Números Inteiros Algoritmo da Divisão e suas Aplicações

Tamanho: px
Começar a partir da página:

Download "Números Inteiros Algoritmo da Divisão e suas Aplicações"

Transcrição

1 Números Inteiros Algoritmo da Divisão e suas Aplicações Diferentemente dos números reais (R), o conjunto dos inteiros (Z) não é fechado para a divisão. Esse não-fechamento faz com que a divisão entre inteiros seja um tanto esquisita. Na verdade, essa esquisitice é útil em uma grande variedade de interessantes aplicações práticas. A divisão de inteiros será vista nesta aula na forma de um teorema chamado de algoritmo da divisão. Depois, veremos aplicações teóricas e práticas desse teorema. 1. Algoritmo da Divisão O teorema conhecido como Algoritmo da Divisão (apesar de não ser um algoritmo), informalmente, diz que: ao dividir um inteiro n (dividendo) por um inteiro positivo d (divisor), obtemos dois resultados: o quociente q e o resto positivo r O que o lema faz é explicar a relação algébrica entre essas quatro variáveis (n, d, q e r), como veremos a seguir 1. Teorema Algoritmo da Divisão : Se n é um número inteiro e d é um número inteiro positivo Então, existem dois números inteiros únicos q e r tais que i. n = d. q + r ii. e 0 r < d (Dizemos que q e r são o resultado da divisão de n por d, sendo o q chamado de quociente da divisão e o r, chamado de resto). 1 Observe que, na forma como apresentamos este teorema, o divisor d não pode ser zero e também não pode ser negativo. Trabalharemos assim nesta disciplina, mas a última exigência pode ser relaxada. 1

2 Demonstração direta: A demonstração deste teorema se baseia na aplicação do axioma chamado de princípio da boa ordem. Provamos as partes (i) e (ii) em sequência. Sejam n e d dois inteiros quaisquer, onde d > 0. Agora, considere o conjunto abaixo construído a partir de n e d: C = { n k.d onde k é um inteiro qualquer e n k.d 0 } = {..., n 3d, n 2d, n d, n, n+d, n+2d, n+3d,... } Primeiramente, podemos afirmar que C é não-vazio, independente de n ou d. (Pois, adotando k=0 ou k=n, teremos, para um deles, que n kd 0). Assim, o princípio garante que C tem um elemento mínimo. Vamos chamar este mínimo de r. (Este mínimo corresponde exatamente ao resto que queremos). A- lém disso, pela definição de C, temos r = n qd, para algum valor inteiro q. Este inteiro q é o único que pode gerar r, por conta da equação linear envolvida. (Este q corresponde ao quociente que queremos). Rearrumando esta equação provamos uma parte do teorema: (i) n = qd + r, para certos q e r inteiros Agora, vamos provar a segunda parte. Já sabemos que r 0 (porque isso é verdade para todo elemento de C). Agora, vamos argumentar que r < d, por redução ao absurdo: Assumindo que r d. Vamos provar que, neste caso, existe um elemento de C menor do que r, que seria uma contradição. (Observe que vamos definir um certo r de modo compatível com a regra que define os elementos de C, mas usando k = q + 1). Seja r definido assim: r = n (q+1)d. Desenvolvendo, obtemos r = n qd d. Usando a definição de r, provamos que r = r d. Rearrumando a hipótese r d, obtemos r d 0. Usando a equação anterior, obtemos r 0. Logo r pertence a C. Além disso, como d é positivo, r d é menor que r. Logo r < r. Isso contradiz a escolha de r como mínimo de C. Com isso, provamos a segunda (e última) parte do teorema: (ii) 0 r < d (Provado). Observe que o teorema mostra como, a partir de um par (n, d) se define de forma única o par (q, r). É como se ele apresentasse a divisão como uma operação entre inteiros que 2

3 retorna dois resultados. Para se referir somente a um dos resultados da divisão por vez, vamos definir essas duas operações: n div d retorna o quociente inteiro (o q do teorema acima) n mod d retorna o resto inteiro positivo (o r to teorema acima) Com base nessas operações, podemos redefinir a equação do teorema como: n = d. (n div d) + (n mod d) Exemplos (todos com d=3): A divisão de n = 7 por d = 3 dá q = 2 e r = 1 o pois 7 = e 0 r < 3 A divisão de n = 27 por d = 3 dá q = 9 e r = 0 o pois 27 = e 0 r < 3 A divisão de n = 1 por d = 3 dá q = 0 e r = 1 o pois 1 = e 0 r < 3 A divisão de n = 7 por d = 3 dá q = 3 e r = 2 o pois 7 = 3.( 3) + 2 e 0 r < 3 Veja que o algoritmo de divisão exige que o resto seja sempre não-negativo. Por isso, quando o dividendo é negativo (como no último exemplo), o quociente não é aquele que estamos acostumados a usar na divisão de inteiros ele é uma unidade a menos. Por exemplo, na divisão que tipicamente usamos, 7 dividido por 3 daria quociente 2 com resto 1. Porém, no quarto exemplo, o quociente (q) ficou com uma unidade a menos (e o resto você pode calcular a partir de n, d e q). Estejam atentos a este detalhe! A seguir, veremos uma aplicação interessante do teorema algoritmo na divisão (que não é um algoritmo!), para provar a corretude de um algoritmo genuíno. 3

4 2. Algoritmo de Euclides O algoritmo de Euclides para calcular o mdc de dois números recebe seu nome de um importante matemático da Grécia antiga. Antes de apresentarmos o algoritmo propriamente dito, vamos mostrar e provar o teorema que está por trás deste algoritmo: Teorema: Se a e b são naturais e b 0, então mdc(a,b) = mdc(b, a mod b). Demonstração: Segue um esboço da idéia: Para simplificar a notação, seja r = a mod b. Como r corresponde ao resto da divisão de a por b, pelo algoritmo da divisão podemos escrever: a = b.q + r (para algum q inteiro). Logo, temos a equação I abaixo: r = a q.b Agora, a idéia central da demonstração consiste em provar que: o Todo divisor comum de a e b é divisor de b e de r. Ou seja, você prova que se x a e x b, então x b e x r. o E que todo divisor comum de b e r é também divisor de a e de b. Ou seja, você prova que se x b e x r, então x a e x b. Provando essas duas partes (tente fazer sozinho!), você garante que o par (a,b) tem os mesmos divisores comuns que o par (b,r). Logo, o máximo dos divisores comuns de (a,b) é o mesmo máximo dos divisores comuns de (b,r)! Assim, estará provado o teorema. O teorema acima nos permite reduzir o cálculo do mdc(a, b) ao cálculo do mdc entre dois valores (em geral) menores: mdc(b, a mod b). Podemos repetir essa redução sucessivamente até não ser mais possível. Essa é a idéia simples por trás do algoritmo de Euclides. Exemplificamos a seguir. Exemplo: Calcular mdc(414, 662): Esse mdc pode ser calculado assim: mdc(414, 662) = mdc(662, 414 mod 662) 4

5 Que equivale a calcular sucessivamente: = mdc(662, 414) = mdc(414, 662 mod 414) = mdc(414, 248)= mdc(248, 414 mod 248) = mdc(248, 166) = mdc(166, 248 mod 166) = mdc(166, 82)= mdc(82, 166 mod 82) = mdc(82, 2) = mdc(2, 82 mod 2) = mdc(2, 0) Como todo inteiro é divisor de 0, maior divisor comum entre 2 e 0 é o próprio 2: = 2 De modo geral, temos: para todo a inteiro positivo, mdc(a,0) = a. Essa é a informação que faltava para completarmos um algoritmos para calcular o mdc o algoritmo de Euclides. A seguir, damos uma implementação recursiva dele em Python. (Fica como exercício fazer uma implementação iterativa). def mdc(a, b): if (b == 0): return a else: return mdc(b, a % b) O algoritmo de Euclides é mais eficiente (mais rápido) computacionalmente e mais fácil de implementar do que a idéia que vimos na aula passada, baseada na fatoração de a e b em fatores primos. Agora que já sabemos calcular o mdc eficientemente, como poderíamos calcular o mmc eficientemente? Para isso, veja o último teorema da aula passada! 5

6 3. Aritmética Modular Observe que, pelo lema da divisão, o resto da divisão de um número qualquer por um valor m só pode dar m valores distintos: de 0 a m-1. Assim, obviamente, dois números inteiros diferentes, quando divididos por um mesmo m, podem dar um mesmo resto. A aritmética modular surge da idéia de relacionar os números que dão o mesmo resto ao serem divididos por um dado valor m. Esta relação é chamada de relação de congruência módulo m e sua definição é dada abaixo (porém sem mencionar resto da divisão): Usamos a notação a b (mod m) sse tivermos que 2 m > 0 e m (a b). Dizemos que a é congruente a b, módulo m, neste caso Não provaremos, mas a definição dada acima equivale à seguinte definição, que mostra claramente a ligação com o resto da divisão: a b (mod m) sse a mod m = b mod m No entanto, a definição original é, geralmente, a que deixa as demonstrações dos teoremas mais simples. Antes de provar teoremas, vamos exemplificar casos da relação dada. Exemplos: 3 0 (mod 3), pois 3 (3-0) (ou porque 3 mod 3 = 0 mod 3 = 0) 2 5 (mod 3), pois 3 (2-5) (ou porque 2 mod 3 = 5 mod 3 = 2) 29 8 (mod 3), pois 3 (29-8) (mod 2) 8 0 (mod 2) A seguir, damos alguns resultados (teoremas) bastante simples: a 0 (mod 2) é verdade sse a é par (a é múltiplo de 2) a 1 (mod 2) é verdade sse a é ímpar 2 A condição de que m > 0 pode ser relaxada, mas vamos trabalhar assim nesta disciplina. 6

7 a 0 (mod 3) é verdade sse a é múltiplo de 3 a 0 (mod 4) é verdade sse a é múltiplo de Propriedades As relações de congruência têm várias propriedades análogas às propriedades da relação de igualdade (entre números inteiros). Seguem algumas dessas propriedades, válidas para todos a, b e c inteiros e para todo m inteiro positivo: o a a (mod m) [Reflexiva] o Se a b (mod m), então b a (mod m) [Simétrica] o Se a b (mod m) e b c (mod m), então a c (mod m) [Transitiva] o Se a b (mod m), então a+c b+c (mod m) o Se a b (mod m), então ac bc (mod m) Todas estas propriedades podem ser provadas a partir da definição da relação. Como exemplo, vamos provar a penúltima propriedade dada. Exemplo: Provar o seguinte teorema (para todos a, b e c Z e m Z + ): Se a b (mod m), então a+c b+c (mod m) Prova direta. Sejam a, b e c inteiros quaisquer. Vamos, ainda, assumir que a b (mod m). Usando a definição da relação de congruência módulo m, temos que: m (a-b) Agora, pela definição da relação divide, isso nos leva a: k. m = a - b (para algum k inteiro) Desenvolvendo a equação, temos: a = b + k. m Calculando a+c com a equação acima, temos: a + c = b + k.m + c (a+c) = (b+c) + k.m (a+c) (b+c) = k.m Pela definição da relação divide temos que: m ((a+c) (b+c)) Assim, pela definição da relação de congruência modulo m, concluímos que: (a+c) (b+c) (mod m) (Provado). 7

8 3.2 Outras Propriedades Diferentemente da igualdade, o cancelamento de um inteiro c nem sempre é possível nas relações de congruência. Ou seja, a afirmação a seguir é falsa: Se ac bc (mod m), então a b (mod m) Um contra-exemplo para a afirmação acima é a=4, b=3, c=2 e m=2. Pois temos que (mod 2), porém não é verdade que 4 3 (mod 2). A regra de cancelamento correta para a relação de congruência é dada abaixo. Na lista de exercícios, há uma questão que pede para você prová-la. Se ac bc (mod m) e mdc(c,m)=1, então a b (mod m) Outras propriedades que se aplicam às relações de congruência não têm análogas na igualdade. Seguem algumas: a a mod m (mod m) a.c (a mod m).(c mod m) (mod m) a+c (a mod m)+(c mod m) (mod m) Juntas, as propriedades apresentadas nos garantem que podemos fazer substituições usando relações de congruência (tal como fazemos na igualdade), desde que seja em expressões envolvendo apenas adição e multiplicação. Veja o próximo exemplo. Exemplo: Provar que Se a x+y (mod 2), então a 2 x 2 +y 2 (mod 2). Prova direta. Hipótese: a x+y (mod 2) Objetivo: a 2 x 2 +y 2 (mod 2) Vamos começar desenvolvendo uma relação de congruência módulo 2 para a 2 (vamos omitir o mod 2, para deixar mais limpo): a 2 a.a Usando a hipótese, podemos substituir o valor de a por (x+y). (x+y).(x+y) 8

9 x 2 + 2xy + y 2 Porém, no módulo 2, temos 2 0, logo: x xy + y 2 x 2 + y 2 (Provado). Um uso interessante da aritmética modular consiste em transformar uma equação a = b em uma relação de congruência a b (mod m) para um m de sua escolha. Isso pode ajudar a simplificar algumas demonstrações matemáticas, como no exemplo a seguir. Exemplo: Prove que se a soma de n números inteiros dá par, então existe uma quantidade par de números ímpares nesta soma. Esboço gera (se der, veremos em sala...), assumindo que há x números inteiros e y números ímpares. Escrever essa soma, agrupando os x pares e os y ímpares, e igualando tudo a 2k, para algum k inteiro. Tirar o módulo de tudo, o que zera todo o grupo dos pares, e torna 1 cada número ímpar (cuja soma dá y). Isso tudo, é congruente a 2k que é congruente a 0. Assim, ficamos com y congruente a 0. A aritmética modular é uma área bastante rica da Matemática. Além disso, ela tem ligação com alguns algoritmos importantes da Computação, em especial o algoritmo RSA, que é um dos mais importantes usados para manter de segurança de dados que trafegam na internet. Veja um pouco mais sobre essas aplicações no material extra. Veja mais de teoria e aplicações no livro do Rosen. 4. Representação de Inteiros em Diferentes Bases (Extra) Como você deve saber, no dia-a-dia, usamos uma representação dos números chamada de representação decimal, pois usamos dez símbolos (0,1,2,...,9) para representar qualquer número inteiro. Nesta notação, a posição do dígito interfere na grandeza que ele representa. Por exemplo, em um número como , cada dígito representa o seguinte: o o dígito 7 representa (ou 7x10 4 ) 9

10 o o primeiro 4 representa (ou 4x10 3 ) o o 9 representa 900 (ou 9x10 2 ) o o segundo 4 representa 40 (ou 4x10 1 ) o o 2 representa, de fato, 2 unidades (ou 2x10 0 ) Em outras palavras, pode ser expresso como a seguinte soma de potências de 10: Por outro lado, os computadores usam, internamente, uma representação binária dos números, apenas com os símbolos 0 e 1. (Um detalhe é que a linguagem de programação faz automaticamente a conversão para a base decimal antes de exibir). Analogamente ao que acontece na base decimal, o valor representado por cada dígito binário depende da sua posição na representação do número. Assim um número binário como representa a seguinte soma de potências de 2: (em decimal, este seria o número 75) Generalizando os princípios usados nas duas representações citadas, será que com uma base inteira positiva b qualquer podemos representar todos os números nela? O teorema a seguir esclarece esta questão. Teorema: Considere b (a base) como um número inteiro maior que 1. Então, se n for um inteiro positivo, ele pode ser expresso como uma única soma da forma: n = D k.b k + D k-1.b k-1 + D k-2.b k D 1.b 1 + D 0 onde: para cada (dígito) D i (onde i é um índice de 0 a k), temos: 0 D i < b e (para o dígito mais à esquerda) temos: D k 0 Em outra palavra, o teorema diz que todo número inteiro positivo n pode ser representado em uma base b qualquer maior que 1. No caso, a representação na base b do número é simplesmente a seqüência dos valores D i (ou de certos símbolos que representem esses valores). No caso geral, para bases diferentes de 10, podemos usar a seguinte notação deixando explícita a base b adotada: 10

11 n = (D k D k-1 D k-2... D 1 D 0 ) b Exemplos: (4253) 7 = = = 1508 (1021) 4 = = = 73 (1021) 3 = = = 34 Demonstração: A demonstração do teorema usa o algoritmo da divisão, mas não vamos dá-la em detalhes. A idéia geral da prova consiste em considerar a divisão de n por b, depois pegar o quociente e dividir por b, depois pegar o novo quociente e dividir por b, e assim sucessivamente, até que dê um quociente 0. Os restos dessas divisões sucessivas, na ordem inversa (do último para o primeiro) formarão exatamente os valores D i (ou seja, os dígitos da representação na base b). A demonstração do teorema nos permite deduzir um método (um algoritmo) para converter um número n qualquer para uma base b qualquer: Dividir n por b, guardar o resto. Depois, tomar o quociente da divisão anterior e dividir por b novamente, guardando o novo resto. Repetir essas divisões por b sucessivamente guardando os restos. Parar quando o quociente der 0. Retornar os valores na ordem invertida. Desafio: Tente implementar este algoritmo! Uma sugestão: guarde os restos da divisão em uma lista e a inverta no final. Esta será a representação do número na base b. A partir da representação em uma base b qualquer, podemos definir algoritmos para realizar adição e multiplicação similares aos algoritmos que aprendemos no ensino básico para a base 10: Somar dígito a dígito da direita para a esquerda Se a soma dos dígitos ultrapassar o limite da base, você transporta o excesso para a soma do próximo digito (o chamado vai o um ) 11

12 Por exemplo, se usarmos a representação na base binária, ao somar cada dígito, funciona assim: 0+0 dá 0 e não transporta nada 0+1 ou 1+0 dá 1 e não transporta nada 1+1 dá 0 e transporta 1 Desafio: Tente implementar (em qualquer linguagem, mas recomendo Python) a soma de dois números quaisquer em uma base b qualquer! Já não há condenação para quem está em Cristo Jesus. (Romanos 8:1) 12

Números Inteiros Axiomas e Resultados Simples

Números Inteiros Axiomas e Resultados Simples Números Inteiros Axiomas e Resultados Simples Apresentamos aqui diversas propriedades gerais dos números inteiros que não precisarão ser provadas quando você, aluno, for demonstrar teoremas nesta disciplina.

Leia mais

Matemática Discreta. Fundamentos e Conceitos da Teoria dos Números. Universidade do Estado de Mato Grosso. 4 de setembro de 2017

Matemática Discreta. Fundamentos e Conceitos da Teoria dos Números. Universidade do Estado de Mato Grosso. 4 de setembro de 2017 Matemática Discreta Fundamentos e Conceitos da Teoria dos Números Professora Dr. a Donizete Ritter Universidade do Estado de Mato Grosso 4 de setembro de 2017 Ritter, D. (UNEMAT) Matemática Discreta 4

Leia mais

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas.

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Teoria dos Conjuntos Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Porém, não é nosso objetivo ver uma teoria axiomática dos conjuntos.

Leia mais

1 Congruências e aritmética modular

1 Congruências e aritmética modular 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível

Leia mais

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1?

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1? 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 42

Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 42 1 / 42 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 42 1 Combinatória 2 3 Grafos 3 / 42 Capítulo 2 4 / 42 Axiomática dos Inteiros Sejam a e b inteiros. Designaremos

Leia mais

Notas sobre teoria dos números (2)

Notas sobre teoria dos números (2) 1 / 29 Notas sobre teoria dos números (2) Fonte: livros do L. Lóvasz e Kenneth Rosen (ref. completa na página) Centro de Informática Universidade Federal de Pernambuco 2007.1 / CIn-UFPE 2 / 29 Maior divisor

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos - Princípio de Indução; Algoritmo de Euclides 1. Seja ( n) k n! k!(n k)! o coeficiente binomial, para n k 0. Por convenção, assumimos que, para outros

Leia mais

4.1 Cálculo do mdc: algoritmo de Euclides parte 1

4.1 Cálculo do mdc: algoritmo de Euclides parte 1 page 92 92 ENCONTRO 4 4.1 Cálculo do mdc: algoritmo de Euclides parte 1 OAlgoritmodeEuclidesparaocálculodomdcbaseia-senaseguintepropriedade dos números naturais. Observamos que essa propriedade está muito

Leia mais

11.1) Noções Elementares 11.2) MDCs e algoritmos de Euclides 11.3) Aritmética modular 11.4) Aplics da MD: O sistema criptográfico RSA

11.1) Noções Elementares 11.2) MDCs e algoritmos de Euclides 11.3) Aritmética modular 11.4) Aplics da MD: O sistema criptográfico RSA Teoria de Números 11.1) Noções Elementares 11.2) MDCs e algoritmos de Euclides 11.3) Aritmética modular 11.4) Aplics da MD: O sistema criptográfico RSA Material extraído dos livros-textos (Cormen( Cormen)

Leia mais

Roteiro da segunda aula presencial - ME

Roteiro da segunda aula presencial - ME PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência

Leia mais

Programa Combinatória Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 52

Programa Combinatória Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 52 1 / 52 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 52 Programa 1 Combinatória 2 Aritmética Racional 3 Grafos 3 / 52 Capítulo 1 Combinatória 4 / 52 Princípio

Leia mais

Portal da OBMEP. Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano

Portal da OBMEP. Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Máximo divisor comum Nesta aula, estudaremos métodos para

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

Notas sobre teoria dos números - Aritmática Modular (2) Anjolina Grisi de Oliveira

Notas sobre teoria dos números - Aritmática Modular (2) Anjolina Grisi de Oliveira Notas sobre teoria dos números - Aritmática Modular (2) Anjolina Grisi de Oliveira 1 Introdução à Aritmética modular Definição 1 Sejam a e b inteiros positivos. Nós denotamos a mod m como o resto quando

Leia mais

Existem infinitos números de Carmichael, mas não provaremos isso neste curso.

Existem infinitos números de Carmichael, mas não provaremos isso neste curso. 6 Pseudoprimos 6.1 O Pequeno Teorema de Fermat nos diz que, se n é primo, então temos b n b (mod n) para todo b Z. Portanto, a contrapositiva diz que se temos b n b (mod n) ( ) para algum b Z, então n

Leia mais

Aula prática 5. Funções Recursivas

Aula prática 5. Funções Recursivas Programação Funcional UFOP DECOM 2014.1 Aula prática 5 Funções Recursivas Resumo Definições recursivas são comuns na programação funcional. Nesta aula vamos aprender a definir funções recursivas. Sumário

Leia mais

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que: Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que

Leia mais

Referências e materiais complementares desse tópico

Referências e materiais complementares desse tópico Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer Conceitos matemáticos e técnicas de prova (Última atualização:

Leia mais

Números são números, letras são números e sinais de pontuação, símbolos e até mesmo as instruções do próprio computador são números.

Números são números, letras são números e sinais de pontuação, símbolos e até mesmo as instruções do próprio computador são números. Para o computador, tudo são números. Números são números, letras são números e sinais de pontuação, símbolos e até mesmo as instruções do próprio computador são números. O método ao qual estamos acostumados

Leia mais

1).- Significado de congruência e de congruência numérica

1).- Significado de congruência e de congruência numérica 5. CONGRUÊNCIAS NUMÉRICAS 1). Significado de congruência e de congruência numérica 2). Exemplos exploratórios e a notação mod q 3). Definição geral de congruência numérica 4). Regras: somando e multiplicando

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos 1 - Algoritmo de Euclides; Indução Matemática; Teorema Fundamental da Aritmética 1. Considere os inteiros a 406 e b 654. (a) Encontre d mdc(a,b), o

Leia mais

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco MATEMÁTICA Professor Matheus Secco MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA 1. DIVISIBILIDADE Definição: Sejam a, b inteiros com a 0. Diz-se que a divide b (denota-se por a b) se existe c inteiro tal que

Leia mais

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.

Leia mais

ax + by 347 = 0 k = text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: DOCENTES: Gilda Ferreira e Ana Nunes

ax + by 347 = 0 k = text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: DOCENTES: Gilda Ferreira e Ana Nunes text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: 21082 DOCENTES: Gilda Ferreira e Ana Nunes Resolução e Critérios de Correção 1. Sejam a, b Z tais que mdc(a, b) = 12. Relativamente à equação ax + by

Leia mais

NÚMEROS INTEIROS E CRIPTOGRAFIA UFRJ

NÚMEROS INTEIROS E CRIPTOGRAFIA UFRJ NÚMEROS INTEIROS E CRIPTOGRAFIA UFRJ GABARITO LISTA 6: ALGORITMO CHINÊS DO RESTO 1. Ver gabarito das questões do livro. 2. Aplique o Algoritmo de Fermat para encontrar 999367 = 911 1097. Como 911 e 1097

Leia mais

Algoritmos. OBMEP Teoria dos números - Parte I. Algoritmo da divisão:

Algoritmos. OBMEP Teoria dos números - Parte I. Algoritmo da divisão: OBMEP Teoria dos números - Parte I Elaine Pimentel 1 o Semestre - 2006 Algoritmos Algoritmo = processo de cálculo baseado em regras formais Especificação de um algoritmo: entrada + instruções + saída Perguntas:

Leia mais

a = bq + r e 0 r < b.

a = bq + r e 0 r < b. 1 Aritmética dos Inteiros 1.1 Lema da Divisão e o Algoritmo de Euclides Recorde-se que a, o módulo ou valor absoluto de a, designa a se a N a = a se a / N Dados a, b, c Z denotamos por a b : a divide b

Leia mais

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1.

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1. Como seria de esperar, o Teorema Fundamental da Aritmética tem imensas consequências importantes. Por exemplo, dadas factorizações em potências primas de dois inteiros, é imediato reconhecer se um deles

Leia mais

Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação. Teoria dos Números

Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação. Teoria dos Números Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Teoria dos Números Tópicos Especiais em Programação Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

Resumo. Palavras-chave: implementações aritméticas; inverso modular; sistema de restos.

Resumo. Palavras-chave: implementações aritméticas; inverso modular; sistema de restos. 2017, NÚMERO 1, VOLUME 5 ISSN 2319-023X Universidade Federal de Sergipe - UFS evilson@ufs.br Resumo Neste trabalho apresentamos uma implementação para execução manual do algoritmo estendido das divisões

Leia mais

MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco

MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco MATEMÁTICA 1 Professor Matheus Secco MÓDULO 2 Divisibilidade 1. DIVISIBILIDADE 1.1 DEFINIÇÃO: Dizemos que o inteiro a é divisível pelo inteiro b (ou ainda que a é múltiplo de b) se existe um inteiro c

Leia mais

MAT Álgebra I para Licenciatura 2 a Lista de exercícios

MAT Álgebra I para Licenciatura 2 a Lista de exercícios MAT0120 - Álgebra I para Licenciatura 2 a Lista de exercícios 1. Quais são os números de cifras iguais que são divisíveis por 3? Idem, por 9? Idem por 11? 2. Determinar mmc (56, 72) e mmc (119, 272). 3.

Leia mais

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012 NÚMEROS INTEIROS PROF. FRANCISCO MEDEIROS Álgebra Abstrata - Verão 2012 Faremos, nessas notas, uma breve discussão sobre o conjunto dos números inteiros. O texto é basicamente a seção 3 do capítulo 1 de

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

REVISÃO DE MATEMÁTICA BÁSICA

REVISÃO DE MATEMÁTICA BÁSICA REVISÃO DE MATEMÁTICA BÁSICA AULA 2 Frações Profe. Kátia FRAÇÕES Uma fração é a representação de uma ou mais partes de algo que foi dividido em partes iguais. Partes de um inteiro. Todo objeto original

Leia mais

Módulo: aritmética dos restos. Divisibilidade e Resto. Tópicos Adicionais

Módulo: aritmética dos restos. Divisibilidade e Resto. Tópicos Adicionais Módulo: aritmética dos restos Divisibilidade e Resto Tópicos Adicionais Módulo: aritmética dos restos Divisibilidade e resto 1 Exercícios Introdutórios Exercício 1. Encontre os inteiros que, na divisão

Leia mais

Congruências I. Por exemplo, 7 2 (mod 5), 9 3 (mod 6), 37 7 (mod 10) mas 5 3 (mod 4). Veja que a b (mod m) se, e somente se, m a b.

Congruências I. Por exemplo, 7 2 (mod 5), 9 3 (mod 6), 37 7 (mod 10) mas 5 3 (mod 4). Veja que a b (mod m) se, e somente se, m a b. Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 6 Congruências I Definição 1. Dizemos que os inteiros a e b são congrentes módulo m se eles deixam o mesmo

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Inteiros e divisão Definição: Se a e b são inteiros com a 0, dizemos que a divide

Leia mais

Campus Capivari Análise e Desenvolvimento de Sistemas (ADS) Introdução à Computação Prof. André Luís Belini

Campus Capivari Análise e Desenvolvimento de Sistemas (ADS) Introdução à Computação Prof. André Luís Belini Campus Capivari Análise e Desenvolvimento de Sistemas (ADS) Introdução à Computação Prof. André Luís Belini E-mail: prof.andre.luis.belini@gmail.com / andre.belini@ifsp.edu.br MATÉRIA: INTRODUÇÃO À COMPUTAÇÃO

Leia mais

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares Introdução à Teoria dos Números 2018 - Notas de Aulas 3 Prof Carlos Alberto S Soares 1 Números Primos e o Teorema Fundamental da Aritmética Em notas anteriores já definimos os números primos, isto é, números

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

1 Potências e raízes em Aritmética Modular. Seja p primo e a um inteiro primo com p; a aplicação

1 Potências e raízes em Aritmética Modular. Seja p primo e a um inteiro primo com p; a aplicação 1 Potências e raízes em Aritmética Modular 1.1 Os Teoremas de Fermat e Euler Seja p primo e a um inteiro primo com p; a aplicação Z /p Z /p, x ax definida pela multiplicação por a (ou mais precisamente

Leia mais

Conjuntos. Notações e Símbolos

Conjuntos. Notações e Símbolos Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas

Leia mais

Programação I Aula 19 Aritmética com racionais Pedro Vasconcelos DCC/FCUP

Programação I Aula 19 Aritmética com racionais Pedro Vasconcelos DCC/FCUP Programação I Aula 19 Aritmética com racionais DCC/FCUP DCC/FCUP 2019 1/ 30 Nesta aula 1 Aritmética com racionais 2 Simplificação 3 Operações 4 Comparações DCC/FCUP 2019 2/ 30 Aritmética com racionais

Leia mais

Demonstrações Matemáticas Parte 2

Demonstrações Matemáticas Parte 2 Demonstrações Matemáticas Parte 2 Nessa aula, veremos aquele que, talvez, é o mais importante método de demonstração: a prova por redução ao absurdo. Também veremos um método bastante simples para desprovar

Leia mais

Teorema 1.1 (Teorema de divisão de Euclides). Dados n Z e d N, existe uma única dupla q Z, r. n = qd + r

Teorema 1.1 (Teorema de divisão de Euclides). Dados n Z e d N, existe uma única dupla q Z, r. n = qd + r Matemática Discreta September 18, 2018 1 1 Divisão de inteiros Teorema 1.1 (Teorema de divisão de Euclides). Dados n Z e d N, existe uma única dupla q Z, r {0,..., d 1} tal que n = qd + r Dizemos que a

Leia mais

SISTEMAS DE NUMERAÇÃO CONVERSÕES ENTRE BASES. Prof. André Rabelo

SISTEMAS DE NUMERAÇÃO CONVERSÕES ENTRE BASES. Prof. André Rabelo SISTEMAS DE NUMERAÇÃO CONVERSÕES ENTRE BASES Prof. André Rabelo CONVERSÕES ENTRE BASES 2, 8 E 16 As conversões mais simples são as que envolvem bases que são potências entre si. Exemplo(base 2 para base

Leia mais

Soma de Quadrados. Faculdade de Matemática, UFU, MG

Soma de Quadrados. Faculdade de Matemática, UFU, MG Soma de Quadrados Stela Zumerle Soares 1 Antônio Carlos Nogueira (stelazs@gmailcom (anogueira@ufubr Faculdade de Matemática, UFU, MG 1 Resultados Preliminares Historicamente, um problema que tem recebido

Leia mais

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 2. Divisibilidade I. Samuel Barbosa Feitosa

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 2. Divisibilidade I. Samuel Barbosa Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Samuel Barbosa Feitosa Aula 1 Divisibilidade I Teorema 1. (Algoritmo da Divisão) Para quaisquer inteiros positivos a e b, existe um

Leia mais

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares Introdução à Teoria dos Números 2018 - Notas de Aulas 3 Prof Carlos Alberto S Soares 1 Números Primos e o Teorema Fundamental da Aritmética Em notas anteriores já definimos os números primos, isto é, números

Leia mais

Álgebra A - Aula 01 Algoritmo da divisão de Euclides e Algoritmo Euclideano estendido

Álgebra A - Aula 01 Algoritmo da divisão de Euclides e Algoritmo Euclideano estendido Álgebra A - Aula 01 Algoritmo da divisão de Euclides e Algoritmo Euclideano estendido Elaine Pimentel Departamento de Matemática, UFMG, Brazil 2 o Semestre - 2010 Introdução Objetivo: estudar o método

Leia mais

Os números inteiros. Álgebra (Curso de CC) Ano lectivo 2005/ / 51

Os números inteiros. Álgebra (Curso de CC) Ano lectivo 2005/ / 51 Os números inteiros Abordaremos algumas propriedades dos números inteiros, sendo de destacar o Algoritmo da Divisão e o Teorema Fundamental da Aritmética. Falaremos de algumas aplicações como sejam a detecção

Leia mais

MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (2/6) Carlos Luz. EST Setúbal / IPS Abril 2012

MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (2/6) Carlos Luz. EST Setúbal / IPS Abril 2012 MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (2/6) Carlos Luz EST Setúbal / IPS 16 22 Abril 2012 Carlos Luz (EST Setúbal / IPS) Aritmética Racional (2/6) 16 22 Abril 2012 1 / 15 Divisão Inteira Teorema Sendo

Leia mais

Sistemas Numéricos - Aritmética. Conversão de Bases. Prof. Celso Candido ADS / REDES / ENGENHARIA

Sistemas Numéricos - Aritmética. Conversão de Bases. Prof. Celso Candido ADS / REDES / ENGENHARIA Conversão de Bases 1 NOTAÇÃO POSICIONAL - BASE DECIMAL Desde os primórdios da civilização o homem adota formas e métodos específicos para representar números, para contar objetos e efetuar operações aritméticas.

Leia mais

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011 Lic. em Ciências da Computação Matemática Discreta Introdução à Teoria de Números - Exercícios 1 o ano - 2010/2011 1. Determine o quociente e o resto na divisão de: (a) 310156 por 197; (b) 32 por 45; (c)

Leia mais

1 Congruência. 2. m mmc(n, m) m a b. De 1) e 2) segue que: a b mod n e a b mod m.

1 Congruência. 2. m mmc(n, m) m a b. De 1) e 2) segue que: a b mod n e a b mod m. 1 Congruência Exercício 1.1. Proposição 23. (7) a b mod n e a b mod m a b mod mmc(n, m) De fato, ( ) Se a b mod n n a b, se a b mod n m a b. nm a b, como mmc(n, m) nm então mmc(n, m) a b a b mod mmc(n,

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

XIX Semana Olímpica de Matemática. Nível 3. Polinômios Ciclotômicos e Congruência Módulo p. Samuel Feitosa

XIX Semana Olímpica de Matemática. Nível 3. Polinômios Ciclotômicos e Congruência Módulo p. Samuel Feitosa XIX Semana Olímpica de Matemática Nível 3 Polinômios Ciclotômicos e Congruência Módulo p Samuel Feitosa O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Semana Olímpica 2016 Polinômios

Leia mais

MA14 - Aritmética Unidade 15 - Parte 1 Resumo. Congruências

MA14 - Aritmética Unidade 15 - Parte 1 Resumo. Congruências MA14 - Aritmética Unidade 15 - Parte 1 Resumo Congruências Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio do assunto.

Leia mais

Semana Olímpica 2019

Semana Olímpica 2019 Semana Olímpica 2019 Prof a Ana Paula Chaves apchaves.math@gmail.com Nível 1 Congruência 1. Divisibilidade e Aritmética Modular Um dos tópicos mais fundamentais da teoria dos números é, sem dúvidas, a

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Equações Diofantinas I

Equações Diofantinas I Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula 8 Equações Diofantinas I Exemplo 1. Em Gugulândia, o jogo de basquete é jogado com regras diferentes. Existem

Leia mais

objetivos Teoria dos anéis 2 a parte 4 Meta da aula Pré-requisito

objetivos Teoria dos anéis 2 a parte 4 Meta da aula Pré-requisito A U L A Teoria dos anéis 2 a parte 4 Meta da aula Apresentar algumas propriedades operatórias básicas dos anéis e descrever tipos especiais de anéis, chamados domínios de integridade e corpos. objetivos

Leia mais

Criptografia e Segurança de Rede Capítulo 4. Quarta Edição por William Stallings

Criptografia e Segurança de Rede Capítulo 4. Quarta Edição por William Stallings Criptografia e Segurança de Rede Capítulo 4 Quarta Edição por William Stallings Capítulo 4 Corpos Finitos Na manhã seguinte, ao nascer o dia, Star entrou em casa, aparentemente ávida por uma lição. Eu

Leia mais

Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II

Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II 1 Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II 1 O Anel dos Inteiros Módulo n Consideremos um número natural n 2 fixado Para cada número inteiro a definimos a = {x Z; x a mod n} Como

Leia mais

No. Try not. Do... or do not. There is no try. - Master Yoda, The Empire Strikes Back (1980)

No. Try not. Do... or do not. There is no try. - Master Yoda, The Empire Strikes Back (1980) Cálculo Infinitesimal I V01.2016 - Marco Cabral Graduação em Matemática Aplicada - UFRJ Monitor: Lucas Porto de Almeida Lista A - Introdução à matemática No. Try not. Do... or do not. There is no try.

Leia mais

E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos

E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em

Leia mais

Inteiros. Inteiros. Congruência. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006.

Inteiros. Inteiros. Congruência. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006. Inteiros Inteiros. Congruência. Referência: Capítulo: 4 Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006 1 Números reais A relação binária em R é uma ordem parcial

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 1 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Módulo de um vetor O módulo

Leia mais

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard CONJUNTOS NUMÉRICOS Aulas 01 a 08 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2019 Sumário CONJUNTOS NUMÉRICOS... 2 Conjunto dos números Naturais... 2 Conjunto dos números

Leia mais

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE ANA PAULA CHAVES AND THIAGO PORTO 1. Introdução Os temas centrais deste texto - bases numéricas e critérios de divisibilidade

Leia mais

Notas de Aulas. Prof a Maria Julieta Ventura Carvalho de Araujo. Prof. Frederico Sercio Feitosa (colaborador)

Notas de Aulas. Prof a Maria Julieta Ventura Carvalho de Araujo. Prof. Frederico Sercio Feitosa (colaborador) Notas de Aulas Introdução à Álgebra Prof a Maria Julieta Ventura Carvalho de Araujo Prof. Frederico Sercio Feitosa (colaborador) 2009 ii i Introdução à Álgebra (MAT128) Introdução à Teoria dos Números

Leia mais

a = bq + r e 0 r < b.

a = bq + r e 0 r < b. 1 Aritmética dos Inteiros 1.1 Lema da Divisão e o Algoritmo de Euclides Recorde-se que a, o módulo ou valor absoluto de a, designa a se a N a = a se a / N Dados a, b Z denotamos por a b : a divide b ou

Leia mais

Bézout e Outros Bizus

Bézout e Outros Bizus 1. Introdução Bézout e Outros Bizus Davi Lopes Olimpíada Brasileira de Matemática 18ª Semana Olímpica São José do Rio Preto, SP Neste material, iremos demonstrar o teorema de Bézout, que diz que, dados

Leia mais

Aula 1: Introdução ao curso

Aula 1: Introdução ao curso Aula 1: Introdução ao curso MCTA027-17 - Teoria dos Grafos Profa. Carla Negri Lintzmayer carla.negri@ufabc.edu.br Centro de Matemática, Computação e Cognição Universidade Federal do ABC 1 Grafos Grafos

Leia mais

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a Exemplo (U(n)) Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a multiplicação módulo n é uma operação binária

Leia mais

Prof. Leonardo Augusto Casillo

Prof. Leonardo Augusto Casillo UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Aula 1 Conceitos necessários Prof. Leonardo Augusto Casillo Sistema de numeração: conjunto de regras que nos permite escrever e ler

Leia mais

Conversão de Bases. Introdução à Organização de Computadores 5ª Edição/2007 Página 54. Sistemas Numéricos - Aritmética. Prof.

Conversão de Bases. Introdução à Organização de Computadores 5ª Edição/2007 Página 54. Sistemas Numéricos - Aritmética. Prof. Conversão de Bases Introdução à Organização de Computadores 5ª Edição/2007 Página 54 1 NOTAÇÃO POSICIONAL - BASE DECIMAL O SISTEMA DE NUMERAÇÃO É FORMADO POR UM CONJUNTO DE SÍMBOLOS UTILIZADOS PARA REPRESENTAR

Leia mais

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 2. Sexto Ano. Prof. Angelo Papa Neto

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 2. Sexto Ano. Prof. Angelo Papa Neto Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 2 Sexto Ano Prof. Angelo Papa Neto 1 Mínimo múltiplo comum Continuando nossa aula, vamos estudar o mínimo múltiplo comum de um conjunto finito

Leia mais

Aritmética dos Restos. Problemas com Congruências. Tópicos Adicionais

Aritmética dos Restos. Problemas com Congruências. Tópicos Adicionais Aritmética dos Restos Problemas com Congruências Tópicos Adicionais Aritmética dos Restos Problemas com Congruências 1 Exercícios Introdutórios Exercício 1. inteiro n Prove que n 5 + 4n é divisível por

Leia mais

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações

Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações Curso de Aritmética Capítulo 1: Conjuntos Numéricos, Operações Básicas e Fatorações 1. A Base de Nosso Sistema Numérico Se observarmos a história, nós veremos que os primeiros números usados pelos humanos

Leia mais

Uma curiosa propriedade com inteiros positivos

Uma curiosa propriedade com inteiros positivos Uma curiosa propriedade com inteiros positivos Fernando Neres de Oliveira 21 de junho de 2015 Resumo Neste trabalho iremos provar uma curiosa propriedade para listas de inteiros positivos da forma 1, 2,...,

Leia mais

Múltiplos, Divisores e Primos II - Aula 07

Múltiplos, Divisores e Primos II - Aula 07 Múltiplos, Divisores e Primos II - Aula 07 Após a apresentação dos conceitos de divisor e múltiplo, é possível se perguntar se existem números que possuem o mesmo divisor ou o mesmo múltiplo. A ideia desse

Leia mais

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez). SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para

Leia mais

CENTRO EDUCACIONAL GIRASSOL TD de Matemática Prof.: Tiago Rodrigues

CENTRO EDUCACIONAL GIRASSOL TD de Matemática Prof.: Tiago Rodrigues CENTRO EUCACIONAL GIRASSOL T de Matemática Prof.: Tiago Rodrigues proftiagorodrigues@gmail.com IVISIBILIAE E RESTO. Introdução O assunto divisibilidade no Conjunto dos Inteiros ( ) é extremamente importante

Leia mais

(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação

(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação Álgebra (Ciência de Computadores) 2005/2006 Números inteiros 1. Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação (a) {inteiros positivos impares}; (b) {inteiros negativos pares};

Leia mais

Números inteiros. Sandro Marcos Guzzo

Números inteiros. Sandro Marcos Guzzo Números inteiros Sandro Marcos Guzzo Cascavel - Pr Agosto de 2013 1 Construção do conjunto dos números inteiros O conjunto dos números inteiros, designado por Z será aqui construído a partir do conjunto

Leia mais

CIC 111 Análise e Projeto de Algoritmos II

CIC 111 Análise e Projeto de Algoritmos II CIC 111 Análise e Projeto de Algoritmos II Prof. Roberto Affonso da Costa Junior Universidade Federal de Itajubá AULA 21 Number theory Primes and factors Modular arithmetic Solving equations Other results

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Prof. Lino Marcos da Silva Atividade 1 - Números Reais Objetivos De um modo geral, o objetivo dessa atividade é fomentar o estudo de conceitos relacionados aos números

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/14 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Prof. Leonardo Augusto Casillo

Prof. Leonardo Augusto Casillo UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Aula 1 Sistemas de numeração posicional Aula 2 Modificadores e conectores lógicos Prof. Leonardo Augusto Casillo OBJETIVOS DO CURSO

Leia mais

Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides

Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides 1 Máximo Divisor Comum Definição 1.1 Sendo a um número inteiro, D a indicará o conjunto de seus divisores positivos,

Leia mais

Programação Estruturada

Programação Estruturada Programação Estruturada Recursão Professores Emílio Francesquini e Carla Negri Lintzmayer 2018.Q3 Centro de Matemática, Computação e Cognição Universidade Federal do ABC Recursão Recursão 1 Recursão 2

Leia mais

Algoritmo de Euclides Estendido, Relação de Bézout e Equações Diofantinas. O Algortimo de Euclides Estendido. Tópicos Adicionais

Algoritmo de Euclides Estendido, Relação de Bézout e Equações Diofantinas. O Algortimo de Euclides Estendido. Tópicos Adicionais Algoritmo de Euclides Estendido, elação de Bézout e Equações Diofantinas O Algortimo de Euclides Estendido Tópicos Adicionais Tópicos Adicionais O Algoritmo de Euclides Estendido 1 Exercícios Introdutórios

Leia mais

MC102 Algoritmos e Programação de Computadores

MC102 Algoritmos e Programação de Computadores MC102 Algoritmos e Programação de Computadores Instituto de Computação UNICAMP Primeiro Semestre de 2014 Roteiro 1 Maior número 2 Soma de n números 3 Fatorial 4 Máximo Divisor Comum (MDC) 5 Números primos

Leia mais

Implementações aritméticas

Implementações aritméticas PMO v.5, n.1, 2017 ISSN: 2319-023X https://doi.org/10.21711/2319023x2017/pmo51 Implementações aritméticas Evilson Resumo Neste trabalho apresentamos uma implementação para execução manual do algoritmo

Leia mais

Esta disciplina auxilia em todas as outras áreas da Matemática. Isso porque veremos noções de lógica e de demonstrações matemáticas.

Esta disciplina auxilia em todas as outras áreas da Matemática. Isso porque veremos noções de lógica e de demonstrações matemáticas. Noções Básicas Esta disciplina auxilia em todas as outras áreas da Matemática. Isso porque veremos noções de lógica e de demonstrações matemáticas. Numa visão bem geral, veremos: Quais são as principais

Leia mais

Organização de Computadores I

Organização de Computadores I Organização de Computadores I Aula 3 Material: Diego Passos http://www.ic.uff.br/~debora/orgcomp/pdf/parte3.html Organização de Computadores I Aula 3 1/17 Tópicos Numéricas. entre bases. de conversão..

Leia mais