Elementos de Matemática Finita

Tamanho: px
Começar a partir da página:

Download "Elementos de Matemática Finita"

Transcrição

1 Elementos de Matemática Finita Exercícios Resolvidos 1 - Algoritmo de Euclides; Indução Matemática; Teorema Fundamental da Aritmética 1. Considere os inteiros a 406 e b 654. (a) Encontre d mdc(a,b), o máximo divisor comum entre a e b. (b) Encontre inteiros x e y, que satisfaçam a identidade de Bézout ax + by d. (c) Resolva a equação diofantina ax + by 10, com x, y inteiros e y > 0. (d) É possível resolver a equação ax + by 184 com x,y inteiros? Resolução: (a) Para determinar o mdc, usamos o algoritmo de Euclides, fazendo sucessivas divisões com resto: Logo mdc(406,654) mdc(654,444) mdc(18,6) 6. (b) Vamos usar o desenvolvimento do algoritmo de Euclides na alínea (a) para obter uma identidade da forma ax + by 6. Assim, escrevemos: ( 1) ( 1) (10 8 4) ( 1) ( 1) (444 10) ( 19) ( 19) ( ) ( 19) ( 19) ( ) ( 103) 654. Assim, (x, y) (8, 103) é uma solução. (c) Para resolver a equação ax+by 10 primeiro verificamos que 6 é divisor 1

2 de 10. De facto, Como a, b e c 10 são todos divisíveis por 6, a equação dada é equivalente a x y x + 109y 17. A identidade da alínea (a) mostra que x : 8, y : 103 é solução da equação 401x + 109y 1 (pois esta última equivale a 406x + 654y 6). Assim, (x 0,y 0 ) : (17 (8),17 ( 103))) (476, 1751) é solução da equação pedida. No entanto, a coordenada y é negativa. Para encontrar uma outra solução com y positivo, usamos o facto de que todas as soluções de 401x + 109y 17 (note-se que 401 e 109 são primos entre si) são dadas por (x k,y k ) (x k, y 0 401k), k Z. Assim, basta encontrar k inteiro de modo a ter k positivo. Temos que ter k 5. Por exemplo, com k 5, obtemos (x k,y k ) ( 69,54). [Verificação: 401 ( 69) ] (d) Como 184/ , 6 não é divisor de 184, pelo que a equação dada não tem soluções inteiras.. Mostre as seguintes propriedades da relação de divisibilidade, com a,b Z: (a) Para todos os inteiros a,k, temos a ka; (b) Se a b para todo o a Z, então b 0; Se a b para todo o b Z, então a ±1; (c) Sejam a, b Z. Se a b e b a então a b ; Resolução: (a) Sejam a,k Z. Por definição a ka q Z tal que ka qa. Esta afirmação é válida com q : k, pelo que a ka verifica-se sempre. (b) A expressão a b a Z, significa, por definição, que b é um inteiro tal que, para todo a inteiro, existe q Z, tal que b qa. Seja a > b > 0; Então a b é impossível (pois para isso teríamos q b a, que não é inteiro). Seja 0 > b > a; então novamente, a b é impossível (pela mesma razão). Assim, b só pode ser 0. De facto, com b 0 basta escolher q 0 para termos 0 0 a para todo o a Z. A expressão a b b Z, significa, por definição, que a é um inteiro tal que, para todo b inteiro, existe q Z, tal que b qa. Seja a um número natural maior que 1. Então a + 1 N e a não divide a + 1, pois o resto da divisão de a + 1 por a é 1. Se a 0 não há forma de encontrar q para resolver a equação b q 0 com b 0. Mas se a 1, dado b Z temos sempre 1 b pois existe q Z (de facto, q : b) tal que b q 1. Assim, se a N, a única hipótese é a 1. Do mesmo modo, se a N, verifica-se que a única hipótese é a 1. (c) Sejam a,b positivos. Então a b e b a implica que a b e b a respectivamente. Logo a b. Se a é positivo e b negativo, seja c b. Aplicando o raciocínio anterior, temos a b. Os outros casos são análogos, pelo que se sempre se conclui que a b. 3. Mostre ou indique um contra-exemplo para as seguintes afirmações:

3 (a) Sejam a, b, c Z. Se a bc então a b ou a c; (b) Sejam a,b,q,r Z tais que a bq + r. Então (a,b) (b,r); (c) Sejam m e n naturais cujas factorizações em primos não contém primos em comum. Então mdc(m,n) 1. (d) Sejam a,b Z. Se mdc(a,b) d então mdc( a d, b d ) 1. (e) Para a,b Z, e k N, temos mdc(ka,kb) k mdc(a,b). Resolução: (a) A afirmação é falsa em geral. Por exemplo, se a 6, b 3 e c 4 temos que a bc pois 6 1. No entanto, 6 não divide nem 3, nem 4. A afirmação é verdadeira nos casos em que a é primo (visto nas aulas), ou em que (b,c) 1 (ver o problema seguinte). (b) Seja d (a,b). Então d a e d b. Logo, d (a bq) pelo que d r. Logo d é um divisor comum a r e a b. Seja c um outro inteiro que divide b e r simultaneamente. Então também divide a bq + r. Como c divide a e b, então divide d (por definição de d (a,b)). Assim, qualquer divisor comum a b e r divide d. Conclui-se então que d é o mdc de b e r. (c) Vamos supor que d m, com d > 1. Seja p um primo que divide d. Então, pela transitividade, p m. Logo, se um inteiro é divisível por d > 1, então existe pelo menos um primo que o divide. Seja d > 1 um divisor comum a m e n. Então, há um primo p que divide m e n simultaneamente. Sejam m p 1 p r e n q 1 q s as factorizações de m e n. Por hipótese, nenhum dos p s é igual a um dos q s. Mas p p 1 p r implica que p p i para algum i (estamos a considerar os p i s podem ser iguais). Da mesma forma p n significa que p q 1 q s implica p q j para algum j. Isto contradiz o facto de {p 1,,p r } {q 1,,q s }. Logo, apenas d 1 divide simultaneamente m e n. (d) Se (a,b) d então, pela aplicação do algoritmo de Euclides, existe solução inteira de ax + by d. Mas a/d e b/d são também inteiros e aquela equação é equivalente a a d x + b d y 1. Seja ( a d, b d ) c. Então temos c a d e c b d, e esta equação implica c 1. Mas isto quer dizer que c 1. (e) Seja d mdc(a,b). Então kd ka e kd kb, porque d a e d b. Logo kd é um divisor comum a ka e kb. Por outro lado, pela identidade de Bézout, é possível resolver a equação d ax + by, com x,y Z, equação que equivale a kd kax + kby. Consideremos c Z tal que c ka e c kb. Pela última equação c kd. Assim, por definição, kd é o máximo divisor comum entre ka e kb. 4. Seja ( ) n k n! k!(n k)! o coeficiente binomial, para n k 0. Por convenção, assumimos que, para outros valores inteiros de n e k, ( n k) 0. Mostre, por indução, que ( ) n k n 1 j0 ( ) j. 3

4 Resolução: Vamos fixar um k N. Seja P(n,k) a equação acima, que se pretende mostrar. Seja n k. Então, a equação fica ( ) n n n 1 ( j j0 n 1) ( n 1), (são n 1 parcelas nulas, quando j < n 1) que equivale a 1 1 (pois 0! 1). Assim, mostrámos o passo base da indução. Assumimos agora que a fórmula é válida para n k. Temos então: ( ) n + 1 (n + 1)! k k!(n + 1 k)! (n + 1 k)n! k!(n + 1 k)! + k n! k!(n + 1 k)! n! k!(n k)! + n! ()!(n + 1 k)! ( n k n j0 ) + ( n ( ) j, (n + 1)n! (n + 1 k)n! + k n! k!(n + 1 k)! k!(n + 1 k)! ) n 1 j0 ( j ) + ( ) n onde a hipótese de indução foi usada na igualdade da penúltima linha. 5. Seja n um natural e sejam b 1,,b n números reais positivos. Mostre, por indução, que a sua média aritmética é superior ou igual á sua média geométrica, isto é: b b n n (b 1 b n ) 1 n. Resolução: Para n 1 temos um número real b b 1. A desigualdade fica, b 1 (b)1 que é verdadeira. Assumimos agora que a desigualdade acima é válida para quaisquer b 1,,b n reais positivos. Consideremos então a 1,,a n+1 reais positivos arbitrários. Seja A : (a 1 a n+1 ) 1 ou seja A n+1 a 1 a n+1. Assim, existe pelo menos um par de índices distintos, i,j [n + 1] {1,,n + 1} tais que a i A a j > 0. Sem perda de generalidade, podemos assumir que esses índices são n e n + 1, ou seja, a n A a n+1 > 0. Isto significa que 0 1 A (a n A)(a n+1 A) a na n+1 A + A (a n + a n+1 ) (1) Seja b 1 : a 1,..., b n 1 : a n 1, mas agora b n : ana n+1 A. Então, usando a equação (1) na segunda linha: a a n+1 a a n 1 + a n + a n+1 a a n 1 + a na n+1 + A A b b n + A n(b 1 b n ) 1 n + A n(a 1 a n 1 a n a n+1 A ) 1 n + A n(a n+1 1 A ) 1 n + A na + A (n + 1)A (n + 1)(a 1 a n+1 ) 1 n+1 como queriamos provar (o passo de indução é usado na terceira linha). n+1, 4

5 6. Considere a seguinte afirmação, evidentemente falsa, em geral: P(n) : n k0 k n + n + 1. Vamos assumir que a proposição é válida para um dado natural n. Então n+1 n k (n+1)+ k n+1+ n + n + 1 k0 k0 n + 3n + 3 (n + 1) + (n + 1) + 1, que é a afirmação P(n+1). Uma vez que o princípio de indução foi correctamente aplicado, porque é que P(n) não é verdadeira para todo o natural n? Resolução: Porque não começámos a indução num certo P(n 0 ) que fosse verdadeiro. De facto, por exemplo P(1) significaria que 1 k0 k , o que é falso. Da mesma forma, P() é falsa, etc, pelo que não conseguimos encontrar o natural n 0 a partir do qual aplicar a indução. 7. Seja m p k 1 1 pkr r a factorização de m Z em primos distintos (todos os k i > 0), e d > 0. Então d m se e só a factorização de d é p l 1 1 p lr r com l i 0, i 1,,r. Resolução: Seja d divisor positivo de m. Seja p um primo que entra na factorização de d. Então p d logo, pela transitividade, p m ou seja, p p k 1 1 pkr r. Assim p p k i i para algum i 1,,r. Mas p p k i i equivale a p p i (como se verifica facilmente), ou seja p p i, para algum i. Concluímos que todos os primos que entram na factorização de d pertencem a {p 1,,p r }. É fácil de ver que p l 1 1 p lr r p k 1 1 pkr r sempre que 0 l i k i (pois p k 1 1 pkr r q p l 1 1 p lr r, para certo q Z). Reciprocamente, se l i > k i então p l i i não divide p k i i, e a conclusão segue uma vez que todos os primos nesta factorização foram considerados distintos (ou seja p i p j para i e j índices distintos entre 1 e r). 8. Seja φ a função de Euler. (a) Uma função f : N N diz-se multiplicativa se f(mn) f(m)f(n) sempre que m e n sejam primos entre si. Mostre que a função φ de Euler é multiplicativa. (b) Prove que, se p 1,,p r são os inteiros que dividem um dado natural m N, então ) ) φ(m) m (1 1p1 (1 1pr. Resolução: (a) Por definição, φ(n) S n, onde S n é o conjunto de naturais n que são primos com n. Sejam m, n dois naturais primos entre si, (m, n) 1. Vamos encontrar uma bijecção entre S mn e o produto cartesiano S m S n, o que basta para mostrar: φ(mn) S mn S m S n S m S n φ(m)φ(n). 5

6 Definimos então: ψ : S mn S m S n a (a m,a n ) onde, para cada a S mn, definimos a m [m] : {1,,m} e a n [n] como, respectivamente, o resto da divisão inteira de a por m, e o resto da divisão por n. Primeiro, verificamos que ψ está bem definida. De facto, se a S mn então (a, mn) 1. Logo, (a, m) 1 e (a, n) 1 (de verificação elementar, ou pelo teorema fundamental da aritmética). Pelo algoritmo de Euclides, (a,m) (m,a m ) (a,n) (n,a n ) 1. Assim, ψ está bem definida pois a m S m e a n S n. (Note-se que os casos a m 0 ou a n 0 não podem ocorrer). Vamos agora verificar que ψ é bijectiva. Para a sobrejectividade, seja (b,c) S m S n [m] [n]. Temos que encontrar a S mn tal que ψ(a) (b,c), ou seja (b,c), são os restos da divisão de algum a S mn por m e por n. Como m e n são primos, sabemos que a equação xm yn c b tem solução, para algum par de inteiros (x,y) Z. Assim, seja a : xm + b yn + c. () Podemos ver facilmente que a é primo com mn, ou seja (a,mn) 1 (o que se deixa ao leitor). Somando um múltiplo apropriado de mn, podemos garantir que a a + kmn [mn]. Assim, provámos que ψ é sobrejectiva. Suponhase agora que ψ(a) ψ(a ) (a m,a n ). Isso corresponde a encontrar outra solução da equação (). Como as soluções são parametrizadas por (x, y) (x 0 + kn,y 0 + km), quaisquer duas soluções a e a diferem por um múltiplo de mn, e concluimos que existe uma única solução em [mn] {1,, mn}. Assim, ψ é sobrejectiva e injectiva, pelo que é bijectiva, como pretendido. (b) Vamos usar os casos simples, em que sabemos φ(p k ) p k p k 1 quando p é primo (no caso de p k é fácil ver que os naturais p k que não são primos com p k são todos os múltiplos de p, de 1 até p k, e portanto são exactamente p k 1 números). Assim, seja m p k 1 1 pkr r a factorização de m em potências de primos. Usamos agora a propriedade multiplicativa da alínea (a), dado que (p k i i,pk j ) 1 sempre que i j. Temos então: como pretendido. j φ(nm) φ(p k 1 1 pkr r ) φ(p k 1 1 ) φ(pkr r ) (p k 1 1 pk 1 1 p k 1 1 pkr r m 1 ) (p kr r p kr 1 r ) ) ) (1 1p1 (1 1pr ) (1 1pr (1 1p1 ) 6

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos - Princípio de Indução; Algoritmo de Euclides 1. Seja ( n) k n! k!(n k)! o coeficiente binomial, para n k 0. Por convenção, assumimos que, para outros

Leia mais

Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 42

Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 42 1 / 42 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 42 1 Combinatória 2 3 Grafos 3 / 42 Capítulo 2 4 / 42 Axiomática dos Inteiros Sejam a e b inteiros. Designaremos

Leia mais

1 Congruências e aritmética modular

1 Congruências e aritmética modular 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

a = bq + r e 0 r < b.

a = bq + r e 0 r < b. 1 Aritmética dos Inteiros 1.1 Lema da Divisão e o Algoritmo de Euclides Recorde-se que a, o módulo ou valor absoluto de a, designa a se a N a = a se a / N Dados a, b, c Z denotamos por a b : a divide b

Leia mais

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1?

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1? 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que: Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que

Leia mais

Roteiro da segunda aula presencial - ME

Roteiro da segunda aula presencial - ME PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência

Leia mais

Elementos de Matemática Finita ( ) Exercícios resolvidos

Elementos de Matemática Finita ( ) Exercícios resolvidos Elementos de Matemática Finita (2016-2017) Exercícios resolvidos Ficha 3-2. Em que classes de congruência mod 8 estão os quadrados perfeitos? 4926834923 poderá ser a soma de dois quadrados perfeitos? Resolução:

Leia mais

Programa Combinatória Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 52

Programa Combinatória Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 52 1 / 52 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 52 Programa 1 Combinatória 2 Aritmética Racional 3 Grafos 3 / 52 Capítulo 1 Combinatória 4 / 52 Princípio

Leia mais

Equações Diofantinas I

Equações Diofantinas I Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula 8 Equações Diofantinas I Exemplo 1. Em Gugulândia, o jogo de basquete é jogado com regras diferentes. Existem

Leia mais

MAT Álgebra I para Licenciatura 2 a Lista de exercícios

MAT Álgebra I para Licenciatura 2 a Lista de exercícios MAT0120 - Álgebra I para Licenciatura 2 a Lista de exercícios 1. Quais são os números de cifras iguais que são divisíveis por 3? Idem, por 9? Idem por 11? 2. Determinar mmc (56, 72) e mmc (119, 272). 3.

Leia mais

a = bq + r e 0 r < b.

a = bq + r e 0 r < b. 1 Aritmética dos Inteiros 1.1 Lema da Divisão e o Algoritmo de Euclides Recorde-se que a, o módulo ou valor absoluto de a, designa a se a N a = a se a / N Dados a, b Z denotamos por a b : a divide b ou

Leia mais

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1.

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1. Como seria de esperar, o Teorema Fundamental da Aritmética tem imensas consequências importantes. Por exemplo, dadas factorizações em potências primas de dois inteiros, é imediato reconhecer se um deles

Leia mais

1 Potências e raízes em Aritmética Modular. Seja p primo e a um inteiro primo com p; a aplicação

1 Potências e raízes em Aritmética Modular. Seja p primo e a um inteiro primo com p; a aplicação 1 Potências e raízes em Aritmética Modular 1.1 Os Teoremas de Fermat e Euler Seja p primo e a um inteiro primo com p; a aplicação Z /p Z /p, x ax definida pela multiplicação por a (ou mais precisamente

Leia mais

ax + by 347 = 0 k = text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: DOCENTES: Gilda Ferreira e Ana Nunes

ax + by 347 = 0 k = text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: DOCENTES: Gilda Ferreira e Ana Nunes text UNIDADE CURRICULAR: Matemática Finita CÓDIGO: 21082 DOCENTES: Gilda Ferreira e Ana Nunes Resolução e Critérios de Correção 1. Sejam a, b Z tais que mdc(a, b) = 12. Relativamente à equação ax + by

Leia mais

FUNDAMENTOS DE MATEMÁTICA DISCRETA

FUNDAMENTOS DE MATEMÁTICA DISCRETA FUNDAMENTOS DE MATEMÁTICA DISCRETA CARLOS A. A. FLORENTINO SETEMBRO 2014 Conteúdo Prefácio 2 Parte 1. NÚMEROS 3 1. Números Inteiros 3 2. Números Racionais 19 3. Números Modulares 23 4. Números Cardinais

Leia mais

MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (6/6) Carlos Luz. EST Setúbal / IPS Maio 2012

MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (6/6) Carlos Luz. EST Setúbal / IPS Maio 2012 MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (6/6) Carlos Luz EST Setúbal / IPS 21 27 Maio 2012 Carlos Luz (EST Setúbal / IPS) Aritmética Racional (6/6) 21 27 Maio 2012 1 / 15 Congruências Lineares De nição

Leia mais

ALGORITMO DE EUCLIDES

ALGORITMO DE EUCLIDES Sumário ALGORITMO DE EUCLIDES Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 25 de agosto de 2017 Sumário 1 Máximo Divisor Comum 2 Algoritmo

Leia mais

Algoritmo de Euclides Estendido, Relação de Bézout e Equações Diofantinas. Tópicos Adicionais

Algoritmo de Euclides Estendido, Relação de Bézout e Equações Diofantinas. Tópicos Adicionais Algoritmo de Euclides Estendido, Relação de Bézout e Equações Diofantinas Relação de Bézout e Aplicações Tópicos Adicionais Algoritmo de Euclides Estendido, Relação de Bézout e Equações Diofantinas Relação

Leia mais

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE ANA PAULA CHAVES AND THIAGO PORTO 1. Introdução Os temas centrais deste texto - bases numéricas e critérios de divisibilidade

Leia mais

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011 Lic. em Ciências da Computação Matemática Discreta Introdução à Teoria de Números - Exercícios 1 o ano - 2010/2011 1. Determine o quociente e o resto na divisão de: (a) 310156 por 197; (b) 32 por 45; (c)

Leia mais

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares Introdução à Teoria dos Números 2018 - Notas de Aulas 3 Prof Carlos Alberto S Soares 1 Números Primos e o Teorema Fundamental da Aritmética Em notas anteriores já definimos os números primos, isto é, números

Leia mais

Portal da OBMEP. Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano

Portal da OBMEP. Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Máximo divisor comum Nesta aula, estudaremos métodos para

Leia mais

Números inteiros. Sandro Marcos Guzzo

Números inteiros. Sandro Marcos Guzzo Números inteiros Sandro Marcos Guzzo Cascavel - Pr Agosto de 2013 1 Construção do conjunto dos números inteiros O conjunto dos números inteiros, designado por Z será aqui construído a partir do conjunto

Leia mais

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares Introdução à Teoria dos Números 2018 - Notas de Aulas 3 Prof Carlos Alberto S Soares 1 Números Primos e o Teorema Fundamental da Aritmética Em notas anteriores já definimos os números primos, isto é, números

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2017.1 Gabarito Questão 01 [ 1,25 ] Determine as equações das duas retas tangentes à parábola de equação y = x 2 2x + 4 que passam pelo ponto (2,

Leia mais

U.C Matemática Finita. 6 de junho de Questões de escolha múltipla

U.C Matemática Finita. 6 de junho de Questões de escolha múltipla Ministério da Ciência, Tecnologia e Ensino Superior U.C. 21082 Matemática Finita 6 de junho de 2018 - Resolução e Critérios de Avaliação - Questões de escolha múltipla 1. (Exame e P-fólio De quantas maneiras

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática MA12 - Matemática Discreta - PROFMAT Prof.

UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática MA12 - Matemática Discreta - PROFMAT Prof. UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática MA - Matemática Discreta - PROFMAT Prof. Zeca Eidam Lista Números Naturais e o Princípio de Indução. Prove que

Leia mais

Análise I Solução da 1ª Lista de Exercícios

Análise I Solução da 1ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado

Leia mais

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível

Leia mais

MDC, MMC, Algoritmo de Euclides e o Teorema de Bachet-Bézout

MDC, MMC, Algoritmo de Euclides e o Teorema de Bachet-Bézout Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 3 MDC, MMC, Algoritmo de Euclides e o Teorema de Bachet-Bézout 1 mdc, mmc e Algoritmo de Euclides Dados

Leia mais

Notas sobre os anéis Z m

Notas sobre os anéis Z m Capítulo 1 Notas sobre os anéis Z m Estas notas complementam o texto principal, no que diz respeito ao estudo que aí se faz dos grupos e anéis Z m. Referem algumas propriedades mais específicas dos subanéis

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Inteiros e divisão Definição: Se a e b são inteiros com a 0, dizemos que a divide

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Texto de apoio às aulas. Amélia Bastos, António Bravo Dezembro 2010 Capítulo 1 Números reais As propriedades do conjunto dos números reais têm por base um conjunto restrito

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Tópicos de Matemática Elementar 2 a série de exercícios 2004/05. A seguinte prova por indução parece correcta, mas para n = 6 o lado esquerdo é igual a 2 + 6 + 2 + 20 + 30 = 5 6, enquanto o direito é igual

Leia mais

MA14 - Aritmética Unidade 20 Resumo. Teoremas de Euler e de Wilson

MA14 - Aritmética Unidade 20 Resumo. Teoremas de Euler e de Wilson MA14 - Aritmética Unidade 20 Resumo Teoremas de Euler e de Wilson Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio

Leia mais

Primeiro Desao Mestre Kame

Primeiro Desao Mestre Kame Primeiro Desao Mestre Kame Alan Anderson 8 de julho de 2017 O propósito dessa lista é gerar uma intuição numérica das demonstrações abstratas do teoremas famosos de Teoria dos números, de modo que alguns

Leia mais

MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco

MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco MATEMÁTICA 1 Professor Matheus Secco MÓDULO 2 Divisibilidade 1. DIVISIBILIDADE 1.1 DEFINIÇÃO: Dizemos que o inteiro a é divisível pelo inteiro b (ou ainda que a é múltiplo de b) se existe um inteiro c

Leia mais

Números Inteiros Algoritmo da Divisão e suas Aplicações

Números Inteiros Algoritmo da Divisão e suas Aplicações Números Inteiros Algoritmo da Divisão e suas Aplicações Diferentemente dos números reais (R), o conjunto dos inteiros (Z) não é fechado para a divisão. Esse não-fechamento faz com que a divisão entre inteiros

Leia mais

CIC 111 Análise e Projeto de Algoritmos II

CIC 111 Análise e Projeto de Algoritmos II CIC 111 Análise e Projeto de Algoritmos II Prof. Roberto Affonso da Costa Junior Universidade Federal de Itajubá AULA 21 Number theory Primes and factors Modular arithmetic Solving equations Other results

Leia mais

Referências e materiais complementares desse tópico

Referências e materiais complementares desse tópico Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer Conceitos matemáticos e técnicas de prova (Última atualização:

Leia mais

Algoritmo de Euclides Estendido, Relação de Bézout e Equações Diofantinas. O Algortimo de Euclides Estendido. Tópicos Adicionais

Algoritmo de Euclides Estendido, Relação de Bézout e Equações Diofantinas. O Algortimo de Euclides Estendido. Tópicos Adicionais Algoritmo de Euclides Estendido, elação de Bézout e Equações Diofantinas O Algortimo de Euclides Estendido Tópicos Adicionais Tópicos Adicionais O Algoritmo de Euclides Estendido 1 Exercícios Introdutórios

Leia mais

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com três variáveis - Parte 1. Terceiro Ano do Ensino Médio

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com três variáveis - Parte 1. Terceiro Ano do Ensino Médio Material Teórico - Sistemas Lineares e Geometria Anaĺıtica Sistemas com três variáveis - Parte 1 Terceiro Ano do Ensino Médio Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto

Leia mais

Se mdc(a,m) = 1, como a é invertível módulo m, a equação. ax b (mod m)

Se mdc(a,m) = 1, como a é invertível módulo m, a equação. ax b (mod m) Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 8 Equações lineares módulo n e o teorema chinês dos restos 1 Equações Lineares Módulo m Se mdc(a,m) = 1,

Leia mais

11.1) Noções Elementares 11.2) MDCs e algoritmos de Euclides 11.3) Aritmética modular 11.4) Aplics da MD: O sistema criptográfico RSA

11.1) Noções Elementares 11.2) MDCs e algoritmos de Euclides 11.3) Aritmética modular 11.4) Aplics da MD: O sistema criptográfico RSA Teoria de Números 11.1) Noções Elementares 11.2) MDCs e algoritmos de Euclides 11.3) Aritmética modular 11.4) Aplics da MD: O sistema criptográfico RSA Material extraído dos livros-textos (Cormen( Cormen)

Leia mais

Soma de Quadrados. Faculdade de Matemática, UFU, MG

Soma de Quadrados. Faculdade de Matemática, UFU, MG Soma de Quadrados Stela Zumerle Soares 1 Antônio Carlos Nogueira (stelazs@gmailcom (anogueira@ufubr Faculdade de Matemática, UFU, MG 1 Resultados Preliminares Historicamente, um problema que tem recebido

Leia mais

3.3 Congruências e aritmética modular

3.3 Congruências e aritmética modular 40 CHAPTER 3. ELEMENTOS DE ARITMÉTICA DOS INTEIROS 3.3 Congruências e aritmética modular Consideremos primeiro o seguinte exemplo: o que podemos dizer sobre a imagem da função f : Z Z, f(x) =x 2 + x +

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste 0.º Ano de escolaridade Versão Nome: N.º Turma: Professor: José Tinoco 0/0/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma

Leia mais

Ordens e raízes primitivas

Ordens e raízes primitivas Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 7 Ordens e raízes primitivas 1 Polinômios Dado um anel comutativo K, definimos o anel comutativo K[x] como

Leia mais

Projecto Delfos: Escola de Matemática Para Jovens 1 TEORIA DOS NÚMEROS

Projecto Delfos: Escola de Matemática Para Jovens 1 TEORIA DOS NÚMEROS Projecto Delfos: Escola de Matemática Para Jovens 1 A Teoria dos Números tem como objecto de estudo o conjunto Z dos números inteiros (a letra Z vem da palavra alemã Zahl que significa número). 1. DIVISIBILIDADE

Leia mais

Matemática A - 10 o Ano

Matemática A - 10 o Ano Matemática A - 10 o Ano Resolução da Ficha de Trabalho Álgebra - Divisão Inteira de Polinómios Grupo I 1. Considerando os polinómios p e b no enunciado temos que o termo de maior grau de p b é a nx n b

Leia mais

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de

Leia mais

MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (2/6) Carlos Luz. EST Setúbal / IPS Abril 2012

MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (2/6) Carlos Luz. EST Setúbal / IPS Abril 2012 MATEMÁTICA DISCRETA ARITMÉTICA RACIONAL (2/6) Carlos Luz EST Setúbal / IPS 16 22 Abril 2012 Carlos Luz (EST Setúbal / IPS) Aritmética Racional (2/6) 16 22 Abril 2012 1 / 15 Divisão Inteira Teorema Sendo

Leia mais

Sejam A o conjunto de todos os seres humanos e B o conjunto de todos os livros. Consideremos

Sejam A o conjunto de todos os seres humanos e B o conjunto de todos os livros. Consideremos Correspondências e funções O principal problema da combinatória enumerativa é saber quantos elementos tem um dado conjunto finito. Além disso, dedica-se a encontrar procedimentos e estratégias para a forma

Leia mais

Resumo. Palavras-chave: implementações aritméticas; inverso modular; sistema de restos.

Resumo. Palavras-chave: implementações aritméticas; inverso modular; sistema de restos. 2017, NÚMERO 1, VOLUME 5 ISSN 2319-023X Universidade Federal de Sergipe - UFS evilson@ufs.br Resumo Neste trabalho apresentamos uma implementação para execução manual do algoritmo estendido das divisões

Leia mais

Semana Olímpica 2019

Semana Olímpica 2019 Semana Olímpica 2019 Prof a Ana Paula Chaves apchaves.math@gmail.com Nível 1 Congruência 1. Divisibilidade e Aritmética Modular Um dos tópicos mais fundamentais da teoria dos números é, sem dúvidas, a

Leia mais

Lógica Matemática - Indução

Lógica Matemática - Indução Lógica Matemática - Indução Prof. Elias T. Galante - 017 Breve introdução losóca à indução Raciocinar é inferir, ou seja, passar do que já se conhece de algum modo ao que ainda não se conhece. Este processo

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A 3.º Teste 0.º Ano de escolaridade Versão 5 Nome: N.º Turma: Professor: José Tinoco 0/0/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste 0.º Ano de escolaridade Versão 4 Nome: N.º Turma: Professor: José Tinoco 0/0/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma

Leia mais

Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides

Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides 1 Máximo Divisor Comum Definição 1.1 Sendo a um número inteiro, D a indicará o conjunto de seus divisores positivos,

Leia mais

Os números inteiros. Álgebra (Curso de CC) Ano lectivo 2005/ / 51

Os números inteiros. Álgebra (Curso de CC) Ano lectivo 2005/ / 51 Os números inteiros Abordaremos algumas propriedades dos números inteiros, sendo de destacar o Algoritmo da Divisão e o Teorema Fundamental da Aritmética. Falaremos de algumas aplicações como sejam a detecção

Leia mais

Equações Diofantinas + = polinómios conhecidos polinómios desconhecidos

Equações Diofantinas + = polinómios conhecidos polinómios desconhecidos 23 Considere-se a equação Equações Diofantinas polinómios conhecidos polinómios desconhecidos Há soluções? Quantas soluções há para uma dada equação? Em geral, a equação pode ser definida num anel (exs.

Leia mais

Projecto Delfos: Escola de Matemática Para Jovens 1 Experiências com a Matemática Teoria dos Números

Projecto Delfos: Escola de Matemática Para Jovens 1 Experiências com a Matemática Teoria dos Números Projecto Delfos: Escola de Matemática Para Jovens 1 A teoria dos números (elementar) é no essêncial a teoria dos números inteiros Z = {..., 3, 2, 1, 0, 1, 2, 3,...}. Encontram-se de entre os problemas

Leia mais

O Teorema de P. Hall

O Teorema de P. Hall UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE MATEMÁTICA O Teorema de P. all Rafael Bezerra dos Santos Disciplina: Seminário III - Tópicos Especiais em Teoria de Grupos

Leia mais

Demonstração. Sabemosqueϕémultiplicativa. Poroutrolado,sen = p α pαm m é a fatoração canônica de n em primos então temos uma fórmula explícita

Demonstração. Sabemosqueϕémultiplicativa. Poroutrolado,sen = p α pαm m é a fatoração canônica de n em primos então temos uma fórmula explícita Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 15 Funções multiplicativas e a função de Möbius 1 Funções Multiplicativas Umafunçãof definidasobren >0 éditamultiplicativa

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero.

obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero. Lista 1 - Teoria de Anéis - 2013 Professor: Marcelo M.S. Alves Data: 03/09/2013 obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero. 1. Os conjuntos

Leia mais

Tópicos de Matemática. Teoria elementar de conjuntos

Tópicos de Matemática. Teoria elementar de conjuntos Tópicos de Matemática Lic. em Ciências da Computação Teoria elementar de conjuntos Carla Mendes Dep. Matemática e Aplicações Universidade do Minho 2010/2011 Tóp. de Matemática - LCC - 2010/2011 Dep. Matemática

Leia mais

XIX Semana Olímpica de Matemática. Nível 2. Divisibilidade. Carlos Shine

XIX Semana Olímpica de Matemática. Nível 2. Divisibilidade. Carlos Shine XIX Semana Olímpica de Matemática Nível 2 Divisibilidade Carlos Shine O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Divisibilidade Carlos Shine 1 Alguns princípios básicos Combinação

Leia mais

Cálculo Diferencial e Integral Química Notas de Aula

Cálculo Diferencial e Integral Química Notas de Aula Cálculo Diferencial e Integral Química Notas de Aula João Roberto Gerônimo 1 1 Professor Associado do Departamento de Matemática da UEM. E-mail: jrgeronimo@uem.br. ÍNDICE 1. INTRODUÇÃO Esta notas de aula

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +

Leia mais

Dízimas e intervalos encaixados.

Dízimas e intervalos encaixados. Dízimas e intervalos encaixados. Recorde que uma dízima com n casas decimais é um número racional da forma a 0.a a 2...a n = a 0 + a 0 + a 2 0 2 + + a n n 0 n = a j 0 j em que a 0,a,...,a n são inteiros

Leia mais

ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011

ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011 Uma Resolução ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011 1. Seleccione e transcreva para a sua folha de exame a única opção correcta: A fórmula proposicional (p q) (p q) é a) logicamente

Leia mais

Algoritmo de Euclides Estendido, Relação de Bézout e Equações Diofantinas. Equações Diofantinas. Tópicos Adicionais

Algoritmo de Euclides Estendido, Relação de Bézout e Equações Diofantinas. Equações Diofantinas. Tópicos Adicionais Algoritmo de Euclides Estendido, Relação de Bézout e Equações Diofantinas Equações Diofantinas Tópicos Adicionais Tópicos Adicionais Equações Diofantinas 1 Exercícios Introdutórios Exercício 1. Determine

Leia mais

Aritmética dos Restos. Problemas com Congruências. Tópicos Adicionais

Aritmética dos Restos. Problemas com Congruências. Tópicos Adicionais Aritmética dos Restos Problemas com Congruências Tópicos Adicionais Aritmética dos Restos Problemas com Congruências 1 Exercícios Introdutórios Exercício 1. inteiro n Prove que n 5 + 4n é divisível por

Leia mais

1 TESTE OPÇÃO II - TEORIA DE NÚMEROS COMPUTACIONAL

1 TESTE OPÇÃO II - TEORIA DE NÚMEROS COMPUTACIONAL 1 TESTE OPÇÃO II - TEORIA DE NÚMEROS COMPUTACIONAL Licenciatura em Matemática 30 de março de 2012 duração 1h 45m Responda, justificando cuidadosamente, às seguintes questões: 1. Calcule uma estimativa

Leia mais

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 2. Divisibilidade I. Samuel Barbosa Feitosa

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 2. Divisibilidade I. Samuel Barbosa Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Samuel Barbosa Feitosa Aula 1 Divisibilidade I Teorema 1. (Algoritmo da Divisão) Para quaisquer inteiros positivos a e b, existe um

Leia mais

Sistemas de Equações Lineares

Sistemas de Equações Lineares Capítulo 2 Sistemas de Equações Lineares 21 Generalidades Chamamos equação linear nas variáveis (incógnitas) x 1, x 2, x 3,, x n uma igualdade da forma a a 1 x 1 + a 2 x 2 + a 3 x 3 + + a n x n = b Os

Leia mais

Objetivos. em termos de produtos internos de vetores.

Objetivos. em termos de produtos internos de vetores. Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes

Leia mais

Congruências I. Por exemplo, 7 2 (mod 5), 9 3 (mod 6), 37 7 (mod 10) mas 5 3 (mod 4). Veja que a b (mod m) se, e somente se, m a b.

Congruências I. Por exemplo, 7 2 (mod 5), 9 3 (mod 6), 37 7 (mod 10) mas 5 3 (mod 4). Veja que a b (mod m) se, e somente se, m a b. Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 6 Congruências I Definição 1. Dizemos que os inteiros a e b são congrentes módulo m se eles deixam o mesmo

Leia mais

1 0 para todo x, multiplicando-se os dois membros por. 2x 1 0 x 1 2. b a x. ba 2. e b 2 c

1 0 para todo x, multiplicando-se os dois membros por. 2x 1 0 x 1 2. b a x. ba 2. e b 2 c CAPÍTULO 1 Exercícios 1..n) Como x 0 para todo x, o sinal de x(x ) é o mesmo que o de x; logo, x(x ) 0 para x 0; x(x ) 0 para x 0; x(x ) 0 para x 0.. n) Como x 1 1 0 para todo x, multiplicando-se os dois

Leia mais

GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 2018

GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 2018 GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 08 ( Seja a R e f(x, y ax + ( ay. Designe por C a a cónica dada por f(x, y 0. (a Mostre que os quatro pontos (±, ± R pertencem a todas as cónicas C a (independentemente

Leia mais

Equações Diofantinas + = polinómios conhecidos polinómios desconhecidos

Equações Diofantinas + = polinómios conhecidos polinómios desconhecidos 24 Considere-se a equação Equações Diofantinas + = polinómios conhecidos polinómios desconhecidos Há soluções? Quantas soluções há para uma dada equação? Em geral, a equação pode ser definida num anel

Leia mais

Equações Diofantinas II

Equações Diofantinas II Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula 1 Equações Diofantinas II Continuaremos nosso estudo das equações diofantinas abordando agora algumas equações

Leia mais

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par. Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um

Leia mais

19 AULA. Princípio da Boa Ordem LIVRO. META Introduzir o princípio da boa ordem nos números naturais e algumas de suas conseqüências.

19 AULA. Princípio da Boa Ordem LIVRO. META Introduzir o princípio da boa ordem nos números naturais e algumas de suas conseqüências. LIVRO Princípio da Boa Ordem META Introduzir o princípio da boa ordem nos números naturais e algumas de suas conseqüências. OBJETIVOS Ao fim da aula os alunos deverão ser capazes de: Aplicar o princípio

Leia mais

1 Números Reais (Soluções)

1 Números Reais (Soluções) Números Reais (Soluções). a) x2 4 b) x c) x d) x e) x f) 2 x+2 g) 2 x(x+2) h) x i) x 2 4 j) x(x + ) + x k) log(x) l) 2 log ( x 2 + x 2). 2. a) x = x 2 b) 2 x c) x d) x 0 x = e) x = 4 x = 2 f) x = x = 2

Leia mais

MA14 - Aritmética Unidade 3. Divisão nos Inteiros (Divisibilidade)

MA14 - Aritmética Unidade 3. Divisão nos Inteiros (Divisibilidade) MA14 - Aritmética Unidade 3 Divisão nos Inteiros (Divisibilidade) Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio

Leia mais

Introdução à Teoria de Grupos Grupos cíclicos Grupos de permutações Isomorfismos

Introdução à Teoria de Grupos Grupos cíclicos Grupos de permutações Isomorfismos Observação Como para k > 1 se tem (a 1, a 2,..., a k ) = (a 1, a k )(a 1, a k 1 ) (a 1, a 2 ), um ciclo de comprimento par é uma permutação ímpar e um ciclo de comprimento ímpar é uma permutação par. Proposição

Leia mais

Polos Olímpicos de Treinamento. Aula 9. Curso de Teoria dos Números - Nível 2. O Teorema de Euler. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 9. Curso de Teoria dos Números - Nível 2. O Teorema de Euler. Prof. Samuel Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 9 O Teorema de Euler Nesta aula, obteremos uma generalização do teorema de Fermat. Definição 1. Dado n N,

Leia mais

MATEMÁTICA MÓDULO 1 TEORIA DOS NÚMEROS 1. DIVISIBILIDADE 1.1. DEFINIÇÃO 1.2. CRITÉRIOS DE DIVISIBILIDADE

MATEMÁTICA MÓDULO 1 TEORIA DOS NÚMEROS 1. DIVISIBILIDADE 1.1. DEFINIÇÃO 1.2. CRITÉRIOS DE DIVISIBILIDADE TEORIA DOS NÚMEROS 1. DIVISIBILIDADE Neste momento inicial, nosso interesse será em determinar quando a divisão entre dois números inteiros é exata, ou seja, quando o resto da divisão é 0. Antes de mais

Leia mais

ENFOQUE USANDO CORTES DE DEDEKIND

ENFOQUE USANDO CORTES DE DEDEKIND Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit CONSTRUÇÃO DOS REAIS: UM ENFOQUE

Leia mais

TEOREMA FUNDAMENTAL DA ARITMÉTICA: APLICAÇÕES

TEOREMA FUNDAMENTAL DA ARITMÉTICA: APLICAÇÕES 4. TEOREMA FUNDAMENTAL DA ARITMÉTICA: APLICAÇÕES 1). Achando os divisores de um número natural 2). Quantidade de divisores de um número natural 3). Decidindo se um número natural divide outro 4). Extrema

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

Aula 14 DOMÍNIOS FATORIAIS META. Estabelecer o conceito de domínio fatorial. OBJETIVOS

Aula 14 DOMÍNIOS FATORIAIS META. Estabelecer o conceito de domínio fatorial. OBJETIVOS Aula 14 DOMÍNIOS FATORIAIS META Estabelecer o conceito de domínio fatorial. OBJETIVOS Aplicar a definição de domínio fatorial na resolução de problemas. Estabelecer a definição de máximo divisor comum

Leia mais

Universidade do Minho

Universidade do Minho Teórica n o 1 2007-02-22 Apresentação do docente e da disciplina. Algumas revisões de teoria de números elementar. O algoritmo de Euclides estendido; demonstração do teorema que fundamenta o algoritmo.

Leia mais

Notas de Aulas. Prof a Maria Julieta Ventura Carvalho de Araujo. Prof. Frederico Sercio Feitosa (colaborador)

Notas de Aulas. Prof a Maria Julieta Ventura Carvalho de Araujo. Prof. Frederico Sercio Feitosa (colaborador) Notas de Aulas Introdução à Teoria dos Números Prof a Maria Julieta Ventura Carvalho de Araujo Prof. Frederico Sercio Feitosa (colaborador) Prof a Beatriz Casulari da Motta Ribeiro (colaboradora) 2016

Leia mais

Chapter Conjuntos

Chapter Conjuntos Chapter Conjuntos, funções e relações: noções básicas.1 Conjuntos Usamos o termo conjunto como um termo primitivo, ou seja, não definido a partir de outros termos. Intuitivamente um conjunto é uma qualquer

Leia mais

Proposição 0 (Divisão Euclidiana): Dados a b, b b * existem q, r b unicamente determinados tais que 0 r < b e a = bq + r

Proposição 0 (Divisão Euclidiana): Dados a b, b b * existem q, r b unicamente determinados tais que 0 r < b e a = bq + r "!$#%& '!)( * +-,/.10 2/3"456387,:9;2 .1?/@.1, ACB DFEHG IJDLK8MHNLK8OHP Q RTSVUVWYXVZ\[^]_W Este artigo se roõe a ser uma referência sobre os temas citados no título, que aarecem naturalmente em diversos

Leia mais