MATEMÁTICA U F R N FÁBIO FININHO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA U F R N FÁBIO FININHO"

Transcrição

1 O professor Fábio Marcelino da Silva (Fininho) é licenciado em matemática pela UFRN e pós graduando no ensino de educação matemática. Desde o ano de 001 dedica-se á área de concursos públicos no IAP Cursos lecionando Matemática e Raciocínio Lógico. Recentemente foi professor substituto do Instituto Federal de Educação do Rio Grande do Norte(IFRN), tendo atuado como professor efetivo do Ensino Publico Municipal de Natal, do Ensino Público Estadual e ainda em várias escolas da rede particular de ensino. Contatos on-line: E- mail: Facebook: Blog: 1

2 6. Um senhor resolveu fazer caminhadas ao redor de uma praça, em formato circular, que tem 46 m de diâmetro. Se ele deu três voltas completas nessa praça, é correto afirmar que percorreu, aproximadamente, Utilize: π = 3,14 A) 1.158,66 m. B).317,3 m. C) 3.089,76 m. D) 4.634,64 m. O comprimento do círculo é dado por C = π r. Para determinarmos o comprimento da praça precisamos do 46 raio da circunferência: raio( r ) = = 13m. Agora podemos determinar a quantidade de metros que corresponde a uma volta: C = 3,14 13 C = 77,44 Para calcular 3 voltas: 3 77,44 =.317,3 m Resposta B Sen30º x 4 y = 0,5 x = 1polegadas x = 1,54 = 53,34 cm Cos30º = 0,87 y = 36,54 polegadas y = 36,54,54 y = 9,81cm 4 A questão solicita a área visual da tela, como a tela é retangular então: Área = base altura A = 53,34 9,81 A = 4.950,49. Resposta A

3 8. Um tipo de leite condensado era vendido em latas cilíndricas de 8 cm de altura e 6 cm de diâmetro, por R$ 3,50 a unidade. Agora será comercializado em caixinhas de papelão com a forma de paralelepípedo retângulo de 10 cm de altura, 5 cm de comprimento e 4 cm de largura. Para que a relação do preço pela quantidade de leite condensado permaneça a mesma, o produto na nova embalagem deverá ser vendido por, aproximadamente, A) R$,90. B) R$ 3,10. C) R$ 3,5. D) R$ 3,65. Volume do cilindro V = π 3 8 V = 3, V = 6 cm 3 Volume do bloco retangular V = V = 00cm 3 Montamos a seguinte proporção 6 00 = 6x = 700 3,5 x 700 x = x = 3,097 6 x 3,10 Resposta B 9. Marta, Maria, Márcia e Manu foram a uma loja e gastaram juntas R$ 5,00. Marta gastou R$,00 a mais que Maria; Maria gastou R$ 3,50 a mais que Márcia e Márcia gastou a metade do valor que Manu gastou. A garota que gastou menos, nessa loja, foi A) Maria. B) Manu. C) Márcia. D) Marta. Procuramos determinar qual das meninas não tem valor dependendo de outra menina e descobrimos que todas as outras dependem do valor de Márcia. Suponha que Márcia receba um valor x. Partindo daí podemos montar a seguinte relação: Marta Maria Márcia Manu x + 5,5 x + 3,5 x x Quem gastou menos foi Márcia. Resposta C 3

4 Gasolina Etanol GNV 1Km/l 10Km/l 9Km/m 3 R$,60 R$,15 R$,00 4,61Km/R$ 4,65Km/R$ 4,5Km/R$ Etanol > Gasolina > GNV. Resposta C Gastos fixos: = 990 Lucro por peça L(x) = (6 4,)x Lucro real L(x) = 1,8x 990 = 0 1,8x = x = 1,8 x = 1661,1 4

5 Quantidade de bolo necessária para arrecadar R$ 1661, ,1 = 55,37 30 Deve vender pelo menos 56 bolas diariamente. Resposta A 3. Em uma obra, 7 trabalhadores constroem.800 m de cerca trabalhando 8 horas diárias durante 5 dias. Mantendo-se o mesmo ritmo de trabalho, para construir outra cerca de.160 m, trabalhando 6 horas diárias durante 9 dias, deverão ser reduzidos do grupo A) 4 trabalhadores. C) 5 trabalhadores. B) 3 trabalhadores. D) 6 trabalhadores. Trabalhadores metro horas/dia dias 7 800m 8 5 x = = x x = 151x = 6048 x x = x = Cuidado!!! Se x = 4 então devem ser dispensados do grupo 3 funcionários. Resposta B. Pelo teorema de Tales podemos determinar o valor de x, y e z: 5

6 56 50 = 50x = x 78 Valor de x x = x = 87,36m 50 87,36 78 = 87,3 z = z Valor de z z = z = 44,64 87, ,64 = 44,64y = y 95 Valor de y y = y = 106,4 44,64 Substituindo os valores de x, y, z descobrimos que a Av.Brancas Dunas mede 99,76, a avenida Mal. Sucupira mede 67,64. Percurso total: 99, , = 1047,40 Duas voltas: 1047,40 = 094,8 d 094,8 094,8 Vm =,5 = t = t t,5 t = 837,9 segundos = 13,96 min. Resposta A 34. Ao adquirir 150 kg de feijão ao preço de R$,80 o quilograma, para vender em sua mercearia, Marcelo recebeu um desconto de % por pagar à vista. Ele gastou R$ 19,50 de frete e revendeu cada quilograma de feijão por R$ 3,90. Admitindo-se lucro como a diferença entre o total arrecadado nas vendas e o custo total, é correto afirmar que, após vender todo o feijão adquirido, Marcelo lucrou, sobre o custo total, aproximadamente, A) 4,1%. B) 35,7%. C) 30,6%. D) 36,6%. Custo do feijão: 150,8 = 40 Preço pago avista: 0,98 40 = 411,6. Custo total: 411,6 + 19,50 = 431,10 Total arrecadado: 3,9 150 = 585 6

7 Lucro: ,1 = 153,9. Lucro percentual: 431,1 100 = x = 153,9 x ,1 x = 35,69 x 35,7 Resposta B 35. A UFRN comprou, para seus laboratórios de Química, as seguintes vidrarias: 44 pacotes de Becker com 36 unidades cada; 18 pacotes de tubo de ensaio com 100 unidades cada; 4 pacotes de bureta com 10 unidades cada e 70 pacotes de proveta contendo 1 unidades cada. Para distribuir esse material, ele foi separado em caixas, que ficaram com a mesma quantidade máxima de unidades e, obrigatoriamente, cada caixa ficou com um único tipo de vidraria. O menor número possível de caixas utilizadas é uma quantidade A) maior que 10. C) entre 190 e 10. B) menor que 150. D) entre 150 e 190. Questão de MÁXIMO DIVISOR COMUM 44 36; ; 4 10; ; 58; 13; 66; 1800; 600; 150; 75; 40; 80; 0; 10; = 186 Resposta D 36. Para efetuar o pagamento de diárias, uma instituição usa o seguinte critério: uma diária inteira se o funcionário dorme no local de destino e meia diária, caso contrário. Jussara saiu de Natal para João Pessoa, a trabalho da instituição, na manhã do dia 3/01/01, e retornou na noite do dia 5/01/01. Para tanto, recebeu R$ 401,00 de diárias. O valor da diária paga pela instituição foi de A) R$ 160,40. B) R$ 155,0 C) R$ 133,67 D) R$ 114,57.. Diária completa: Dias 3, 4, x Meio diária Dia 5 0,5x,5x = x =,5 x = 160,4 Resposta A 7

8 37. Para aumentar o quadro de servidores, uma instituição de ensino contratou 8 funcionários para trabalhar no turno da manhã. Essa contratação representou um aumento de 0% no número total de servidores da instituição. O número de servidores da instituição passou a ser de A) 48. B) 40. C) 3. D) 54. Inicialmente havia 100% dos servidores, como ouve um aumento de 0% passamos a ter 10% dos servidores. Sabemos ainda que 0% representava 8 servidores logo o total de servidores após a contratação é: 0% 8 96 = x = 96 x = x = 48 10% x Resposta A Matemática , M P = = = = Língua portuguesa , ,5 57,5 M P = = = = 5, Geografia 4, M P = = = = 6, Resposta B 39. Uma universidade comprou um lote com 30 computadores para equipar um laboratório de informática. Constatou-se que, nesse lote, 10% dos computadores estavam com algum defeito de fabricação. Por isso, a empresa que vendeu o lote deu um desconto de 15% no valor dos computadores com defeito. Se cada computador sem defeito custou R$ 90,00, o valor pago pela universidade na compra do lote de computadores foi de A) R$ 4.873,00. B) R$ 3.460,00. C) R$ 7.186,00. D) R$ 6.570,00. 8

9 30 3 defeituosas 7 bons. Defeituosas: 0,85 90 = = 346 Bons: 7 90 = Total: = Resposta C I) dom a terça: = 60 Quin a Sab: = 60 São iguais, logo I é falso. II) = 160 9

10 O item é verdadeiro III) Grandezas diretamente proporcionais variam no mesmo sentido proporcional, o que não ocorre no gráfico. Item falso. IV) Começando de quarta para finalizar no sábado, percebemos que a cada dia diminui 10m 3. Função decrescente O item é verdadeiro. Resposta D Março Km Março 01 1,15 46 = 5,9Km Desmatamento de Mato Grosso: 0,6 5,9 = 31,74Km 3Km. Resposta D PACIENTE A: 1 recipiente de 500 ml a cada,5 h (150 min) PACIENTE B : 1 recipiente de 500 ml a cada 4 h (40 min.) 10

11 mmc (150; 40) = 100 min. Vamos transformar os minutos em horas 100 = 60 0 horas Eles tomam soro juntos de 0 em 0 horas. 18h do dia h = 14h do dia 15 Resposta C Preço da passagem em reais (R$) 150 1,7 = R$ 15,00 Restante após a compra das passagens = R$ 30 Preço do euro em reais 30 = R$,56 15 Resposta C Seja A o evento ter renda familiar na faixa de 6 a 10 salários mínimos. n (A) 93 P(A) = P(A) = n (S) ( ) 93 P(A) = 850 P(A) = 0,1094 = 10,94% Resposta A 11

12 45. Para comprar um computador, Antônio aplicou R$ 550,00 em uma instituição financeira a juros simples de 3% ao mês. A função que determina o valor total resgatado (M) em função do tempo (t) que o capital ficou aplicado é dada por A) M( t ) = 550 (1+ 3t) B) M( t ) = 550 (1+ 0,03t) C) M( t ) = ,0 3t D) M( t ) = t Montante = Capital + Juros Fórmula do montante: M = C (1 + i t) C = 550 i = 3% am. = 0,03 M = 550 (1 + 0,03t) M (t) = 550 (1 + 0,03t). Resposta B. 46. Uma vida saudável exige hábitos saudáveis, entre eles, o consumo moderado de açúcar. Reportagem publicada na Veja de 5 de abril de 01, afirma que hoje, no Brasil, a ingestão de açúcar representa 16% do total de calorias consumidas por uma pessoa, quando o ideal indicado é 10%. Um cidadão que está dentro desse padrão brasileiro, para atingir o patamar ideal indicado pela revista, deve reduzir o consumo de açúcar em A) 37,5%. B) 6,5%. C) 60,0%. D) 40,0%. Observe que 16% representa o TOT AL de calorias ingeridas por uma pessoa. Em matemática todo TOTAL pode ser representado por 100%, ora, mas se 16% que é o total é representado por 100% então 10% equivale a quantos por cento? = 100% x % 16 x = 1000 x = Para passar de 100% para 6,5% essa pessoa dever reduzir quanto? 100% - 6,5% = 37, 5 % x = 6,5 % Resposta A 1

13 47. A figura a seguir é a representação de uma piscina construída na área de lazer de um condomínio. O lado EF é maior que o lado AB em, aproximadamente, A) 1 m. B) 10 dm. C) 6 mm. D) 8 cm. Analisemos de forma mais detalhada a face da piscina em questão: Pelo teorema de Pitágoras temos que: (EF) = 5 + (EF) = 69 (EF) = 69 = 5,079 Calculando a diferença entre EF e AB encontramos: 5,079m 5 = 0,079m = 7,9 cm. Como a questão solicita um valor aproximado então entendemos que 7, 9 cm é aproximadamente 8 cm. Resposta D 13

14 48. Uma universidade que funciona em dois turnos, manhã e tarde, tem 68 funcionários, dos quais 36 trabalham pela manhã, 40 trabalham à tarde e 10 não dão expediente, pois estão afastados para fazer pós-graduação. O número de servidores que trabalha somente a tarde é A) 1. B) 18. C). D) 8. Somando os trabalhadores dos turnos matutino e vespertino temos = 76. Mas só há 68 funcionários e 10 destes estão afastados do trabalho, donde concluímos que = 58. Quantidade de funcionários que trabalham nos dois turnos: = 18. A quantidade de funcionários que trabalham apenas a tarde pode ser determinada por =. Resposta C 49. Uma aluna do curso de Engenharia gastou R$ 8.000,00 para desenvolver um jogo para telefone celular. Ela estimou que, se cobrasse x reais por cada download, conseguiria vender ( x ) download desse jogo. Sabendo que lucro é a diferença entre o valor arrecadado pela venda e o custo de produção de um produto, o lucro obtido por essa aluna se ela decidir vender cada download do jogo por R$,00 é A) R$ 3.986,00. B) R$ ,00. C) R$ 3.004,00. D) R$ 8.060,00. Pelos dados do enunciado podemos compor a seguinte tabela: Preço unitário Quantidade de Download x (0.000 x) (0.000 ) Valor arrecadado com a venda: (0.000 ) = = R$ Lucro: = Resposta B 14

15 50. Em um ônibus escolar, os assentos das poltronas estão na posição horizontal a 35 cm do solo, que é paralelo ao plano que contêm os assentos. Nesse ônibus, o encosto das poltronas mede 65 cm e forma com o assento um ângulo de 10º. Se 3 1, 73, a altura em relação ao solo do ponto mais alto do encosto mede, aproximadamente, A) 91, cm. B) 67,5 cm. C) 98,4 cm. D) 56,3 cm. Para entendermos melhor a questão, montamos a figura seguinte, baseada nos dados do enunciado. Aplicando as regras de trigonometria no triangulo retângulo teremos: 3 sen 60º = x = x = 65 3 x = 65 1,73 65 A altura total será: 56, + 35 = 91, 65 1,73 x = x = 56, Resposta A 15

16 16

17 17

RESOLUÇÃO: Como Paulo ficou com R$ 38,00 e faltou R$ 47,00 então o preço de cada livro era R$ 85,00.

RESOLUÇÃO: Como Paulo ficou com R$ 38,00 e faltou R$ 47,00 então o preço de cada livro era R$ 85,00. O professor Fábio Marcelino da Silva (Fininho) é Mestrando em matemática pela UFRN e Graduado em Licenciatura plena em Matemática pela mesma Instituição. Desde o ano de 2001 dedica-se á área de concursos

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 7 Ọ ANO EM 2015. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 7 Ọ ANO EM 2015. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 7 Ọ ANO EM 201 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 (ENEM) Na literatura de cordel, os textos são impressos, em

Leia mais

Lista de Exercícios 10 Matemática Financeira

Lista de Exercícios 10 Matemática Financeira Lista de Exercícios 10 Matemática Financeira Razão Chama-se de razão entre dois números racionais a e b, ao quociente entre eles. Indica-se a razão de a para b por a/b ou a:b. Exemplo: Na sala da 6ª B

Leia mais

7.ª e 8.ª SÉRIES/8.º e 9.º ANOS

7.ª e 8.ª SÉRIES/8.º e 9.º ANOS 7.ª e 8.ª SÉRIES/8.º e 9.º ANOS 1. A tecla da divisão da calculadora de Arnaldo parou de funcionar, mas nem por isso ele deixou de efetuar as divisões, pois a tecla de multiplicação funciona normalmente.

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais

Matemática. Apostila. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.

Matemática. Apostila. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM. Matemática Apostila Prof. Pedro UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA ALUNOS

Leia mais

UFRN 2013 Matemática Álgebra 3º ano Prof. Afonso

UFRN 2013 Matemática Álgebra 3º ano Prof. Afonso UFRN 203 Matemática Álgebra 3º ano Prof. Afonso 3 2. (Ufrn 203) Considere a função polinomial f ( x) = x 3x x + 3. a) Calcule os valores de f ( ), f ( ) e f ( 3 ). b) Fatore a função dada. c) Determine

Leia mais

CURSO FREE PMES PREPARATÓRIO JC

CURSO FREE PMES PREPARATÓRIO JC CURSO FREE PMES PREPARATÓRIO JC Geometria CÍRCULO Área A = π. r 2 π = 3,14 Perímetro P = 2. π. r RETANGULO Área A = b. h Perímetro P = 2b + 2h QUADRADO Área A = l. loua = l 2 Perímetro TRIÂNGULO P = 4l

Leia mais

Poliedros, Prismas e Cilindros

Poliedros, Prismas e Cilindros 1. (G1 - ifsp 2013) A figura mostra uma peça feita em 1587 por Stefano Buonsignori, e está exposta no Museu Galileo, em Florença, na Itália. Esse instrumento tem a forma de um dodecaedro regular e, em

Leia mais

Exercícios de Matemática para Concurso Público. Razão e proporção Porcentagem

Exercícios de Matemática para Concurso Público. Razão e proporção Porcentagem Exercícios de Matemática para Concurso Público Razão e proporção Porcentagem 1. (Unicamp 014) A figura abaixo exibe, em porcentagem, a previsão da oferta de energia no Brasil em 030, segundo o Plano Nacional

Leia mais

Universidade Federal de Goiás Instituto de Informática

Universidade Federal de Goiás Instituto de Informática Universidade Federal de Goiás Instituto de Informática EXERCÍCIOS DE ESTRUTURAS SEQUÊNCIAIS 1. O coração humano bate em média uma vez por segundo. Desenvolver um algoritmo para calcular e escrever quantas

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM NOVEMBRO/009 Prova E matemática x + y y x 1. O valor da expressão + 6 : x + y para x 4 e y 0,15 é: a) 0 b) 1 c) d) e) 4 Temos x + y y x + 6 : x + y. Uma costureira pagou

Leia mais

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas:

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: ÁLGEBRA Nivelamento CAPÍTULO VI REGRA DE TRÊS REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: 1) Num acampamento, há 48 pessoas e alimento suficiente para um mês.

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA Razão, Proporção,Regra de, Porcentagem e Juros PROF. CARLINHOS NOME: N O : 1 RAZÃO, PROPORÇÃO E GRANDEZAS Razão é o quociente entre dois números não nulos

Leia mais

Resposta: Resposta: KLAITON - 1ª SEMANA - EXT OLIMP WS - MAT 5

Resposta: Resposta: KLAITON - 1ª SEMANA - EXT OLIMP WS - MAT 5 KLAITON - 1ª SEMANA - EXT OLIMP WS - MAT 5 1. Com um automóvel que faz uma média de consumo de 12 km por litro, um motorista A gasta em uma viagem R$ 143,00 em combustível, abastecendo ao preço de R$ 2,60

Leia mais

Resoluções das Atividades

Resoluções das Atividades LIVRO MATEMÁTICA 5 Resoluções das Atividades Sumário Módulo Fração Módulo Potências Módulo Sistema métrico decimal Módulo Fração Pré-Vestibular LIVRO MATEMÁTICA 5 0 C Analisemos a situação descrita e vejamos

Leia mais

Problemas de volumes

Problemas de volumes Problemas de volumes A UUL AL A Nesta aula, vamos resolver problemas de volumes. Com isso, teremos oportunidade de recordar os principais sólidos: o prisma, o cilindro, a pirâmide, o cone e a esfera. Introdução

Leia mais

A 'BC' e, com uma régua, obteve estas medidas:

A 'BC' e, com uma régua, obteve estas medidas: 1 Um estudante tinha de calcular a área do triângulo ABC, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento A 'C' paralelo a AC, a altura C' H do triângulo A 'BC' e, com uma régua,

Leia mais

Matemática Financeira Módulo 2

Matemática Financeira Módulo 2 Fundamentos da Matemática O objetivo deste módulo consiste em apresentar breve revisão das regras e conceitos principais de matemática. Embora planilhas e calculadoras financeiras tenham facilitado grandemente

Leia mais

a) R$ 51 500,00. b) R$ 52 000,00. c) R$ 52 400,00. d) R$ 52 500,00. e) R$ 53 000,00.

a) R$ 51 500,00. b) R$ 52 000,00. c) R$ 52 400,00. d) R$ 52 500,00. e) R$ 53 000,00. MATEMÁTICA 49 Um terreno comprado por R$ 30 000,00 valorizou de tal maneira, que seu valor no mercado imobiliário 2 anos após sua compra era de R$ 50 000,00, e 5 anos após a compra era de R$ 68 000,00.

Leia mais

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão Matemática para Concursos - Provas Gabaritadas André Luiz Brandão CopyMarket.com Todos os direitos reservados. Nenhuma parte desta publicação poderá ser reproduzida sem a autorização da Editora. Título:

Leia mais

Questões Complementares de Geometria

Questões Complementares de Geometria Questões Complementares de Geometria Professores Eustácio e José Ocimar Resolução comentada Outubro de 009 Questão 1_Enem 000 Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D Questão Considere a seqüência abaixo, conhecida como seqüência de Fibonacci Ela é definida de tal forma que cada termo, a partir do terceiro, é obtido pela soma dos dois imediatamente teriores a i :,,,

Leia mais

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.

Leia mais

Módulo de Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios. 6 ano E.F.

Módulo de Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios. 6 ano E.F. Módulo de Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios. 6 ano E.F. Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios.

Leia mais

Grandezas proporcionais (II): regra de três composta

Grandezas proporcionais (II): regra de três composta Grandezas proporcionais (II): regra de três composta 1. Proporcionalidade composta Observe as figuras: A 4 2 B 5 A C 8 B 10 C Triângulo Base Altura Área 5 4 2 2 A = 5. 4 2 = 10 10 8 A = 10. 8 2 = 40 2

Leia mais

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a 1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.

Leia mais

ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática

ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática ENEM 014 - Caderno Cinza Resolução da Prova de Matemática 136. Alternativa (C) Basta contar os nós que ocupam em cada casa. 3 nós na casa dos milhares. 0 nós na casa das centenas. 6 nós na casa das dezenas

Leia mais

Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA

Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA Caderno de Provas MATEMÁTICA Edital Nº. 04/2009-DIGPE 10 de maio de 2009 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA Use apenas caneta esferográfica azul ou preta. Escreva o seu nome completo e o número do seu

Leia mais

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12 Matemática Essencial Proporções: Aplicações Matemática - UEL - 2010 - Compilada em 25 de Março de 2010. Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/

Leia mais

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 M A T E M Á T I C A PROPORÇÕES Nome: Data Prof: Manoel Amaurício P O R C E N T A G E M p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 Após um aumento de p% sobre C passamos a ter 100 p C.

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 4 Disciplina: matemática Prova: desafio nota: QUESTÃO Como prêmio de final de ano, o dono de uma loja quer dividir uma

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO COLÉGIO MILITAR DO RECIFE PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO COLÉGIO MILITAR DO RECIFE PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP DEPA COLÉGIO MILITAR DO RECIFE DE OUTUBRO DE 005 Página 1/10 ITEM 01. A figura abaixo mostra um pedaço de terreno plano com plantação de cana-deaçucar que deve

Leia mais

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA MATEMÁTICA 49 A distância que um automóvel percorre após ser freado é proporcional ao quadrado de sua velocidade naquele instante Um automóvel, a 3 km/, é freado e pára depois de percorrer mais 8 metros

Leia mais

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010.

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. Olá pessoal! Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. 01. (Fundação CASA 2010/VUNESP) Em um jogo de basquete, um dos times, muito mais forte, fez 62 pontos a mais que o seu

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C.

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C. Questão TIPO DE PROVA: A José possui dinheiro suficiente para comprar uma televisão de R$ 900,00, e ainda lhe sobrarem da quantia inicial. O valor que so- 5 bra para José é a) R$ 50,00. c) R$ 800,00. e)

Leia mais

APRESENTAÇÃO INICIAL... 2 CONSTANTE DE PROPORCIONALIDADE (K)...

APRESENTAÇÃO INICIAL... 2 CONSTANTE DE PROPORCIONALIDADE (K)... AULA DEMONSTRATIVA 1. APRESENTAÇÃO INICIAL... 2 CONSTANTE DE PROPORCIONALIDADE (K)... 3 2.1. EXERCÍCIOS RESOLVIDOS... 3 3. DIVISÃO PROPORCIONAL... 4 3.1. GRANDEZAS DIRETAMENTE PROPORCIONAIS... 4 4. REGRAS

Leia mais

MATEMÁTICA. 10 10 t = = t = anos

MATEMÁTICA. 10 10 t = = t = anos MATEMÁTICA 9 d Seja n um número qualquer, inteiro e positivo. Se n é par, divida-o por ; se n é ímpar, multiplique-o por e adicione ao resultado. Esse procedimento deve ser repetido até que se obtenha

Leia mais

Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio

Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Nascimento Análise e Resolução da prova de ATE SEFAZ/PI

Leia mais

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1. A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade. O quadrilátero

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA RESOLUÇÃO DA PROVA DE MATEMÁTICA 0) O tanque de combustível do carro de João tem capacidade de 40 litros. Sabemos que o consumo do carro é de litro para cada 0 quilômetros rodados, se João dirigir a uma

Leia mais

Módulo 6 Porcentagem

Módulo 6 Porcentagem Professor: Rômulo Garcia machadogarcia@gmail.com Conteúdo Programático: Razões e proporções, divisão proporcional, regras de três simples e compostas, porcentagens Site: matematicaconcursos.blogspot.com

Leia mais

EXERCÍCIOS DIVERSOS TRABALHO 1

EXERCÍCIOS DIVERSOS TRABALHO 1 EXERCÍCIOS DIVERSOS TRABALHO 1 01. O gerente de uma loja de presentes está fazendo o fechamento das vendas de brinquedos no período de véspera de natal. No dia 06/11/2006 foram vendidos 14 brinquedos a

Leia mais

a) ( ) 1200 b) ( ) 1800 c) ( ) 2700 d) ( ) 3600 e) ( ) 4500

a) ( ) 1200 b) ( ) 1800 c) ( ) 2700 d) ( ) 3600 e) ( ) 4500 01) A figura abaixo, é formada por um triângulo e um retângulo, usando-se 60 palitos iguais. Para cada lado do triângulo são necessários seis palitos. Se cada palito mede 5 cm de comprimento, qual é a

Leia mais

UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA

UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA UFR_VESTIBULAR _004 COMENTÁRIO E RESOLUÇÃO OR ROFA. MARIA ANTONIA GOUVEIA QUESTÃO Um grupo de estudantes decidiu viajar de ônibus para participar de um encontro nacional. Ao fazerem uma pesquisa de preços,

Leia mais

TÉCNICO EM CONTABILIDADE MATEMÁTICA FINANCEIRA MÓDULO 1 ETEP TÉCNICO EM CONTABILIDADE MÓDULO 1 MATEMÁTICA FINANCEIRA 2012

TÉCNICO EM CONTABILIDADE MATEMÁTICA FINANCEIRA MÓDULO 1 ETEP TÉCNICO EM CONTABILIDADE MÓDULO 1 MATEMÁTICA FINANCEIRA 2012 2012-1 TÉCNICO EM CONTABILIDADE MÓDULO 1 MATEMÁTICA FINANCEIRA 1 Explicando o funcionamento da disciplina e a avaliação. Serão 2 aulas semanais onde os conteúdos serão abordados, explicados e exercitados.

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Geometria Sólidos geométricos e volumes Prisma, pirâmide, cilindro, cone e esfera Planificação e construção de modelos de sólidos geométricos Volume do cubo, do paralelepípedo e do cilindro Unidades de

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 006 / 00 PROVA DE MATEMÁTICA ª SÉRIE DO ENSINO FUNDAMENTAL CONFERÊNCIA: Chefe da Subcomissão de Matemática Chefe da COC Dir Ens CPOR / CMBH 006 PÁGINA:

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida. 7 ENSINO FUNDAMENTAL 7- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 7 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.

Leia mais

Máximos e mínimos. Problemas de máximos e mínimos estão presentes. Nossa aula

Máximos e mínimos. Problemas de máximos e mínimos estão presentes. Nossa aula A UA UL LA Máimos e mínimos Introdução Problemas de máimos e mínimos estão presentes em quase todas as atividades do mundo moderno. Por eemplo, você pode imaginar como um carteiro distribui a correspondência?

Leia mais

Fundamentos da Matemática

Fundamentos da Matemática Fundamentos da Matemática Aula 10 Os direitos desta obra foram cedidos à Universidade Nove de Julho Este material é parte integrante da disciplina oferecida pela UNINOVE. O acesso às atividades, conteúdos

Leia mais

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO 36.(ESCREV.TÉC.JUD-CAMPINAS E GUARULHOS- 006-VUNESP) Certo plano de saúde emite boletos para pagamento bancário com as seguintes condições: Pagamento até o vencimento: Pagamento após a data de vencimento:

Leia mais

CADERNO DE EXERCÍCIOS 1F

CADERNO DE EXERCÍCIOS 1F CADERNO DE EXERCÍCIOS 1F Ensino Fundamental Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Subtração e divisão com decimais H16 2 Divisão com números decimais H16 3 Área Transformação

Leia mais

Equacionando problemas

Equacionando problemas Reforço escolar M ate mática Equacionando problemas Dinâmica 2 1º Série 2º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Médio 1ª Campo Algébrico Simbólico Função polinomial do 1 grau Aluno

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 6/06/ PROFESSOR: MALTEZ Uma pirâmide quadrangular regular possui área da base igual a 6 e altura igual a. A área total da pirâmide é igual

Leia mais

PROVA DO BANCO DO BRASIL - 2010 - MATEMÁTICA E RACIOCÍNIO LÓGICO RESOLVIDA E COMENTADA Professor Joselias joselias@uol.com.

PROVA DO BANCO DO BRASIL - 2010 - MATEMÁTICA E RACIOCÍNIO LÓGICO RESOLVIDA E COMENTADA Professor Joselias joselias@uol.com. Professor Joselias Abril de2010 MATEMÁTICA 11- Um investidor aplicou certa quantia em um fundo de ações. Nesse fundo, das ações eram da empresa A, eram da empresa B e as restantes, da empresa C. Em um

Leia mais

Devemos escolher os números com os menores expoentes, cujas bases são comuns aos três desenvolvimentos em fatores primos.

Devemos escolher os números com os menores expoentes, cujas bases são comuns aos três desenvolvimentos em fatores primos. 1) O dono de um pequeno mercado comprou menos de 200 limões e, para vendê-los, poderá fazer pacotes contendo 12, ou 15, ou 18 limões em cada um deles, utilizando, dessa forma, todos os limões comprados.

Leia mais

Universidade Federal de Alagoas Eixo da Tecnologia Campus do Sertão Programa de Educação Tutorial

Universidade Federal de Alagoas Eixo da Tecnologia Campus do Sertão Programa de Educação Tutorial Grandezas, Unidades de Medidas e Escala 1) (Enem) Um mecânico de uma equipe de corrida necessita que as seguintes medidas realizadas em um carro sejam obtidas em metros: a) distância a entre os eixos dianteiro

Leia mais

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA.

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. PROVA DO VESTIBULAR DA FUVEST 00 ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. QUESTÃO.01.Carlos, Luis e Sílvio tinham, juntos, 100 mil reais para investir por um ano. Carlos

Leia mais

Matemática Financeira - Vinícius Werneck, professor do QConcursos.com

Matemática Financeira - Vinícius Werneck, professor do QConcursos.com Matemática Financeira - Vinícius Werneck, professor do QConcursos.com 1- Q236904 - Prova: CESGRANRIO - 2012 - Caixa - Técnico Bancário Disciplina: Matemática Financeira Assuntos: Amortização; Sistema Francês

Leia mais

UFPR 2012 2ª Fase. Matemática. Página1. 01 - Considere as funções f(x) = x 1 e g(x) = 2/3 (x 1)(x 2)

UFPR 2012 2ª Fase. Matemática. Página1. 01 - Considere as funções f(x) = x 1 e g(x) = 2/3 (x 1)(x 2) Página UFPR 0 ª Fase Matemática 0 - Considere as funções f() = e g() = / ( )( ) y 0 a) Esoce o gráfico de f() e g() no sistema cartesiano ao lado. ) Calcule as coordenadas (,y) dos pontos de interseção

Leia mais

No cálculo de porcentagem com operações financeiras devemos tomar muito cuidado para verificar sobre quem foi calculada essa porcentagem.

No cálculo de porcentagem com operações financeiras devemos tomar muito cuidado para verificar sobre quem foi calculada essa porcentagem. 1º BLOCO... 2 I. Porcentagem... 2 Relacionando Custo, Venda, Lucro e Prejuízo... 2 Aumentos Sucessivos e Descontos Sucessivos... 3 II. Juros Simples... 3 III. Juros Compostos... 4 2º BLOCO... 6 I. Operadores...

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera Aula n ọ 04 Esfera e Sólidos Redondos Área da Esfera A área de uma esfera é a medida de sua superfície. Podemos dizer que sua área é igual a quatro vezes a área de um círculo máximo, ou seja: eixo R O

Leia mais

Vestibular 1ª Fase Resolução das Questões Objetivas

Vestibular 1ª Fase Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 00 Prova de Matemática Vestibular ª Fase Resolução das Questões Objetivas São apresentadas abaixo possíveis soluções

Leia mais

Ao final do trajeto, João estará no ponto: a) A b) B c) C d) D

Ao final do trajeto, João estará no ponto: a) A b) B c) C d) D QUIZ 1) (Prova Brasil 2007) A figura abaixo ilustra as localizações de alguns pontos no plano. João sai do ponto X, anda 20 metros para a direita, 30 metros para cima, 40 metros para a direita e 10 metros

Leia mais

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo:

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 (UNICAMP) Três planos de telefonia celular

Leia mais

Matemática. Elementar II Caderno de Atividades

Matemática. Elementar II Caderno de Atividades Matemática Elementar II Caderno de Atividades Autor Leonardo Brodbeck Chaves 2009 2008 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores

Leia mais

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo. Triângulo Retângulo São triângulos nos quais algum dos ângulos internos é reto. O maior dos lados de um triângulo retângulo é oposto ao vértice onde se encontra o ângulo reto e á chamado de hipotenusa.

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia..0. Sabendo que os anos bissextos são os múltiplos de 4 e que o primeiro dia de 007 foi segunda-feira, o próximo ano a começar também em uma

Leia mais

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números MATEMÁTICA 01. Considere a função f, com domínio e contradomínio o conjunto dos números reais, dada por f(x) = 3 cos x sen x, que tem parte de seu gráfico esboçado a seguir. Analise a veracidade das afirmações

Leia mais

SITE_INEP_PROVA BRASIL - SAEB_MT_9ºANO (OK)

SITE_INEP_PROVA BRASIL - SAEB_MT_9ºANO (OK) 000 IT_005267 A figura a seguir é uma representação da localização das principais cidades ao longo de uma estrada, onde está indicada por letras a posição dessas cidades e por números as temperaturas registradas

Leia mais

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTIA DA UNIAMP VESTIULAR 011 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 1 Recentemente, um órgão governamental de pesquisa divulgou que, entre 006 e 009, cerca de 5, milhões de brasileiros

Leia mais

EXERCÍCIOS. 2. Faça um algoritmo que receba dois números e ao final mostre a soma, subtração, multiplicação e a divisão dos números lidos.

EXERCÍCIOS. 2. Faça um algoritmo que receba dois números e ao final mostre a soma, subtração, multiplicação e a divisão dos números lidos. EXERCÍCIOS 1. Faça um algoritmo que receba dois números e exiba o resultado da sua soma. 2. Faça um algoritmo que receba dois números e ao final mostre a soma, subtração, multiplicação e a divisão dos

Leia mais

QUESTÕES ÁREAS DE POLÍGONOS

QUESTÕES ÁREAS DE POLÍGONOS QUESTÕES ÁREAS DE POLÍGONOS 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a),0 m. b),0

Leia mais

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes.

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes. OBMEP 008 Nível 3 1 QUESTÃO 1 Carlos começou a trabalhar com 41-15=6 anos. Se y representa o número total de anos que ele trabalhará até se aposentar, então sua idade ao se aposentar será 6+y, e portanto

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida. 7 ENSINO FUNDAMENTAL 7- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 7 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.

Leia mais

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015 Roteiro da aula MA091 Matemática básica Aula 11 Equações e sistemas lineares 1 Francisco A. M. Gomes 2 UNICAMP - IMECC Março de 2015 3 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

Solução da prova da 1 a fase OBMEP 2008 Nível 1

Solução da prova da 1 a fase OBMEP 2008 Nível 1 OBMEP 00 Nível 1 1 QUESTÃO 1 Como Leonardo da Vinci nasceu 91 anos antes de Pedro Américo, ele nasceu no ano 14 91 = 145. Por outro lado, Portinari nasceu 451 anos depois de Leonardo da Vinci, ou seja,

Leia mais

Administração - UniFAI

Administração - UniFAI CENTRO UNIVERSITÁRIO ASSUNÇÃO UniFAI Matemática Financeira Exercícios - Parte II Desconto de Títulos de Crédito Desconto de um Conjunto de Títulos 1 Desconto de Títulos de Crédito 1) Calcular o desconto

Leia mais

Você sabe a regra de três?

Você sabe a regra de três? Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Você sabe a regra de três?

Leia mais

COMPLEMENTO MATEMÁTICO

COMPLEMENTO MATEMÁTICO COMPLEMENTO MATEMÁTICO Caro aluno, A seguir serão trabalhados os conceitos de razão e proporção que são conteúdos matemáticos que devem auxiliar o entendimento e compreensão dos conteúdos de Química. Os

Leia mais

Instituto Nacional de Matemática Pura e Aplicada Programa de Aperfeiçoamento para Professores de Matemática do Ensino Médio PROPORCIONALIDADE

Instituto Nacional de Matemática Pura e Aplicada Programa de Aperfeiçoamento para Professores de Matemática do Ensino Médio PROPORCIONALIDADE Instituto Nacional de Matemática Pura e Aplicada Programa de Aperfeiçoamento para Professores de Matemática do Ensino Médio PROPORCIONALIDADE 1. Por um trabalho adicional a seu emprego, Álvaro deve descontar

Leia mais

CÍRCULO, CIRCUNFERÊNCIA E OUTROS BICHOS. Reconhecer a figura de uma circunferência e seus elementos em diversos objetos de formato circular.

CÍRCULO, CIRCUNFERÊNCIA E OUTROS BICHOS. Reconhecer a figura de uma circunferência e seus elementos em diversos objetos de formato circular. CÍRCULO, CIRCUNFERÊNCIA E OUTROS BICHOS "Um homem pode imaginar coisas que são falsas, mas ele pode somente compreender coisas que são verdadeiras, pois se as coisas forem falsas, a noção delas não é compreensível."

Leia mais

Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema.

Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema. SIMULADO SAEB - 2015 Matemática 3ª série do Ensino Médio GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO QUESTÕES E COMENTÁRIOS Questão 1 D4 Identificar a relação entre o número de vértices, faces

Leia mais

Potência Mecânica. Está(ão) correta(s) apenas a) I. b) II. c) I e II. d) I e III. e) II e III.

Potência Mecânica. Está(ão) correta(s) apenas a) I. b) II. c) I e II. d) I e III. e) II e III. Potência Mecânica 1. (Upe 2013) Considerando-se um determinado LASER que emite um feixe de luz cuja potência vale 6,0 mw, é CORRETO afirmar que a força exercida por esse feixe de luz, quando incide sobre

Leia mais

MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005.

MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. MTEMÁTI 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. 80 60 40 20 0 1 /03 2 /03 1º/04 2º/04 1º/05 2º/05 Lucro 50 60 45 70 55 65 0-0) O lucro médio

Leia mais

Prova Resolvida. múltiplos de 7: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98

Prova Resolvida. múltiplos de 7: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98 Prova Resolvida Matemática p/ TJ-PR - Uma caixa contém certa quantidade de lâmpadas. Ao retirá-las de 3 em 3 ou de 5 em 5, sobram lâmpadas na caixa. Entretanto, se as lâmpadas forem removidas de 7 em 7,

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental a e 6 a séries (6º e 7º anos) do Ensino Fundamental 1. (alternativa C) Os números 0,01 e 0,119 são menores que 0,12. Por outro lado, 0,1 e 0,7 são maiores que 0,. Finalmente, 0,29 é maior que 0,12 e menor

Leia mais

m dela vale R$ 500,00,

m dela vale R$ 500,00, CLICK PROFESSOR Professor: Júnior ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. Calcule: Se um carro mede cerca de 4 m, quantos carros, aproximadamente, há em uma rodovia com 3 pistas e que tem 6 km

Leia mais

Matemática Financeira II

Matemática Financeira II Módulo 3 Unidade 8 Matemática Financeira II Para início de conversa... Passagens de ônibus ficam mais caras este mês Vitor Ferri (vferri@redegazeta.com.br)_ Redação Multimídia A Agência Nacional de Saúde

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

MATEMÁTICA PARA CONCURSOS II

MATEMÁTICA PARA CONCURSOS II 1 MATEMÁTICA PARA CONCURSOS II Fonte: http://www.migmeg.com.br/ MÓDULO II Estudaremos neste módulo geometria espacial e volume dos principais sólidos geométricos. Mas antes de começar a aula, segue uma

Leia mais

Análise e Resolução da prova do ISS-Cuiabá Disciplina: Matemática Financeira Professor: Custódio Nascimento

Análise e Resolução da prova do ISS-Cuiabá Disciplina: Matemática Financeira Professor: Custódio Nascimento Disciplina: Professor: Custódio Nascimento 1- Análise da prova Análise e Resolução da prova do ISS-Cuiabá Neste artigo, farei a análise das questões de cobradas na prova do ISS-Cuiabá, pois é uma de minhas

Leia mais

Módulo de Juros e Porcentagem. Juros Simples e Compostos. Sétimo Ano

Módulo de Juros e Porcentagem. Juros Simples e Compostos. Sétimo Ano Módulo de Juros e Porcentagem Juros Simples e Compostos Sétimo Ano Juros Simples e Compostos 1 Eercícios Introdutórios Eercício 1. Um investidor quer aplicar a quantia de R$ 800, 00 por 3 meses, a uma

Leia mais

Conjuntos Numéricos. É um subconjunto de números naturais que possuem exatamente dois divisores: o número 1 e ele mesmo. { }

Conjuntos Numéricos. É um subconjunto de números naturais que possuem exatamente dois divisores: o número 1 e ele mesmo. { } CURSO: ASTRONOMIA APLICADA À NAVEGAÇÃO PROFESSOR: ALEXANDRE RIBEIRO ANDRADE MÓDULO 1: MATEMÁTICA APLICADA NA ASTRONOMIA NÁUTICA Apostila 1: Sistema de Unidades utilizadas na Navegação e na Astronomia,

Leia mais