UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática MA12 - Matemática Discreta - PROFMAT Prof.

Tamanho: px
Começar a partir da página:

Download "UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática MA12 - Matemática Discreta - PROFMAT Prof."

Transcrição

1 UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática MA - Matemática Discreta - PROFMAT Prof. Zeca Eidam Lista Números Naturais e o Princípio de Indução. Prove que as identidades abaixo são verdadeiras para todo n N: n(n + ) (a) n = (b) (n ) = n n(n + )(n + ) (c) n(n + ) = 3 (d) n(n + ) = n n + (e) n n(n + )(n + ) = 6 (f) (n ) n(n )(n + ) = 3 (g) ( ) n n n n(n + ) = ( ) ( ) n(n + ) (h) n 3 = (i) (n )(n + ) = n n + (j) (3n )(3n + ) = n 3n + (k) (4n 3)(4n + ) = n 4n + (l) n 4 = n(n + )(n + )(3n + 3n ) 30 (m) (n ) 3 = n (n ) (n) (8n 5) = 4n n.. Prove que para quaisquer a,b R e n N é verificada a fórmula do binômio de Newton: ( ) n (a + b) n n = a j b n j, j ( ) n. onde = j n! para cada 0 j n. j!(n j )! j =0

2 3. Neste problema, vamos estudar uma maneira de deduzir expressões para somas do tipo com k N. k + k n k, (a) Vamos deduzir uma expressão para k = 5. Use o binômio de Newton para mostrar que para todo j N, temos (j + ) 6 j 6 = 6j 5 + 5j 4 + 0j 3 + 5j + 6j +. (b) Some ambos os membros da igualdade acima de j = 0 até j = n e use algumas das fórmulas do exercício () para obter uma fórmula para a soma n Prove as seguintes desigualdades: (a) n! n para todo n 4; (b) n! 3 n para todo n 7; (c) n! 4 n para todo n 9; (d) n n para todo n 3; (e) n n 3 para todo n 5; (f) > n para todo n N; 3 n (g) (Desigualdade de Bernoulli) Se x R, x > e n N então ( + x) n > + nx. (h) Se x R e n N então ( + x) n > + nx. (i) Se x R, x < e n N então ( x) n nx. (j) Mostre que se x R e x 04 então (04 + x) n n(04) n x. 5. Encontre uma expressão condensada para as seguintes somas: (a) + ( + ) + ( + + 3) ( n) (b) n(n + )(n + ) (c) (n )(n + ) (d) n + (n ) + (n ) n (e) (n ) (f) (n ) 4 6. Mostre que j + j < j < j j para todo j N. Somando ambos os membros da desigualdade acima, conclua que ( n + ) < n < n n.

3 7. O conjunto P(X ) das partes de um conjunto X dado é definido por P(X ). = {A : A X }. Se X é finito e tem n elementos, mostre que P(X ) tem n elementos. 8. Sejam X, Y conjuntos não-vazios finitos com m e n elementos, respectivamente. Mostre, por indução sobre n que o conjunto das funções f : X Y tem n m elementos. Obtenha o resultado do exercício anterior a partir deste. 9. Seja f : R R uma função tal que f (x + y) = f (x) + f (y) para todos x, y R. (a) Prove que f (0) = 0. (b) Prove que f (n) = an para todo n N, onde a = f (). (c) Prove que f (n) = an para todo n Z (d) Prove que f (r ) = ar para todo r Q. (e) Será que f (x) = ax para todo x R? 0. Seja f : R R uma função tal que f (x + y) = f (x)f (y) para todos x, y R. (a) Prove que f (0) =. (b) Prove que f (n) = a n para todo n N, onde a = f (). (c) Prove que f (n) = a n para todo n Z (d) Prove que f (r ) = a r para todo r Q. (e) Será que f (x) = ax para todo x R?. Dados m,n N, dizemos que m divide n se existe k N tal que n = km. Este fato é denotado por m n. Prove a veracidade das seguintes afirmações, para todo n N: (a) 6 n 3 + n (b) 9 4 n + 5n (c) 3 n+ 0 3n (d) 7 3n (e) 8 3 n + 7 (f) 7 3 n+ + n+ (g) n 60 n (h) n+ + 3 n+ (i) n+3 6n 7. Sejam a,b N tais que a > b. Prove as seguintes afirmações, para todo n N: (a) a b a n b n (b) a + b a n+ + b n+ 3

4 (c) a + b a n b n (d) Reobtenha alguns ítens do exercício anterior a partir dos ítens acima. (e) a a (f) 3 a 3 a (g) 5 a 5 a (h) 7 a 7 a (i) a a 3. Mostre que (AV-0) Mostre que 7 n é divisível por 6 5. Uma progressão aritmética (PA) com primeiro termo a e razão r é uma sequência de números reais a, a, a 3,... satisfazendo a n = a n + r, para cada n. (a) Prove que a n = a + nr n (b) Prove que a j = (a + a n )n j = 6. Uma progressão geométrica (PG) com primeiro termo a e razão q (q {0,}) é uma sequência de números reais a, a, a 3,... satisfazendo para cada n. a n = a n q, (a) Prove que a n = a q n n (b) Prove que a j = a nq a q 7. (AV-03) j = (a) Se {a n } é uma progressão geométrica de termos positivos, prove que {b n } definida por b n = log a n é uma progressão aritmética. (b) Se {a n } é uma progressão aritmética, prove que {b n } definida por b n = e a n é uma progressão geométrica. 8. (AV-0) A figura abaixo mostra uma linha poligonal que parte da origem e passa uma vez por cada ponto do plano cujas coordenadas são números inteiros não-negativos. 4

5 (a) O conjunto dos pares de números inteiros não-negativos tem a mesma cardinalidade que os números naturais? Por quê? (b) Mostre que o comprimento da linha poligonal da origem até o ponto (n,n) é n + n, para qualquer inteiro não-negativo n. (c) Qual é o comprimento da linha poligonal da origem até o ponto (0,3)? 9. Uma progressão aritmético-geométrica é uma sequência {a n } de números reais tal que a R, q e r R são dados e tem-se a n = qa n + r, (a) Prove que a n = a q n + r qn q n q n (b) Prove que a j = a q + r qn (q ) + r n q j = 0. Seja X N um subconjunto não-vazio satisfazendo as propriedades abaixo: Existe uma família crescente de números naturais k < k < k 3 <... tais que os números pertencem a X, para todo j N. Se n X então n X. Prove que X = N.. Considere a sequência {s n } dada por para cada n N. m j. = 04 k j 37k j s n. = n (a) Mostre que s n > + n (b) Mostre que s n < n 5

6 (c) (AV-03) Mostre que s n > n (d) O que acontece com os valores s n quando n cresce?. Considere a sequência {s n } dada por para cada n N. (a) Mostre que s n < s n+ (b) Mostre que s n > s n+ s n. = ( )n n (c) Mostre que s n < s m+ para todos m,n N. (d) O que acontece com os valores s n quando n cresce? 3. Considere a sequência {x n } definida como x =, x = e x n+ = x n + x n+ para n N. Mostre que x n 4. Considere a sequência {x n } definida por x =, x = para n N. (a) Mostre que x n < x n+ (b) Mostre que x n < x n = + x n, (c) O que acontece com os valores s n quando n cresce?, +, 5. Considere a sequência {x n } definida por x =, x =, para n N. (a) Mostre que x n < x n+ (b) Mostre que x n < x n = x n, (c) O que acontece com os valores s n quando n cresce? 6. (Sobre a construção abstrata do conjunto dos números naturais) Vimos em aula que o conjunto dos números naturais N é um conjunto munido de uma função s : N N chamada função sucessor tal que s é injetora; Existe um elemento, denotado por tal que s(n), 6

7 3 Se uma sentença P(n) é verdadeira para n = e sempre que P(n) é verdadeira, tem-se que P(n + ) é verdadeira, então que P(n) é verdadeira Assumimos a existência de um conjunto com estas propriedades e a partir daí, definimos as operações de soma e produto e a ordem usual. Definimos também a noção essencial de número de elementos de um conjunto finito. Prove as seguintes afirmações: (a) Não existe nenhum número natural n tal que 0 < n <. (b) Mostre que se {k n } é uma sequência de números naturais tais que k k k 3... então existe n N tal que k n = k m para todo m n. (c) Prove que todo subconjunto não-vazio de N tem primeiro elemento. (Princípio da Boa Ordenação) (d) Um conjunto totalmente ordenado é um par (X, ), onde X é um conjunto não-vazio e é uma relação binária entre elementos de X tal que x x para todo x X ; (Reflexividade) Se x y e y z então x z. (Transitividade) 3 Dados x, y X, ou x y ou y x. (Tricotomia) 4 Se x y e y x então x = y. Se A X é não-vazio, um elemento a A é dito ser o menor elemento de A ou primeiro elemento de A se a x para todo x X. X é dito bem-ordenado se todo subconjunto não-vazio de X tem primeiro elemento. Evidentemente, N munido da ordem usual é um conjunto bem-ordenado. Mostre que se X é um conjunto bem-ordenado tal que, para cada x X, o segmento inicial I x, definido por I x. = {y X : y x} é finito, então existe uma função f : X N bijetora tal que x y se e só se f (x) f (y), para todos x, y X. Dito de outra forma, N é o único conjunto bem-ordenado no qual todo segmento inicial é finito. 7. Demonstre, para todos m, n, k N, as identidades abaixo, envolvendo números binomiais: ( ) ( ) ( ) ( ) (a) j j + n n = j j j j + ( ) ( ) ( ) ( ) (b) n n + n + m n + m = 0 m m (c) ( )( ) ( ) k m n n + m = j =0 j k j k (d) ( ) ( ) k n n = j n j =0 8. Seja {u n } a sequência de Fibonacci. Mostre que para todo n as afirmações abaixo são verdadeiras: 7

8 (a) u u n = u nu n+ ; (b) u 3n é par; (c) u + u u n = u n+ ; (d) u + u u n = u n ; (e) u + u u n = u n+ ; (f) u u + u 3 u ( ) n+ u n = ( ) n+ u n + ; (g) u + u n u n = nu n+ u n+3 + ; (h) u n = un+ u n. 8

Lista 1. 9 Se 0 < x < y e n N então 0 < x n < y n.

Lista 1. 9 Se 0 < x < y e n N então 0 < x n < y n. UFPR - Universidade Federal do Paraná Departamento de Matemática CM095 - Análise I Prof. José Carlos Eidam Lista 1 Em toda a lista, K denota um corpo ordenado qualquer. Corpos ordenados 1. Verifique as

Leia mais

UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM122 - Fundamentos de Análise Prof. Zeca Eidam.

UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM122 - Fundamentos de Análise Prof. Zeca Eidam. UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM1 - Fundamentos de Análise Prof Zeca Eidam Lista 4 Supremo e ínfimo 1 Seja X R não-vazio 1 Mostre que, caso existam,

Leia mais

Números Naturais. MA12 - Unidade 1. Os Axiomas de Peano. O Axioma da Indução. Exemplo: uma demonstração por indução

Números Naturais. MA12 - Unidade 1. Os Axiomas de Peano. O Axioma da Indução. Exemplo: uma demonstração por indução Os Números Naturais MA1 - Unidade 1 Números Naturais Paulo Cezar Pinto Carvalho PROFMAT - SBM January 7, 014 Números Naturais: modelo abstrato para contagem. N = {1,,3,...} Uma descrição precisa e concisa

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 01 Lista 1 Números Naturais 1. Demonstre por indução as seguintes fórmulas: (a) (b) n (j 1) = n (soma dos n primeiros ímpares).

Leia mais

Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados

Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados A lista abaixo é formada por um subconjunto dos exercícios dos seguintes livros: Djairo G. de Figueiredo, Análise na reta Júlio

Leia mais

19 AULA. Princípio da Boa Ordem LIVRO. META Introduzir o princípio da boa ordem nos números naturais e algumas de suas conseqüências.

19 AULA. Princípio da Boa Ordem LIVRO. META Introduzir o princípio da boa ordem nos números naturais e algumas de suas conseqüências. LIVRO Princípio da Boa Ordem META Introduzir o princípio da boa ordem nos números naturais e algumas de suas conseqüências. OBJETIVOS Ao fim da aula os alunos deverão ser capazes de: Aplicar o princípio

Leia mais

1 Análise combinatória

1 Análise combinatória Matemática Discreta September 11, 2018 1 1 Análise combinatória 1.1 Alguns princípios básicos Teorema (Princípio da adição). Se {A i },..,N é uma família (finita) de conjuntos FINITOS, mutuamente disjuntos,

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos - Princípio de Indução; Algoritmo de Euclides 1. Seja ( n) k n! k!(n k)! o coeficiente binomial, para n k 0. Por convenção, assumimos que, para outros

Leia mais

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago Capítulo 1 Os Números Última atualização em setembro de 2017 por Sadao Massago 1.1 Notação Números naturais: Neste texto, N = {0, 1, 2, 3,...} e N + = {1, 2, 3, }. Mas existem vários autores considerando

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 2. Sequências de Números Reais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 2. Sequências de Números Reais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 0 Lista Sequências de Números Reais. Dê o termo geral de cada uma das seguintes sequências: a,, 3, 4,... b, 4, 9, 6,... c,,

Leia mais

Luciana Santos da Silva Martino

Luciana Santos da Silva Martino Sumário APLICAÇÕES DA INDUÇÃO Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 11 de agosto de 2017 Sumário 1 Definição por Recorrência 2 Binômio

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos 1 - Algoritmo de Euclides; Indução Matemática; Teorema Fundamental da Aritmética 1. Considere os inteiros a 406 e b 654. (a) Encontre d mdc(a,b), o

Leia mais

Funções, Seqüências, Cardinalidade

Funções, Seqüências, Cardinalidade Funções, Seqüências, Cardinalidade Prof.: Rossini Monteiro Noções Básicas Definição (Função) Sejam A e B conjuntos. Uma função de A em B é um mapeamento de exatamente um elemento de B para cada elemento

Leia mais

MA12 - Unidade 3. Paulo Cezar Pinto Carvalho PROFMAT - SBM

MA12 - Unidade 3. Paulo Cezar Pinto Carvalho PROFMAT - SBM MA12 - Unidade 3 O Método da Indução Paulo Cezar Pinto Carvalho PROFMAT - SBM Definições por indução ou recorrência Como definir, apropriadamente, n! = 1 2... n? i) Definimos 1! = 1 ii) A seguir, supondo

Leia mais

Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita

Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita 1 Preliminares Neste curso, prioritariamente, estaremos trabalhando com números inteiros mas, quando necessário,

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Ita 2017) Sejam A {1, 2, 3, 4, 5} e B { 1, 2, 3, 4, 5}. Se C {xy : x A e y B}, então o número de elementos de C é a) 10. b) 11. c) 12. d) 13. e) 14. 2. (Ita 2017) Sejam X e Y dois conjuntos finitos

Leia mais

Módulo Tópicos Adicionais. Recorrências

Módulo Tópicos Adicionais. Recorrências Módulo Tópicos Adicionais Recorrências Módulo Tópico Adicionais Recorrências 1 Exercícios Introdutórios Exercício 1 Considere a sequência definida por x 1 d e x n r + x n 1, para n > 1 Trata-se de uma

Leia mais

Axioma dos inteiros. Sadao Massago

Axioma dos inteiros. Sadao Massago Axioma dos inteiros Sadao Massago setembro de 2018 Sumário 1 Os Números 2 1.1 Notação......................................... 2 1.2 Números naturais não nulos (inteiros positivos)................... 2

Leia mais

Indução Matemática. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG

Indução Matemática. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG Indução Matemática Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Indução Matemática junho - 2018 1 / 38 Este material é preparado usando como referências os

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Ita 2017) Sejam A e B dois conjuntos com 3 e 5 elementos, respectivamente. Quantas funções sobrejetivas f : B A existem? 2. (Ita 2017) Sejam A {1, 2, 3, 4, 5} e B { 1, 2, 3, 4, 5}. Se C {xy : x A e

Leia mais

MA12 - Unidade 3. Paulo Cezar Pinto Carvalho. 31 de Janeiro de 2014 PROFMAT - SBM

MA12 - Unidade 3. Paulo Cezar Pinto Carvalho. 31 de Janeiro de 2014 PROFMAT - SBM MA12 - Unidade 3 O Método da Indução Paulo Cezar Pinto Carvalho PROFMAT - SBM 31 de Janeiro de 2014 Definições por indução ou recorrência Como definir, apropriadamente, n! = 1 2... n? i) Definimos 1! =

Leia mais

Notas sobre Sequências e Cardinalidade (1)

Notas sobre Sequências e Cardinalidade (1) 1 / 11 Notas sobre e Cardinalidade (1) Anjolina Grisi de Oliveira Centro de Informática Universidade Federal de Pernambuco CIn-UFPE 2 / 11 Uma sequência é uma estrutura discreta usada para representar

Leia mais

Sumário Algumas Demonstrações CONCLUSÃO RESUMO ATIVIDADES... 34

Sumário Algumas Demonstrações CONCLUSÃO RESUMO ATIVIDADES... 34 Sumário Aula 11: Relações Binárias 9 11.1 Introdução... 10 11.2 Relações Binárias... 10 11.2.1 Propriedades das Relações Binárias... 13 11.3 Algumas Demonstrações... 16 11.4 CONCLUSÃO... 18 11.5 RESUMO....

Leia mais

Princípio da boa ordenação. Aula 03. Princípio da boa ordenação. Princípio da boa ordenação. Indução Finita e Somatórios

Princípio da boa ordenação. Aula 03. Princípio da boa ordenação. Princípio da boa ordenação. Indução Finita e Somatórios Princípio da boa ordenação Aula 0 Indução Finita e Somatórios Prof. Marco Aurélio Stefanes marco em dct.ufms.br www.dct.ufms.br/ marco Aula 0 p. 1 Aula 0 p. Princípio da boa ordenação Princípio da boa

Leia mais

MA14 - Aritmética Unidade 1 Resumo. Divisibilidade

MA14 - Aritmética Unidade 1 Resumo. Divisibilidade MA14 - Aritmética Unidade 1 Resumo Divisibilidade Abramo Hefez PROFMAT - SBM Julho 2013 Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio do

Leia mais

MA12 - Unidade 1 Números Naturais

MA12 - Unidade 1 Números Naturais MA12 - Unidade 1 Números Naturais Paulo Cezar Pinto Carvalho PROFMAT - SBM February 25, 2013 Os Números Naturais Números Naturais: modelo abstrato para contagem. N = {1, 2, 3,...} Uma descrição precisa

Leia mais

O verbo induzir significa gerar. Nesta aula, começaremos a ver o assunto Indução Matemática

O verbo induzir significa gerar. Nesta aula, começaremos a ver o assunto Indução Matemática Polos Olímpicos de Treinamento Curso de Álgebra - Nível 2 Prof. Marcelo Mendes Aula 6 Indução - Parte I O verbo induzir significa gerar. Nesta aula, começaremos a ver o assunto Indução Matemática (ou Indução

Leia mais

DAMCZB014-17SA Introdução à análise funcional Claudia Correa. Conjuntos quocientes e espaços vetoriais quocientes

DAMCZB014-17SA Introdução à análise funcional Claudia Correa. Conjuntos quocientes e espaços vetoriais quocientes DAMCZB014-17SA Introdução à análise funcional Claudia Correa Conjuntos quocientes e espaços vetoriais quocientes O objetivo do presente texto é recordar as noções relacionadas a conjuntos quocientes e

Leia mais

Matemática Discreta 11/12 Soluções

Matemática Discreta 11/12 Soluções Matemática Discreta 11/1 Soluções Lógica 1. (a) Não é proposição. (b) Proposição verdadeira. (c) Proposição falsa. (d) Não é proposição. (e) Proposição falsa. (f) Não é proposição.. (a) + 4 5 e. (c) A

Leia mais

Universidade Federal do ABC Centro de Matemática, Computação e Cognição Análise na Reta (2017) Curso de Verão

Universidade Federal do ABC Centro de Matemática, Computação e Cognição Análise na Reta (2017) Curso de Verão Lista L1 Preliminares Observações: Universidade Federal do ABC Centro de Matemática, Computação e Cognição Análise na Reta (017) Curso de Verão Esta lista corresponde a um conjunto de exercícios selecionados

Leia mais

Números e Funções Reais, E. L. Lima, Coleção PROFMAT.

Números e Funções Reais, E. L. Lima, Coleção PROFMAT. Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 2 - Seções 2.3, 2.4, 2.5 e 2.6 do livro texto da disciplina: Números

Leia mais

Teoria intuitiva de conjuntos

Teoria intuitiva de conjuntos Teoria intuitiva de conjuntos.................................... 1 Relação binária............................................ 10 Lista 3................................................. 15 Teoria intuitiva

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA12 Matemática Discreta Avaliação - GABARITO AV 3 - MA 12 13 de julho de 2013 1. (2,0) Seja (a n ) uma progressão

Leia mais

Lista 4. Esta lista, de entrega facultativa, tem três partes e seus exercícios versam sobre séries, funções contínuas e funções diferenciáveis em R.

Lista 4. Esta lista, de entrega facultativa, tem três partes e seus exercícios versam sobre séries, funções contínuas e funções diferenciáveis em R. UFPR - Universidade Federal do Paraná Departamento de Matemática CM095 - Análise I Prof José Carlos Eidam Lista 4 INSTRUÇÕES Esta lista, de entrega facultativa, tem três partes e seus exercícios versam

Leia mais

Programa Combinatória Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 52

Programa Combinatória Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 52 1 / 52 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 52 Programa 1 Combinatória 2 Aritmética Racional 3 Grafos 3 / 52 Capítulo 1 Combinatória 4 / 52 Princípio

Leia mais

Teoria dos Conjuntos. (Aula 6) Ruy de Queiroz. O Teorema da. (Aula 6) Ruy J. G. B. de Queiroz. Centro de Informática, UFPE

Teoria dos Conjuntos. (Aula 6) Ruy de Queiroz. O Teorema da. (Aula 6) Ruy J. G. B. de Queiroz. Centro de Informática, UFPE Ruy J. G. B. de Centro de Informática, UFPE 2007.1 Conteúdo 1 Seqüências Definição Uma seqüência é uma função cujo domíno é um número natural ou N. Uma seqüência cujo domínio é algum número natural n N

Leia mais

Roteiro da segunda aula presencial - ME

Roteiro da segunda aula presencial - ME PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência

Leia mais

ÁLGEBRA LINEAR I - MAT Em cada item diga se a afirmação é verdadeira ou falsa. Justifiquei sua resposta.

ÁLGEBRA LINEAR I - MAT Em cada item diga se a afirmação é verdadeira ou falsa. Justifiquei sua resposta. UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 2 a Lista de

Leia mais

Unidade 5 - Subespaços vetoriais. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013

Unidade 5 - Subespaços vetoriais. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013 MA33 - Introdução à Álgebra Linear Unidade 5 - Subespaços vetoriais A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto de 2013 Às vezes, é necessário detectar, dentro

Leia mais

Lista de exercícios de MAT054

Lista de exercícios de MAT054 Lista de exercícios de MAT054 Livro-texto (principal): Stoll, R. R. Set Theory and Logic. Editora Dover. 1979. 1 Introdução Exercício 1. Lembre-se que um conjunto A é chamado de (infinito) enumerável (ou

Leia mais

Notas Sobre Sequências e Séries Alexandre Fernandes

Notas Sobre Sequências e Séries Alexandre Fernandes Notas Sobre Sequências e Séries 2015 Alexandre Fernandes Limite de seqüências Definição. Uma seq. (s n ) converge para a R, ou a R é limite de (s n ), se para cada ɛ > 0 existe n 0 N tal que s n a < ɛ

Leia mais

Números naturais e cardinalidade

Números naturais e cardinalidade Números naturais e cardinalidade Roberto Imbuzeiro M. F. de Oliveira 5 de Janeiro de 2008 Resumo 1 Axiomas de Peano e o princípio da indução Intuitivamente, o conjunto N dos números naturais corresponde

Leia mais

Análise I. Notas de Aula 1. Alex Farah Pereira de Agosto de 2017

Análise I. Notas de Aula 1. Alex Farah Pereira de Agosto de 2017 Análise I Notas de Aula 1 Alex Farah Pereira 2 3 23 de Agosto de 2017 1 Turma de Matemática. 2 Departamento de Análise-IME-UFF 3 http://alexfarah.weebly.com ii Conteúdo 1 Conjuntos 1 1.1 Números Naturais........................

Leia mais

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn 4 Relações 4.1 Preliminares Definição 4.1. Sejam A e B conjuntos. Uma relação binária, R, de A em B é um subconjunto de A B. (R A B) Dizemos que a A está relacionado com b B sss (a, b) R. Notação: arb.

Leia mais

4 Princípios de Indução Finita e demonstrações por indução

4 Princípios de Indução Finita e demonstrações por indução 4 Princípios de Indução Finita e demonstrações por indução Vimos que o Princípio da Boa Ordem (PBO) todo A N não-vazio tem um menor elemento e, como consequência (provado na página 81), todo A Z não vazio

Leia mais

Capítulo 0: Conjuntos, funções, relações

Capítulo 0: Conjuntos, funções, relações Capítulo 0: Conjuntos, funções, relações Notação. Usaremos Nat para representar o conjunto dos números naturais; Int para representar o conjunto dos números inteiros. Para cada n Nat, [n] representa o

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1 (Ita 018) Uma progressão aritmética (a 1, a,, a n) satisfaz a propriedade: para cada n, a soma da progressão é igual a n 5n Nessas condições, o determinante da matriz a1 a a a4 a5 a 6 a a a 7 8 9 a)

Leia mais

Assunto: Conjuntos. Assunto: Funções DATA: 01/07/17

Assunto: Conjuntos. Assunto: Funções DATA: 01/07/17 DATA: 01/07/17 Assunto: Conjuntos 1) (UECE-2004.2) Das 1200 pessoas intrevistadas numa pesquisa eleitoral, 55% eram mulheres. Das mulheres, 35% eram casadas. O número de mulheres casadas participantes

Leia mais

Matemática Conjuntos - Teoria

Matemática Conjuntos - Teoria Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar

Leia mais

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais (inteiros positivos)

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais (inteiros positivos) Capítulo 1 Os Números 1.1 Notação Números naturais: N = {1, 2, 3,...}, mas existem vários autores considerando N = {0, 1, 2, 3,...}. Por isso, é recomendado dizer números positivos, números não negativos,

Leia mais

Aula 4 Aula 5 Aula 6. Ana Carolina Boero. Página:

Aula 4 Aula 5 Aula 6. Ana Carolina Boero.   Página: E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Números naturais Como somos apresentados aos números? Num primeiro momento, aprendemos

Leia mais

Matemática Discreta. Teoria de Conjuntos - Parte 2. Profa. Sheila Morais de Almeida. abril DAINF-UTFPR-PG

Matemática Discreta. Teoria de Conjuntos - Parte 2. Profa. Sheila Morais de Almeida. abril DAINF-UTFPR-PG Matemática Discreta Teoria de Conjuntos - Parte 2 Profa. Sheila Morais de Almeida DAINF-UTFPR-PG abril - 2017 Operações em conjuntos As operações entre conjuntos podem ser unárias, binárias, ternárias,

Leia mais

Expansões AULA ... META. Apresentar a expansão binomial e multinomial. OBJETIVOS. Ao final da aula o aluno deverá ser capaz de:

Expansões AULA ... META. Apresentar a expansão binomial e multinomial. OBJETIVOS. Ao final da aula o aluno deverá ser capaz de: Expansões META Apresentar a expansão binomial e multinomial. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Identificar e utilizar algumas propriedades dos coeficientes binomiais; Expandir produto

Leia mais

UFAL IM ANÁLISE REAL LISTA 1 CORPOS E NÚMEROS REAIS

UFAL IM ANÁLISE REAL LISTA 1 CORPOS E NÚMEROS REAIS UFAL IM 013. ANÁLISE REAL LISTA 1 CORPOS E NÚMEROS REAIS 1-1 Seja K um corpo. (a) Se a, b K, então ( 1)a = a e ( a)( b) = ab. (b) Se a 0 e b 0 em K, então ab 0, (ab) 1 = b 1 a 1 e (a/b) 1 = b a. (c) Se

Leia mais

RLM - PROFESSOR CARLOS EDUARDO AULA 3

RLM - PROFESSOR CARLOS EDUARDO AULA 3 AULA 3 Sucessões = sequências(numéricas) São conjuntos de números reais dispostos numa certa ordem. Uma sequência pode ser FINITA ou INFINITA. Ex: a) (3, 6, 9, 12) sequência finita P.A de razão 3 b) (5,

Leia mais

Aula 1 Conjuntos. Meta. Introduzir as noções básicas de conjunto e produto cartesiano de. conjuntos. Objetivos

Aula 1 Conjuntos. Meta. Introduzir as noções básicas de conjunto e produto cartesiano de. conjuntos. Objetivos Conjuntos AULA 1 Aula 1 Conjuntos Meta conjuntos. Introduzir as noções básicas de conjunto e produto cartesiano de Objetivos Ao final desta aula, você deve ser capaz de: Definir as noções básicas de conjunto

Leia mais

Indução Matemática. Matemática Discreta. Indução Matemática. Mayara Midori Omai e Sheila Morais de Almeida UTFPR-PG. Abril

Indução Matemática. Matemática Discreta. Indução Matemática. Mayara Midori Omai e Sheila Morais de Almeida UTFPR-PG. Abril Matemática Discreta Indução Matemática Mayara Midori Omai e Sheila Morais de Almeida UTFPR-PG Abril - 2017 Indução Matemática Se desejamos provar que A(n) B(n) é verdade para números inteiros k maiores

Leia mais

TEORIA DOS CONJUNTOS. Turma: A - Licenciatura em Matemática 1 Semestre de Prof. Dr. Agnaldo José Ferrari OS NÚMEROS NATURAIS

TEORIA DOS CONJUNTOS. Turma: A - Licenciatura em Matemática 1 Semestre de Prof. Dr. Agnaldo José Ferrari OS NÚMEROS NATURAIS TEORIA DOS CONJUNTOS Turma: 0004105A - Licenciatura em Matemática 1 Semestre de 2014 Prof. Dr. Agnaldo José Ferrari OS NÚMEROS NATURAIS Em 1908 Ernst Zermelo (Alemanha / 1871 1953) propôs usar a sequência,

Leia mais

Recorrências - Parte I

Recorrências - Parte I Polos Olímpicos de Treinamento Curso de Álgebra - Nível Prof. Marcelo Mendes Aula 4 Recorrências - Parte I Na aula anterior, vimos alguns exemplos de sequências. Em alguns deles, os termos são dados em

Leia mais

Seminário Semanal de Álgebra. Técnicas de Demonstração

Seminário Semanal de Álgebra. Técnicas de Demonstração UNIVERSIDADE FEDERAL DE GOIÁS CÂMPUS CATALÃO Seminário Semanal de Álgebra Técnicas de Demonstração Catalão, 26/11/2013. Universidade Federal de Goiás Campus Catalão Seminário Semanal de Álgebra Orientador:

Leia mais

Funções Definidas Implicitamente - Parte I

Funções Definidas Implicitamente - Parte I Polos Olímpicos de Treinamento Curso de Álgebra - Nível 2 Prof. Marcelo Mendes Aula 11 Funções Definidas Implicitamente - Parte I Talvez a experiência de alguns de vocês diga que as soluções de uma equação

Leia mais

Os números inteiros. Capítulo 2

Os números inteiros. Capítulo 2 6 Capítulo 2 Os números inteiros Intuitivamente, o conjunto Z dos números inteiros é composto pelos números naturais e pelos "negativos". Como justificamos de uma forma simples qual a origem dos números

Leia mais

17 AULA. Números Naturais: Axiomas de Peano LIVRO. META: Introduzir o conceito de números naturais através dos axiomas de Peano.

17 AULA. Números Naturais: Axiomas de Peano LIVRO. META: Introduzir o conceito de números naturais através dos axiomas de Peano. 2 LIVRO Números Naturais: Axiomas de Peano 17 AULA META: Introduzir o conceito de números naturais através dos axiomas de Peano. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de Definir o conjunto

Leia mais

n. 20 INDUÇÃO MATEMÁTICA

n. 20 INDUÇÃO MATEMÁTICA n. 20 INDUÇÃO MATEMÁTICA Imagine uma fila com infinitos dominós, um atrás do outro. Suponha que eles estejam de tal modo distribuídos que, uma vez que um dominó caia, o seu sucessor na fila também cai.

Leia mais

Aula 5 Aula 6 Aula 7. Ana Carolina Boero. Página:

Aula 5 Aula 6 Aula 7. Ana Carolina Boero.   Página: E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Números naturais Como somos apresentados aos números? Num primeiro momento, aprendemos

Leia mais

Meu nome: Minha Instituição:

Meu nome: Minha Instituição: Meu nome: Minha Instituição: . O Teorema Fundamental da Aritmética enuncia que todo número natural maior que ou é primo ou pode ser escrito de forma única, a menos da ordem dos fatores, como produto de

Leia mais

Sumário. 2 Índice Remissivo 9

Sumário. 2 Índice Remissivo 9 i Sumário 1 Teoria dos Conjuntos e Contagem 1 1.1 Teoria dos Conjuntos.................................. 1 1.1.1 Comparação entre conjuntos.......................... 2 1.1.2 União de conjuntos...............................

Leia mais

(b) A soma dos n menores números ímpares que são maiores que 77 é78n + n 2

(b) A soma dos n menores números ímpares que são maiores que 77 é78n + n 2 LISTA DE INDUÇÃO PROFESSOR: EDUARDO LABER 1 Indução Básica 1. Encontre o menor inteiro n 0 para o qual n! > n. Prove por indução que esta relação éválida para n n 0.. Prove por indução que para n 0 e inteiro,

Leia mais

Universidade Federal do Pampa - UNIPAMPA

Universidade Federal do Pampa - UNIPAMPA Universidade Federal do Pampa - UNIPAMPA Projeto: Fundamentos Matemáticos para Computação INTRODUÇÃO À MATEMÁTICA DISCRETA 2 Introdução Praticamente qualquer estudo relacionado a computação, teórico ou

Leia mais

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados

Leia mais

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE Indução Matemática George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Qual é a fórmula para a soma dos primeiros n inteiros ímpares positivos? Observando os resultados para um n pequeno, encontra-se

Leia mais

LEI DA TRICOTOMIA EM N. Amanda Vitória de Jesus Mendes, Vinício Brás Oliveira Dias, João Carlos Moreira Universidade Federal de Uberlândia FACIP

LEI DA TRICOTOMIA EM N. Amanda Vitória de Jesus Mendes, Vinício Brás Oliveira Dias, João Carlos Moreira Universidade Federal de Uberlândia FACIP 1. INTRODUÇÃO Apesar do conhecimento da existência dos números naturais e a sua utilização para contar, apenas no século XIX uma construção axiomática dos números naturais foi efetivamente apresentada.

Leia mais

Referências e materiais complementares desse tópico

Referências e materiais complementares desse tópico Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer Conceitos matemáticos e técnicas de prova (Última atualização:

Leia mais

MÓDULO 9. Conjuntos. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 9. Conjuntos. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Conjuntos 1. (ITA) Considere as seguintes afirmações sobre o conjunto U = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}: I. Ø U e n(u) = 10. II.

Leia mais

Soluções dos exercícios propostos

Soluções dos exercícios propostos Indução e Recursão Soluções dos exercícios propostos 1 Iremos demonstrar que a expressão proposta a seguir é correta: i = 0 + + + + + (n 1) = n(n 1), para n > 0 0 i

Leia mais

MAT Resumo Teórico e Lista de

MAT Resumo Teórico e Lista de MAT 0132 - Resumo Teórico e Lista de Exercícios April 10, 2005 1 Vetores Geométricos Livres 1.1 Construção dos Vetores 1.2 Adição de Vetores 1.3 Multiplicação de um Vetor por um Número Real 2 Espaços Vetoriais

Leia mais

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2 Números Reais. Simplifique as seguintes epressões (definidas nos respectivos domínios): a), b) + +, c) + + +, d), e) ( ), f) 4 4, g) ( ), h) 3 6, i) +, j) +, k) log ( ) + log ( ), l) log ( + ) + log (

Leia mais

Veja exemplos de sequências finitas e infinitas: Sequência finita: (5, 7, 9, 11, 13, 15, 17, 19) Sequência infinita (3, 5, 7, 11, 13, 17,...

Veja exemplos de sequências finitas e infinitas: Sequência finita: (5, 7, 9, 11, 13, 15, 17, 19) Sequência infinita (3, 5, 7, 11, 13, 17,... SEQUÊNCIAS NUMÉRICAS Sequência numérica é uma sequência ou sucessão que tem como contradomínio (conjunto de chegada) o conjunto dos números reais. As sequências numéricas podem ser finitas, quando é possível

Leia mais

Tópicos de Matemática. Teoria elementar de conjuntos

Tópicos de Matemática. Teoria elementar de conjuntos Tópicos de Matemática Lic. em Ciências da Computação Teoria elementar de conjuntos Carla Mendes Dep. Matemática e Aplicações Universidade do Minho 2010/2011 Tóp. de Matemática - LCC - 2010/2011 Dep. Matemática

Leia mais

TD GERAL DE MATEMÁTICA 2ª FASE UECE

TD GERAL DE MATEMÁTICA 2ª FASE UECE Fundação Universidade Estadual do Ceará - FUNECE Curso Pré-Vestibular - UECEVest Fones: 3101.9658 / E-mail: uecevest_itaperi@yahoo.com.br Av. Dr. Silas Munguba, 1700 Campus do Itaperi 60714-903 Fone: 3101-9658/Site:

Leia mais

Notas de Aula. tal que, para qualquer ponto (x, y) no plano xy, temos: p XY

Notas de Aula. tal que, para qualquer ponto (x, y) no plano xy, temos: p XY UNIVERSIDDE FEDERL D BHI INSTITUTO DE MTEMÁTIC DEPRTMENTO DE ESTTÍSTIC v. demar de Barros s/n - Campus de Ondina 40170-110 - Salvador B Tel:(071)247-405 Fax 245-764 Mat 224 - Probabilidade II - 2002.2

Leia mais

MA14 - Aritmética Unidade 3. Divisão nos Inteiros (Divisibilidade)

MA14 - Aritmética Unidade 3. Divisão nos Inteiros (Divisibilidade) MA14 - Aritmética Unidade 3 Divisão nos Inteiros (Divisibilidade) Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio

Leia mais

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de :

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de : Sequências Uma sequência é uma função f de em, ou seja. Para todo número natural i associamos um número real por meio de uma determinada regra de formação. A sequencia pode ser denotada por: Ou, por meio

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 1 a FICHA DE EXERCÍCIOS 1 [

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 1 a FICHA DE EXERCÍCIOS 1 [ Instituto Superior Técnico Departamento de Matemática CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT o SEM. 04/5 a FICHA DE EXERCÍCIOS 0. Desigualdades e Módulos. Mostre que:.. R : + < =, 7, +.. R

Leia mais

Capítulo 1 Números Reais

Capítulo 1 Números Reais Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {

Leia mais

Aulas 10 e 11 / 18 e 20 de abril

Aulas 10 e 11 / 18 e 20 de abril 1 Conjuntos Aulas 10 e 11 / 18 e 20 de abril Um conjunto é uma coleção de objetos. Estes objetos são chamados de elementos do conjunto. A única restrição é que em geral um mesmo elemento não pode contar

Leia mais

3 Espaços com Produto Interno

3 Espaços com Produto Interno 3 Espaços com Produto Interno 3.1 Produtos Internos em Espaços Vetoriais Seja V um espaço vetorial. Um produto interno em V é uma função, : V V R que satisfaz P1) = v, u para todos u, v V ; P2) u, v +

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA. Ministério da Educação

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA. Ministério da Educação INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA Ministério da Educação Instituto Federal de Educação, Ciência e Tecnologia da Paraíba - Campus Cajazeiras Diretoria de Ensino / Coord. do Curso

Leia mais

a n também estão em P.A.

a n também estão em P.A. Polos Olímpicos de Treinamento Curso de Álgebra - Nível 3 Prof Cícero Thiago / Prof Marcelo Aula 16 Sequências I 1 Progressão Aritmética Definição 1: Uma progressão aritmética é uma sequência a 1, a, ou

Leia mais

Antes de abordarmos os temas centrais deste curso é conveniente recordar algumas noções básicas usadas sistematicamente no que se segue.

Antes de abordarmos os temas centrais deste curso é conveniente recordar algumas noções básicas usadas sistematicamente no que se segue. 1 Conjuntos, funções e relações: noções básicas Antes de abordarmos os temas centrais deste curso é conveniente recordar algumas noções básicas usadas sistematicamente no que se segue. 1.1 Conjuntos Intuitivamente,

Leia mais

Aula 1: Introdução ao curso

Aula 1: Introdução ao curso Aula 1: Introdução ao curso MCTA027-17 - Teoria dos Grafos Profa. Carla Negri Lintzmayer carla.negri@ufabc.edu.br Centro de Matemática, Computação e Cognição Universidade Federal do ABC 1 Grafos Grafos

Leia mais

2019/01. Estruturas Básicas: Conjuntos, Funções, Sequências, e Somatórios Área de Teoria DCC/UFMG /01 1 / 76

2019/01. Estruturas Básicas: Conjuntos, Funções, Sequências, e Somatórios Área de Teoria DCC/UFMG /01 1 / 76 Estruturas Básicas: Conjuntos, Funções, Sequências, e Somatórios Área de Teoria DCC/UFMG 2019/01 Estruturas Básicas: Conjuntos, Funções, Sequências, e Somatórios Área de Teoria DCC/UFMG - 2019/01 1 / 76

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/26 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Conjuntos Numéricos Aula 6. Conjuntos Numéricos. Armando Caputi

Conjuntos Numéricos Aula 6. Conjuntos Numéricos. Armando Caputi Conjuntos Numéricos Aula 6 Conjuntos Numéricos E-mail: armando.caputi@ufabc.edu.br Página: http://professor.ufabc.edu.br/~armando.caputi Sala 549-2 - Bloco A - Campus Santo André Conjuntos Numéricos Aula

Leia mais

Bases Matemáticas. Relembrando: representação geométrica para os reais 2. Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos

Bases Matemáticas. Relembrando: representação geométrica para os reais 2. Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos 1 Bases Matemáticas Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos Rodrigo Hausen 10 de outubro de 2012 v. 2012-10-15 1/34 Relembrando: representação geométrica para os reais 2 Uma

Leia mais

Indução Matemática Forte. Raquel de Souza Francisco Bravo de novembro de 2016

Indução Matemática Forte. Raquel de Souza Francisco Bravo de novembro de 2016 Indução Matemática Forte e-mail: raquelbr.ic@gmail.com raquel@ic.uff.br 29 de novembro de 2016 É uma sequência de números naturais {F 1, F 2, F 3,...}, denotada por {F n } definida da seguinte forma: F

Leia mais

9.2 Relação de Ordem em Q

9.2 Relação de Ordem em Q META: Apresentar uma ordem para os números racionais. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Comparar números racionais e trabalhar com relações envolvendo desigualdades. PRÉ-REQUISITOS

Leia mais

Notas de Aula de Fundamentos de Matemática

Notas de Aula de Fundamentos de Matemática Universidade Estadual de Montes Claros Centro de Ciências Exatas e Tecnológicas Departamento de Ciências Exatas Notas de Aula de Fundamentos de Matemática Rosivaldo Antonio Gonçalves Notas de aulas que

Leia mais