matemática 10 Matriz Apostila de Matemática 10 Matriz 1.0 Definição m e n são números inteiros maiores que zero. Matriz mxn é uma tabela retangular formada por m.n números reais, dispostos é m linhas e n colunas. A tabela

Leia mais

inteiros positivos). ˆ Uma matriz com m linhas e n colunas diz-se do tipo m n. Se m = n ( matriz quadrada), também se diz que a matriz é de ordem n.

inteiros positivos). ˆ Uma matriz com m linhas e n colunas diz-se do tipo m n. Se m = n ( matriz quadrada), também se diz que a matriz é de ordem n. Matrizes noções gerais e notações Definição Designa-se por matriz de números reais a um quadro do tipo a 11 a 12... a 1n a 21 a 22... a 2n...... a m1 a m2... a mn onde os elementos a ij (i = 1, 2,...,

Leia mais

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais : Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

Álgebra Linear Exercícios Resolvidos

Álgebra Linear Exercícios Resolvidos Álgebra Linear Exercícios Resolvidos Agosto de 001 Sumário 1 Exercícios Resolvidos Uma Revisão 5 Mais Exercícios Resolvidos Sobre Transformações Lineares 13 3 4 SUMA RIO Capítulo 1 Exercícios Resolvidos

Leia mais

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1.

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1. Como seria de esperar, o Teorema Fundamental da Aritmética tem imensas consequências importantes. Por exemplo, dadas factorizações em potências primas de dois inteiros, é imediato reconhecer se um deles

Leia mais

Aritmética. Somas de Quadrados

Aritmética. Somas de Quadrados Aritmética Somas de Quadrados Carlos Humberto Soares Júnior PROFMAT - SBM Objetivo Determinar quais números naturais são soma de dois quadrados. PROFMAT - SBM Aritmética, Somas de Quadrados slide 2/14

Leia mais

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir:

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir: MATRIZES CONCEITO: Um conjunto de elementos algébricos dispostos em uma tabela retangular com linhas e colunas é uma Matriz. A seguir, vemos um exemplo de Matriz de 3 linhas e 4 colunas, e que representaremos

Leia mais

1 A Álgebra do corpo dos números complexos

1 A Álgebra do corpo dos números complexos Números Complexos - Notas de Aulas 1 1 A Álgebra do corpo dos números complexos 1.1 Preliminares Suponhamos fixado no plano um sistema retangular de coordenadas. Como usual, designaremos os pontos do planos

Leia mais

5. Expressões aritméticas

5. Expressões aritméticas 5. Expressões aritméticas 5.1. Conceito de Expressão O conceito de expressão em termos computacionais está intimamente ligado ao conceito de expressão (ou fórmula) matemática, onde um conjunto de variáveis

Leia mais

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações

Leia mais

MA14 - Aritmética Unidade 4. Representação dos Números Inteiros (Sistemas de Numeração)

MA14 - Aritmética Unidade 4. Representação dos Números Inteiros (Sistemas de Numeração) MA14 - Aritmética Unidade 4 Representação dos Números Inteiros (Sistemas de Numeração) Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo

Leia mais

1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo).

1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo). 1 a Lista de Exercícios de Álgebra II - MAT 231 1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo). 2. Seja A um anel associativo. Dado a A, como você definiria a m, m IN?

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan

Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan Matemática NÚMEROS PRIMOS Por definição, os números primos são números pertencentes ao conjunto dos números naturais não nulos, que possuem

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Professor conteudista: Renato Zanini Sumário Matemática Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7 4 RESOLVENDO

Leia mais

x a1 mod m 1 x a 2 mod m 2

x a1 mod m 1 x a 2 mod m 2 Teorema Chinês do Restos. Dados dois inteiros m, m primos entre si (isto é, mdc(m, m )=), e dados outros dois inteiros quaisquer a, a, o sistema x a mod m x a mod m () Obs: Quem é chinês é o teorema, não

Leia mais

Análise I Solução da 1ª Lista de Exercícios

Análise I Solução da 1ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado

Leia mais

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012 NÚMEROS INTEIROS PROF. FRANCISCO MEDEIROS Álgebra Abstrata - Verão 2012 Faremos, nessas notas, uma breve discussão sobre o conjunto dos números inteiros. O texto é basicamente a seção 3 do capítulo 1 de

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

Inteiros. Inteiros. Congruência. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006.

Inteiros. Inteiros. Congruência. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006. Inteiros Inteiros. Congruência. Referência: Capítulo: 4 Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006 1 Números reais A relação binária em R é uma ordem parcial

Leia mais

UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR

UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROFESSOR: MARCELO SILVA 1. Introdução No ensino fundamental você estudou

Leia mais

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18 A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106

Leia mais

Capítulo 8: Determinantes

Capítulo 8: Determinantes 8 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 8: Determinantes Sumário 1 Propriedades dos Determinantes 211 11 Propriedades Características 211 12 Propriedades

Leia mais

Criptografia e Segurança de Rede Capítulo 4. Quarta Edição por William Stallings

Criptografia e Segurança de Rede Capítulo 4. Quarta Edição por William Stallings Criptografia e Segurança de Rede Capítulo 4 Quarta Edição por William Stallings Capítulo 4 Corpos Finitos Na manhã seguinte, ao nascer o dia, Star entrou em casa, aparentemente ávida por uma lição. Eu

Leia mais

Matrizes - Parte II. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2

Matrizes - Parte II. Juliana Pimentel.  juliana.pimentel. Sala Bloco A, Torre 2 Matrizes - Parte II Juliana Pimentel juliana.pimentel@ufabc.edu.br http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 AB BA (Comutativa) Considere as matrizes [ ] [ 1 0 1 2 A =

Leia mais

Universidade Federal Fluminense - GAN

Universidade Federal Fluminense - GAN Solimá Gomes Pimentel Universidade Federal Fluminense IM - GAN Solimá Gomes Pimentel, ****- Matemática para Economia III/Solimá Gomes Pimentel 2pt, ; 31cm Inclui Bibliografia. 1. Matemática para Economia

Leia mais

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados. Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade

Leia mais

Licenciatura em Ciências da Computação 2010/2011

Licenciatura em Ciências da Computação 2010/2011 Cálculo Licenciatura em Ciências da Computação 2010/2011 Departamento de Matemática e Aplicações (DMA) Universidade do Minho Carla Ferreira caferrei@math.uminho.pt Gab. EC 3.22 Telef: 253604090 Horário

Leia mais

ESTRUTURAS DE REPETIÇÃO - PARTE 1

ESTRUTURAS DE REPETIÇÃO - PARTE 1 AULA 15 ESTRUTURAS DE REPETIÇÃO - PARTE 1 15.1 O comando enquanto-faca- Considere o problema de escrever um algoritmo para ler um número inteiro positivo, n, e escrever todos os números inteiros de 1 a

Leia mais

ENFOQUE USANDO CORTES DE DEDEKIND

ENFOQUE USANDO CORTES DE DEDEKIND Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit CONSTRUÇÃO DOS REAIS: UM ENFOQUE

Leia mais

Eduardo. Matemática Matrizes

Eduardo. Matemática Matrizes Matemática Matrizes Eduardo Definição Tabela de números dispostos em linhas e colunas. Representação ou Ordem da Matriz Se uma matriz A possui m linhas e n colunas, dizemos que A tem ordem m por n e escrevemos

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

Programação de Computadores I Dados, Operadores e Expressões PROFESSORA CINTIA CAETANO

Programação de Computadores I Dados, Operadores e Expressões PROFESSORA CINTIA CAETANO Programação de Computadores I Dados, Operadores e Expressões PROFESSORA CINTIA CAETANO Dados em Algoritmos Quando escrevemos nossos programas, trabalhamos com: Dados que nós fornecemos ao programa Dados

Leia mais

Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos

Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos Pode-se dizer que a é em grande parte trabalho de um único matemático: Georg Cantor (1845-1918). noção de conjunto não é suscetível de definição precisa a partir d noções mais simples, ou seja, é uma noção

Leia mais

Congruências e bases. a b (mod n) 4. (Compatibilidade com a soma e diferença) Podemos somar e subtrair membro a membro :

Congruências e bases. a b (mod n) 4. (Compatibilidade com a soma e diferença) Podemos somar e subtrair membro a membro : Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 6 Congruências e bases 1 Congruências Sejam a,b,n Z. Dizemos que a é congruente a b módulo n, e escrevemos

Leia mais

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04 Ficha Prática nº Parte II. Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 003/04 Operações com funções. Composição de funções. Função Inversa. ) O gráfico

Leia mais

CENTRO EDUCACIONAL GIRASSOL TD de Matemática Prof.: Tiago Rodrigues

CENTRO EDUCACIONAL GIRASSOL TD de Matemática Prof.: Tiago Rodrigues CENTRO EUCACIONAL GIRASSOL T de Matemática Prof.: Tiago Rodrigues proftiagorodrigues@gmail.com IVISIBILIAE E RESTO. Introdução O assunto divisibilidade no Conjunto dos Inteiros ( ) é extremamente importante

Leia mais

Organização e Arquitetura de Computadores I

Organização e Arquitetura de Computadores I Organização e Arquitetura de Computadores I Aritmética Computacional Slide 1 Sumário Unidade Lógica e Aritmética Representação de Números Inteiros Representação de Números de Ponto Flutuante Aritmética

Leia mais

Definir classes laterais e estabelecer o teorema de Lagrange. Aplicar o teorema de Lagrange na resolução de problemas.

Definir classes laterais e estabelecer o teorema de Lagrange. Aplicar o teorema de Lagrange na resolução de problemas. Aula 05 GRUPOS QUOCIENTES METAS Estabelecer o conceito de grupo quociente. OBJETIVOS Definir classes laterais e estabelecer o teorema de Lagrange. Aplicar o teorema de Lagrange na resolução de problemas.

Leia mais

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que: Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que

Leia mais

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES PROJETO KALI - 20 MATEMÁTICA B AULA FRAÇÕES Uma ideia sobre as frações Frações são partes de um todo. Imagine que, em uma lanchonete, são vendidos pedaços de pizza. A pizza é cortada em seis pedaços, como

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 1 a Lista de Exercícios - Comentada - Estruturas Algébricas II Professor Márcio Nascimento

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 1 a Lista de Exercícios - Comentada - Estruturas Algébricas II Professor Márcio Nascimento UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática 1 a Lista de Exercícios - Comentada - Estruturas Algébricas II - 214.1 Professor Márcio Nascimento 1. Sejam a G com o(a) = n 1 e m Z. Se a

Leia mais

TEOREMA DE LEGENDRE GABRIEL BUJOKAS

TEOREMA DE LEGENDRE GABRIEL BUJOKAS TEOREMA DE LEGENDRE GABRIEL BUJOKAS A nossa meta hoje é responder a seguinte questão: Questão. Para a, b Z, determine se a equação ( ) tem uma solução com x, y, z Z, além da solução trivial x = y = z =

Leia mais

Conjuntos Fuzzy e Lógica Fuzzy

Conjuntos Fuzzy e Lógica Fuzzy 1 Introdução Conjuntos Fuzzy e Lógica Fuzzy users.femanet.com.br/~fabri/fuzzy.htm Os Conjuntos Fuzzy e a Lógica Fuzzy provêm a base para geração de técnicas poderosas para a solução de problemas, com uma

Leia mais

Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Números - Aula 03 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 28 de Fevereiro de 2014 Primeiro Semestre de 2014 Turma 2013106 - Engenharia Mecânica Corpos Vimos que o

Leia mais

Exponencial de uma matriz

Exponencial de uma matriz Exponencial de uma matriz Ulysses Sodré Londrina-PR, 21 de Agosto de 2001; Arquivo: expa.tex Conteúdo 1 Introdução à exponencial de uma matriz 2 2 Polinômio característico, autovalores e autovetores 2

Leia mais

1. CONJUNTOS NUMÉRICOS

1. CONJUNTOS NUMÉRICOS . CONJUNTOS NUMÉRICOS.. INTRODUÇÃO Uma exposição sistemática dos conjuntos numéricos, utilizados na Matemática, pode ser feita a partir dos números usados para contar, chamados de números naturais. Estes

Leia mais

Aula 14 DOMÍNIOS FATORIAIS META. Estabelecer o conceito de domínio fatorial. OBJETIVOS

Aula 14 DOMÍNIOS FATORIAIS META. Estabelecer o conceito de domínio fatorial. OBJETIVOS Aula 14 DOMÍNIOS FATORIAIS META Estabelecer o conceito de domínio fatorial. OBJETIVOS Aplicar a definição de domínio fatorial na resolução de problemas. Estabelecer a definição de máximo divisor comum

Leia mais

Capítulo 6: Transformações Lineares e Matrizes

Capítulo 6: Transformações Lineares e Matrizes 6 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 6: Transformações Lineares e Matrizes Sumário 1 Matriz de uma Transformação Linear....... 151 2 Operações

Leia mais

Aula 4: Bases Numéricas

Aula 4: Bases Numéricas Aula 4: Bases Numéricas Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Bases Numéricas FAC 1 / 36 Introdução e Justificativa Diego Passos (UFF)

Leia mais

Bases Matemáticas. Definição ingênua de conjunto. Aula 3 Conjuntos. Rodrigo Hausen

Bases Matemáticas. Definição ingênua de conjunto. Aula 3 Conjuntos. Rodrigo Hausen 1 ases Matemáticas ula 3 Conjuntos Rodrigo Hausen v. 2012-9-26 1/14 Definição ingênua de conjunto 2 Um conjunto é uma qualquer coleção de objetos, concretos ou abstratos, sem repetição. Dado um conjunto,

Leia mais

Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições)

Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Exemplos Definições Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Matemática Elementar - EAD Departamento de Matemática Universidade Federal da Paraíba 4 de setembro de 2014

Leia mais

Introdução: Um pouco de História

Introdução: Um pouco de História Números Complexos Introdução: Um pouco de História Houve um momento na História da Matemática em que a necessidade de expressar a raiz de um número negativo se tornou fundamental. Em equações quadráticas

Leia mais

dia 10/08/2010

dia 10/08/2010 Número complexo Origem: Wikipédia, a enciclopédia livre. http://pt.wikipedia.org/wiki/n%c3%bamero_complexo dia 10/08/2010 Em matemática, os números complexos são os elementos do conjunto, uma extensão

Leia mais

- identificar operadores ortogonais e unitários e conhecer as suas propriedades;

- identificar operadores ortogonais e unitários e conhecer as suas propriedades; DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;

Leia mais

Equipe de Matemática MATEMÁTICA. Matrizes

Equipe de Matemática MATEMÁTICA. Matrizes Aluno (a): Série: 3ª Turma: TUTORIAL 14B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Matrizes Introdução O crescente uso dos computadores tem feito com que a teoria das matrizes seja cada vez mais

Leia mais

Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos.

Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos. Capítulo 5 Vetores no plano 1. Paralelogramos Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos. Usando congruência de triângulos,

Leia mais

Números Inteiros AULA. 3.1 Introdução

Números Inteiros AULA. 3.1 Introdução AULA 3 META: Apresentar os números inteiros axiomaticamente através dos Números Naturais. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir números inteiros axiomaticamente. Realizar

Leia mais

Definimos como conjunto uma coleção qualquer de elementos.

Definimos como conjunto uma coleção qualquer de elementos. Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de

Leia mais

Grandezas Escalares e Vetoriais

Grandezas Escalares e Vetoriais VETORES Grandezas Escalares e Vetoriais Uma grandeza física é um escalar quando pode ser caracterizada apenas por um número, sem necessidade de associar-lhe alguma orientação. Exemplos: Massa de uma bola:

Leia mais

IFSP - EAD _nº 5 FUNÇÃO POLINOMIAL DE PRIMEIRO GRAU, OU FUNÇÃO DE PRIMEIRO GRAU :

IFSP - EAD _nº 5 FUNÇÃO POLINOMIAL DE PRIMEIRO GRAU, OU FUNÇÃO DE PRIMEIRO GRAU : IFSP - EAD _nº 5 FUNÇÕES CONSTANTE, DE PRIMEIRO E DE SEGUNDO GRAUS. DEFINIÇÕES : FUNÇÃO CONSTANTE : Uma função f: R R é chamada constante se puder ser escrita na forma y = f() = a, onde a é um número real

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu wwwestvipvpt/paginaspessoais/lucas lucas@matestvipvpt 007/008 Álgebra Linear e Geometria Analítica

Leia mais

e B =, determine a, b, c e d para que A = B. Tabela 1: vendas em Maio P M G camisas camisetas calças paletós

e B =, determine a, b, c e d para que A = B. Tabela 1: vendas em Maio P M G camisas camisetas calças paletós Lista 01: Matrizes, Determinantes e Sistemas Lineares Prof: Iva Zuchi Siple [ ] [ ] a + 2b 2a b 9 2 1. Dadas as matrizes A = e B =, determine a, b, c e d para que A = B. 2c + d c 2d 4 7 2. Uma fábrica

Leia mais