homogeneizac~ao da equac~ao da onda com condic~oes de dirichlet relaxadas

Tamanho: px
Começar a partir da página:

Download "homogeneizac~ao da equac~ao da onda com condic~oes de dirichlet relaxadas"

Transcrição

1 SeminarioBrasileirodeAnalise-SBA InstitutodeMatematicaeEstatatstica-USP Edic~aoN067 Maio 2008 homogeneizac~ao da equac~ao da onda com condic~oes de dirichlet relaxadas j. s. souzay & j. q. chagasz Resumo problemasdedirichletrelaxados,denidospormeiodemedidaspositivas, Nessetrabalhoestudamosahomogeneizac~aodaequac~aodaondapara paraoperadoreselpticosdesegundaordemnaformadediverg^encia,em queseuscoecienteseosseusrespectivosdomniosvariamsimultaneamentecom. 1 Introduc~ao Nestetrabalho,estudamosahomogeneizac~aodaequac~aodaonda u00 Au=f; ondeaeumoperadorelpticolineardesegundaordemcomcoecientesmensuraveislimitadosem.consideramosumasequ^enciadeproblemasdeevoluc~ao comcondic~oesdedirichletrelaxadasdaforma 8>< >: 00 div(a Du )=femq = (0;T); T>0 =0em = (0;T); u (x;0)=u(x)eu0 (1.1) (x;0)=u(x)em ; ondeasmatrizesa eosdomniosvariaveis 0 1 dependemdopar^ametroxado. (Oumaisgeralmente,consideramosumasequ^enciadeproblemasdeDirichlet relaxados,denidospormedidaspositivas,paraoperadoreselpticoslinearesde segundaordemsobaformadediverg^enciacommatrizesdecoecientestambem variaveis). Osconjuntos,xo,abertoelimitado,easmatrizesA,abertos,s~aotodoscontidosemumconjunto,denidassobrecomcoecientes mensuraveis,s~aocoercivaselimitadas.oprocessodehomogeneizac~aoconsiste R n emestudarocomportamentodassoluc~oesu quandotendeparazero. Key words: Homogeneizac~ao, Condic~oes de Dirichlet relaxadas, Domnios variaveis. y Centro de Ci^encias Fsicas e Matematicas, UFSC, SC, Brasil, z Departamento de Matematica e Estatstica, 1 UEPG, PR, Brasil,

2 2 Homogeneizac~ao eq. onda com condic~oes de Dirichlet relaxadas 67 0 SBA Nocasoespecialonde =,existeumasubsequ^encia,aindadenotada por(a ),eumamatriza,chamadadeh-limitede(a ),talqueparacada f 2L1(0;T;L ()),assoluc~oesv 0 2 ( dosproblemas 2L1(0;T;H0()); v 00 div(a Dv 1 )=f; eml1(0;t; D0()); convergemfraco-estrelaeml1(0;t;h ( 0())paraasoluc~aov de v 1 0 v00 2L1(0;T;H0()); 0 div(adv )=f; 1 eml1(0;t; D0()); esatisfazemtambem A Dv *ADv ; fracamenteeml1(0;t;l(; )): R Semfazerqualqueroutrahipoteseadicionalsobreosconjuntosabertos n, prova-sequeexisteumasubsequ^encia,aindadenotadapor( ),talquepara cadaf 2L1(0;T;L()),assoluc~oesu de(1.1)convergemparaasoluc~aou doproblema 2 8>< ddt Z u00ydx ZADuDydx+ Z uyd =<f;y>; 0 em D0(0;T); 8y2H 0 0() \L(;); >: u(x;0)=u(x)eu0(x;0)=u(x)em; (1.2) u 2L1(0;T;H 0 0() \L(; 1 )); onde 1 0(),umaclassedemedidasdeBoreln~aonegativasque 2 0 tendemparazerosobrequalquerconjuntodecapacidadezero,masquepodem 0 pertenceam + assumirovalor+1sobrealgunssubconjuntosde. Problemasdotipo(1.2)s~aochamadosdeproblemasdeDirichletrelaxados, et^emsidoestudadosparadescreveroslimitesdassoluc~oesde(1.1),quandoas matrizesa n~aodependemde.poroutrolado,problemasdotipo(1.1)podem serescritoscomoproblemasdedirichletrelaxadosconsiderando-seasmedidas,denidaspor: (B)= ( 0; secap(bn )=0; +1; casocontrario. (1.3) Pode-seconsiderarn~aosomenteoproblemadeDirichlet(1.1)referenteas medidas denidasem(1.3),masnumcasomaisgeral,estudarumasequ^encia deproblemasdedirichletcommedidasarbitrarias 0(). 2 M + 2 Denic~oes e Notac~oes Daremosnessasec~aoalgumasdenic~oesbasicas:

3 67 0 SBA J. S. Souza & J. Q. Chagas 3 SejaE2.Denimossuacapacidadecomo: cap(e):= inf dx;u 1q.s.emumavizinhancadeE. u2h1 0 () Z DizemosqueumapropriedadeP(x)valeem jduj2 parte(q.e.)eme,se P(x)valeemtodox2E,excetoparaumsubconjuntoN quase toda E,comcap(N)=0. Dizemos que u : Re se > 0; E, com neecontnua.! quase contnua 8 9 cap(e)<,talqueuj DizemosqueU e quase abertose 8>0; 9V,comcap(V 4U)<, ondev eabertoe4denotaadiferencasimetrica. Observamosquetodau 2H ()possuiumarepresentantequasecontnua, queeunicamentedenidaamenosdeumconjuntodecapacidadenula,ouseja, 1 seu 2H (),ent~ao 1 u =v;vjneecontnua,comcap(e)=0: Uma negativasobreeumafunc~aodeconjuntoaditiva contaveldenidasobreossubconjuntosdeboreldecomvaloresem[0;+1]. medida n~ao Uma negativasobreeumamedidadeboreln~ao negativaqueenitasobretodoconjuntocompactode. medida de Radon n~ao (E)=inff(B); Beboreliano,EB g. 0()eoconedetodasasmedidasdeBoreln~aonegativassobre,tais que: ( M + (a)(b)=0; 8B; comcap(b)=0; Bboreliano. (b)(b)=inff(u); Uquaseaberto;B Ug; 8B; boreliano. M0()denotaoconjuntodasmedidasdeBoreln~aonegativasquesomente satisfazemacondic~ao(a). por ParatodoconjuntoquaseabertoU,denimosamedidadeBorel U (B)= ( 0; secap(bnu)=0 U +1; casocontrario: OconedetodasasmedidasdeRadonsobreseradenotadopor M(). O cone de todos os elementos n~ao negativos de H 1()e denotado por H 1(). Como todo elemento de H 1() e uma medida de Radon n~ao + +

4 4 Homogeneizac~ao eq. onda com condic~oes de Dirichlet relaxadas 67 0 SBA negativaquepertencetambema 0(),temosainclus~ao H 1() M + M() 0(): + \ M + 3 H-Converg^encia Sejam; R,com0<<+1. 2 DenimosM()comooconjuntodetodasasmatrizesA 2L1(; ) taisque R n n A(x) I; (A(x)) 1 1I; q.s.em: (3.4) Em(3.4),Ieamatrizidentidadeem,easdesigualdadess~aonosentido R n n. (3.4)implicatambem dasformasquadricasdenidaspora(x)para2 que R n q.s.em (3.5) eque,necessariamente,. ja(x)j Denic~ao 1 Uma sequ^encia(a) de matrizes emm() H-converge para uma matriza emm 8f 2H 0 (), se, 1(), a sequ^enciau ( de soluc~oes dos problemas u 2H0(); div(a 1 Du)=f; D0() (3.6) em u *u satisfaz 0 fracamente emh0() ADu *ADu fracamente eml(; ); 2 R ondeu n 0 ( e a soluc~ao do problema: u 2H0(); 0 div(a 1 Du)=f; D0(): 0 0 em Observac~ao 1 Toda sequ^encia de matrizes emm () possui uma subsequ^encia que H-converge para uma matriz emm (). Teorema 1 Seja(A) uma segu^encia de matrizes emm() que H-converge para uma matriza( emm eu 0 (), uma sequ^encia emh () u *u 1 tal que 0 fracamente emh () div(adu)=f D0(); 1 8 0: (3.7) em ( Assumindo quef =g +v (g ), para todo>0, onde e relativamente compacta emw (); 1;p loc para algump>1; (v) 0; D0(): (3.8) em ent~ao f *f 0 fracamente eml(; ): 2 R n

5 SBA J. S. Souza & J. Q. Chagas Nestetrabalho,esteteoremaserausadocom(g)relativamentecompacto (oumesmoconstante)emh 1(). 4 Problemas de Dirichlet Relaxados DadosA 2M(), 2M 0()ef 2H 1(),chamamosdeproblemade Dirichletrelaxadooproblemadeencontrarutalque + 8< : ZADuDydx+ u 0() \L(;); Z 2H1 2 uyd=<f;y>; 8y2H0() \L(;): (4.9) 1 2 Porumaaplicac~aodolemadeLax-Milgram,oproblema(4.9)temumaunica soluc~aou(ver[3]),quesatisfazaestimativa Z dx+ Z d 1 jduj2 juj2 jjfjj 2 H 1(): (4.10) 4.1 Fixemos Reconstruc~ao da medida A 2M(); 2M 0(); 2H 1() (4.11) + + eumasoluc~aowparaoproblema 8< : w ZADwDydx+ () \L(;); Z 2H1 2 wyd= Z yd; 8y2H0() \L(;); (4.12) 1 2 quesatisfaz w 0q.e.em: (4.13) Observac~ao 2 Do Teorema de Lax-Milgram, existe uma unica soluc~ao de (4.12) que pertence ah 1 0(); pelo princpio da comparac~ao, esta soluc~ao satisfaz (4.13), de modo que o conjunto de tais func~oes e n~ao vazio. Proposic~ao 9v 2H 1() 1 + Assuma que (4.11), (4.12) e (4.13) s~ao verdadeiras. Ent~ao tal que div(adw)+v= D0(): (4.14) em Porraz~oestecnicas, areconstruc~aodamedida dewrequeraseguinte hipotese:partatodoconjuntoquaseabertouem,temos cap(u fw=0g)>0)(u)>0: (4.15) \

6 6 Homogeneizac~ao eq. onda com condic~oes de Dirichlet relaxadas 67 0 SBA Proposic~ao 2 u Assuma 2H0() as \L hipoteses (;) (4.11), )u=0 (4.12), (4.13) fw=0g: e (4.15). Ent~ao (4.16) 1 2 q.e. em Alem disso, para conjuntos de BorelB cap(b fw=0g)>0)(b)=+1:, vale (4.17) \ Proposic~ao 3 Assuma as hipoteses (4.11), (4.12), (4.13) e (4.15), e seja v a medida deh 1() + denida em (4.14). Ent~ao para todo conjunto de Borel B, temos (B)= 8 < dv : ZB w ; secap(b fw=0g)=0 +1; secap(b fw=0g)>0; (4.18) \ \ e v(b fw=0g)= Z Bwd: (4.19) quev=w \ Em particular, isso implica sobre fw>0g. 4.2 Naproximaproposic~ao,assumiremosque Resultados de unicidade e densidade w 2L1(): (4.20) Proposic~ao 4 Assuma que (4.11) - (4.13), (4.15) e (4.20) s~ao verdadeiras. Ent~ao o conjunto fw':'2c1 c ()g e denso emh 1 0() \L 2 (;). Oseguinteresultadodeunicidadeecrucialparaosteoremas2e4. Proposic~ao 5 Assuma as hipoteses (4.11) - (4.13), (4.15) e (4.20). Seja u uma soluc~ao do problema 8< : u ZAD'Duwdx 0() \L1(); ZADwD'udx+ Z 2H1 u'd=0; 8' 2C1(): (4.21) 0 Ent~ao,u=0 q.e. em. 5 Um resultado de converg^encia global Paratodo 0,consideramosumamatrizA emm()eumamedida emm 0(),queseraxadaaolongodorestodestetrabalho.Assumimosque + (A)H-convergeparaA: (5.22) Nestasec~aousamosoargumentodedualidadeparaprovarque,sobhipoteses 0 adequadassobre()(quesempres~aosatisfeitasparaumasubsequ^encia),as soluc~oesu deproblemasdedirichletrelaxados(4.9)para A=A e= convergemparaasoluc~aou doproblemadedirichletrelaxado,coma=a, e=

7 67 0 SBA J. S. Souza & J. Q. Chagas Paratodo Denic~ao 0,denimosasfunc~oesw testes especiais ew comoasunicassoluc~oespara osproblemas 8< : ZA 2H0() \L(;); w Dw 1 Dydx+ Z 2 w yd = Z ydx; 8y2H0() \L(;); (5.23) e8< 1 2 w : ZA 2H0() \L(;); Dw 1 Dydx+ Z 2 w yd = Z ydx; 8y2H0() \L(;): (5.24) 1 2 Alemdisso,peloprincpiodomaximo,temostambem supjjw e supjjw jj L 1()<+1 jj L 1()<+1: (5.25) Pelaproposic~ao1,existemduasmedidasv ev emh 1() taisque div(a Dw )+v =1; e div(a Dw )+v =1; em D0(): + (5.26) Finalmente,de(4.10)obtemos sup dx<+1; sup dx<+1; (5.27) 0 Z jdw j 2 0 Z jdw j 2 d <+1; sup d <+1: (5.28) Z jw j 2 Z jw j 2 sup Dadas,paratoda O principal resultado 0,f ef emh de converg^encia 1(),consideramosassoluc~oesu e u paraosseguintesproblemas: 8< : Z 2H () \L(;); u A Du 1 Dydx+ Z 2 u yd =<f ;y>; 8y2H0() \L(;); 1 2 (5.29) e 8< u : Z 2H0() \L(;); A Du 1 Dydx+ Z 2 u yd =<f ;y>; 8y2H0() \L(;): 1 2 (5.30) Teorema 2 Admita (5.22), e sejamw ew as soluc~oes para (5.23) e (5.24). As seguintes condic~oes s~ao equivalentes: (a)w *w 0 fracamente emh (b)w *w 1 0 fracamente emh0(); 1 (c) para toda(f ) e(u ) satisfazendo (5.29), sef!f H 0 fortemente em ent~aou *u 1(), 0 fracamente emh0(); 1 (d) para toda(f ) e(u ) satisfazendo (5.30), sef!f H 0 fortemente em ent~aou *u 1(), 0 fracamente emh0(). 1 0

8 8 Homogeneizac~ao eq. onda com condic~oes de Dirichlet relaxadas 67 0 SBA 5.3 Um resultado de compacidade () 0() Teorema 3 Admita (5.22). Para toda sequ^encia >0 em M + existe uma subsequ^encia, ainda denotada por( ), e uma medida 0() 0 em M + tal que as condic~oes equivalentes (a)-(d) do Teorema 2 s~ao satisfeitas. 5.4 Introduzimosagoraumafamliamaisgeraldefunc~oestestes(w Func~oes testes ). Paratodo 0,seja 2H 1(),esejaw umasoluc~aodoproblema 8< : Z 2H 1() \L(;); w 2 A Dw Dydx+ Z w yd = Z yd ; 8y2H0() \L(;): 1 2 (5.31) Assumimosque 2H 1() ; 8 0; (5.32) +!; fortementeemh 1(); (5.33) 0 w 0q.e.em8 0; (5.34) w *w fracamenteemh (): (5.35) 0 1 Tambemassumimosque,paratodoconjuntoquaseabertoUem,temos que e cap(u fw =0g)>0)(U)>0; (5.36) \ 0 0 w 0 2L1(): (5.37) Teorema 4 Admita que vale (5.22), e que(w ) ) 0 e( 0 satisfazem (5.31) - (5.37). Ent~ao as condic~oes equivalentes (a)-(d) do Teorema 2 s~ao cumpridas. 6 ProblemasdeDirichletemdomniosvariaveis VamosconsideraragoraocasoparticulardoproblemadeDirichletclassico emdomniosvariaveis. Seja( ) umasequ^enciadeconjuntosabertos,com,eseja umamedidaem 0 >0 0(). Paracada>0,sejamw ew asunicassoluc~oes dosproblemas M + ( w 2H0( ); div(a 1 Dw )=fem D0( ); (6.38)

9 SBA J. S. Souza & J. Q. Chagas e ( w 2H0( ); div(a 1 Dw )=fem D0( ); (6.39) esejamw ew assoluc~oesde(5.23)e(5.24)com= Dadasf ef emh 1(),para>0,consideremosu eu soluc~oesdos problemas: ( u u00 2H0( ); div(a 1 Du )=f em D0(0;T; D0( )); (6.40) e ( u u00 2H0( ); div(a 1 Du )=f em D0(0;T; D0( )): (6.41) Dadasf ef emh 1(),sejamu eu assoluc~oesde(5.29)ede(5.30), com= Corolario 1 Assuma (5.22) e sejamw ew soluc~oes de (6.38) e de (6.39) para>0, e de (5.23) e de (5.24) para =0. As seguintes condic~oes s~ao equivalentes: (a)w *w 0 fracamente emh 1 0(); (b)w *w 0 fracamente emh 1 0(); (c) para toda(f ) e(u ) satisfazendo (6.40) para>0e(5.29) para =0, sef!f 0 fortemente emh 1(), ent~aou * u 0 fraco-estrela em L1(0;T;H 1 0()); (d) para toda(f ) e(u ) satisfazendo (6.41) para>0e(5.30) para =0, sef!f 0 fortemente emh 1(), ent~aou * u 0 fraco-estrela em L1(0;T;H 1 0()). Seja( )umasequ^enciaem H 1() + e, paracada > 0, sejaw uma func~aoemh 1 ()talquew =0q.e.emn,e div(a Dw )= em D0( ): Seja 0 2H 1() +,esejaw 0 umasoluc~aode(5.31)com=0.seascondic~oes (5.32)-(5.37)s~aosatisfeitas,ent~aoascondic~oesequivalentes(a)-(d)docorolario 1s~aosatisfeitas. Umexemploquemostraqueamedida 0 queaparecenoproblemalimite alem de depender da sequ^encia ( ) e da matriz A 0, depende tambem das sequ^encias(a ),podeserencontradoem[3]

10 10 Homogeneizac~ao eq. onda com condic~oes de Dirichlet relaxadas 67 0 SBA Refer^encias [1] DALMASO,G.;GARRONI,A. New domains.math.modelsmethodsappl. results on the asymptotic behaviour Sci.4, of Dirichlet problems in perforated [2] DALMASO,G.;MOSCO,U. Wiener's criterion and -convergence.appl. Math.Optim.15, [3] DALMASO,G.;MURAT,F. Comportament asymptotique et correcteurs pour des problemes simultainement.ann.i.h.poincare-an21, de Dirichlet lineaires avec des operateurs et des domaines qui varient [4] CIORANESCU,D.; DONATO,P.; MURAT,F.; ZUAZUA,E. Homogenization and correctors for the wave equation in domains with small holes. Ann.ScuolaNorm.Sup.Pisa.18, [5] CIORANESCU,D.;MURAT,F. Un terme etrange Applications.collegedeFrance venu d'alleurs. Nonlinear Seminar,vol.IIeIII,ResearchNotesinMathematics.vol.60e70,Pitman, Partial Dierential Equations and their e

uma classe de sistemas elipticos envolvendo o operador p-laplaciano em dominio nao limitado

uma classe de sistemas elipticos envolvendo o operador p-laplaciano em dominio nao limitado Seminário Brasileiro de Análise - SBA Instituto de Matemática e Estatatística - USP Edição N 0 68 Novembro 2008 uma classe de sistemas elipticos envolvendo o operador p-laplaciano em dominio nao limitado

Leia mais

UMA CONDIÇÃO NECESSÁRIA E SUFICIENTE PARA A EXISTÊNCIA DE SOLUÇÃO PARA UM PROBLEMA SEMILINEAR COM EXPOENTE CRÍTICO DE SOBOLEV

UMA CONDIÇÃO NECESSÁRIA E SUFICIENTE PARA A EXISTÊNCIA DE SOLUÇÃO PARA UM PROBLEMA SEMILINEAR COM EXPOENTE CRÍTICO DE SOBOLEV UMA CONDIÇÃO NECESSÁRIA E SUFICIENTE PARA A EXISTÊNCIA DE SOLUÇÃO PARA UM PROBLEMA SEMILINEAR COM EXPOENTE CRÍTICO DE SOBOLEV Alex Jenaro Becker, Mestrando, alexjenaro@gmail.com Bolsista CAPES/FAPERGS

Leia mais

O Teorema da Função Inversa e da Função Implícita

O Teorema da Função Inversa e da Função Implícita Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit O Teorema da Função Inversa

Leia mais

Capítulo 2: Transformação de Matrizes e Resolução de Sistemas

Capítulo 2: Transformação de Matrizes e Resolução de Sistemas 2 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 2: Transformação de Matrizes e Resolução de Sistemas Sumário 1 Transformação de Matrizes.............. 3 1.1

Leia mais

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC,

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, ESPAÇO VETORIAL Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, + é a operação (função) soma + : V V V, que a cada par (u, v) V V, associa um único elemento de V, denotado

Leia mais

Tabela de Vinculação de pagamento Manteve o mesmo nome DDM SIAFI-TABELA-VINCULA-PAGAMENTO

Tabela de Vinculação de pagamento Manteve o mesmo nome DDM SIAFI-TABELA-VINCULA-PAGAMENTO Segue abaixo dados das DDMs que mudaram para o PCASP, tanto as que mudaram de nome como as que mantiveram o mesmo nome. Para estas, os campos que serão excluídos (em 2015) estão em vermelho e os campos

Leia mais

1 Sistemas de Controle e Princípio do Máximo

1 Sistemas de Controle e Princípio do Máximo Sistemas de Controle & Controle Ótimo & Princípio do Máximo Lúcio Fassarella (215) 1 Sistemas de Controle e Princípio do Máximo Essencialmente, sistemas de controle são sistemas dinâmicos cuja evolução

Leia mais

Equação do Calor com Potencial Singular

Equação do Calor com Potencial Singular Universidade Federal de Santa Catarina Curso de Pós-Graduação em Matemática e Computação Científica Equação do Calor com Potencial Singular Eleomar Cardoso Júnior Orientador: Prof. Dr. Gustavo Adolfo Torres

Leia mais

Capítulo 5: Transformações Lineares

Capítulo 5: Transformações Lineares 5 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 5: Transformações Lineares Sumário 1 O que são as Transformações Lineares?...... 124 2 Núcleo e Imagem....................

Leia mais

Uma breve introdução ao Método dos Elementos Finitos

Uma breve introdução ao Método dos Elementos Finitos Departamento de Matemática Instituto de Ciências Exatas Universidade Federal de Minas Gerais Uma breve introdução ao Método dos Elementos Finitos Breno Loureiro Giacchini Janeiro de Conteúdo Prefácio...............................................

Leia mais

CAMILA ISOTON CONDIÇÕES NECESSÁRIAS E SUFICIENTES DE OTIMALIDADE PARA PROBLEMAS COM UM E COM VÁRIOS OBJETIVOS

CAMILA ISOTON CONDIÇÕES NECESSÁRIAS E SUFICIENTES DE OTIMALIDADE PARA PROBLEMAS COM UM E COM VÁRIOS OBJETIVOS CAMILA ISOTON CONDIÇÕES NECESSÁRIAS E SUFICIENTES DE OTIMALIDADE PARA PROBLEMAS COM UM E COM VÁRIOS OBJETIVOS CAMILA ISOTON CONDIÇÕES NECESSÁRIAS E SUFICIENTES DE OTIMALIDADE PARA PROBLEMAS COM UM E COM

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 2 a Lista de Exercícios de MAT 336 2004/II

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 2 a Lista de Exercícios de MAT 336 2004/II Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 2 a Lista de Exercícios de MAT 336 2004/II 1. Entre as seguintes funções, veri que quais são transformações

Leia mais

Um Exemplo de Topologia Não Metrizável

Um Exemplo de Topologia Não Metrizável Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática Um Exemplo de Topologia Não Metrizável Autor: Tamyris Marconi Orientadora: Profa. Dra. Cláudia Buttarello

Leia mais

1 Ac~oes Proprias. 2 0 Lista de Exerccio de MAT6416 (1 0 semestre 2009)

1 Ac~oes Proprias. 2 0 Lista de Exerccio de MAT6416 (1 0 semestre 2009) ~ p = d dt (exp(t) p) t=0 2 0 Lista de Exerccio de MAT6416 (1 0 semestre 2009) Esta lista cont^em problemas cuja soluc~ao podera ser cobrada em prova. Ela tambem cont^em proposic~oes e teoremas, alguns

Leia mais

2.2 Subespaços Vetoriais

2.2 Subespaços Vetoriais 32 CAPÍTULO 2. ESPAÇOS VETORIAIS 2.2 Subespaços Vetoriais Sejam V um espaço vetorial sobre R e W um subconjunto de V. Dizemos que W é um subespaço (vetorial) de V se as seguintes condições são satisfeitas:

Leia mais

TÓPICO 2 APROXIMAÇÕES DA IDENTIDADE

TÓPICO 2 APROXIMAÇÕES DA IDENTIDADE TÓPICO 2 APROXIMAÇÕES DA IDENTIDADE EMANUEL CARNEIRO 1. O operador de convolução Sejam f e g funções mensuráveis em. A convolução de f e g é a função f g definida por f g(x) = f(y) g(x y) dy. De modo geral,

Leia mais

Disciplina: Introdução à Álgebra Linear

Disciplina: Introdução à Álgebra Linear Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte Campus: Mossoró Curso: Licenciatura Plena em Matemática Disciplina: Introdução à Álgebra Linear Prof.: Robson Pereira de Sousa

Leia mais

Projeto de Pesquisa: Taxas de convergência para atratores globais

Projeto de Pesquisa: Taxas de convergência para atratores globais Projeto de Pesquisa: Taxas de convergência para atratores globais Pesquisador Responsável: Prof. Dr. Ricardo Parreira da Silva Universidade Estadual Paulista Júlio de Mesquita Filho Instituto de Geociências

Leia mais

Guia de Estudo de Análise Real

Guia de Estudo de Análise Real Guia de Estudo de Análise Real Marco Cabral Baseado na V2.4 Dezembro de 2011 Introdução O objetivo deste texto é orientar o estudo da aluna(o) em análise real. Ele é baseado no livro Curso de Análise Real

Leia mais

Form. A2 / / 778 D. Este desenho contem informação que não podem ser rasuradas ou alteradas SEÇÃO A-A ESCALA 1 : 5. Codigo Des.

Form. A2 / / 778 D. Este desenho contem informação que não podem ser rasuradas ou alteradas SEÇÃO A-A ESCALA 1 : 5. Codigo Des. 1 3 4 5 6 7 8 9 10 11 12 A 176 597 776 1196 A 55 B B C C 1032 D 978 778 D 128 107 A 488 E E 198 290 A 75 F 513 762 1115 1283 F 28 15 G G 15 Form. A2 H SEÇÃO A-A ESCALA 1 : 5 Este desenho contem informação

Leia mais

Monotonicidade, Simetria e Comportamento Global em EDPs Elípticas Semilineares

Monotonicidade, Simetria e Comportamento Global em EDPs Elípticas Semilineares Universidade Federal de Minas Gerais UFMG Instituto de Ciências Exatas ICEx Departamento de Matemática DMat Monotonicidade, Simetria e Comportamento Global em EDPs Elípticas Semilineares Fabrício Goecking

Leia mais

ANÁLISE FUNCIONAL E APLICAÇÕES

ANÁLISE FUNCIONAL E APLICAÇÕES MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Alfenas - Unifal-MG Rua Gabriel Monteiro da Silva, 700 - Alfenas/MG - CEP 37130-000 Fone: (35) 3299-1000 - Fax: (35) 3299-1063 ANÁLISE FUNCIONAL E APLICAÇÕES

Leia mais

Aplicação do Método de Galerkin para Equações e Sistemas Elípticos

Aplicação do Método de Galerkin para Equações e Sistemas Elípticos Resumo Neste trabalho estudamos a eficiência do Método de Galerkin na resolução de problemas e sistemas Elípticos lineares, não-lineares, variacionias e não-variacionais. Abstract In this work we study

Leia mais

1 Propriedades das Funções Contínuas 2

1 Propriedades das Funções Contínuas 2 Propriedades das Funções Contínuas Prof. Doherty Andrade 2005 Sumário 1 Propriedades das Funções Contínuas 2 2 Continuidade 2 3 Propriedades 3 4 Continuidade Uniforme 9 5 Exercício 10 1 1 PROPRIEDADES

Leia mais

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática Disciplina: Estruturas Algébricas Profs.: Elisangela S. Farias e Sérgio Motta Operações

Leia mais

Diferenciais inexatas e o fator integrante

Diferenciais inexatas e o fator integrante Métodos Matemáticos 202 Notas de Aula Equações Diferenciais Ordinárias III A C Tort 2 de outubro de 202 Diferenciais inexatas e o fator integrante imos que a EDO implícita: é exata se e apenas se: M(x,

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

1 Imers~oes isometricas

1 Imers~oes isometricas 2 0 Lista de Exerccio de MAT5771 (1 0 semestre 2013) Esta lista cont^em problemas cuja soluc~ao podera ser cobrada em prova. Ela tambem cont^em proposic~oes e teoremas, alguns enunciados e outros demonstrados

Leia mais

Notas de Aula. Análise na Reta

Notas de Aula. Análise na Reta Notas de Aula (ainda em preparação!) Análise na Reta Higidio Portillo Oquendo http://www.ufpr.br/ higidio Última atualização: 22 de abril de 2015 1 Sumário 1 Preliminares 3 1.1 Conjuntos e Funções....................................

Leia mais

PEA 2400 - MÁQUINAS ELÉTRICAS I 60 CARACTERIZAÇÃO DAS PERDAS E RENDIMENTO NO TRANSFORMADOR EM CARGA: PERDAS NO FERRO (HISTERÉTICA E FOUCAULT)

PEA 2400 - MÁQUINAS ELÉTRICAS I 60 CARACTERIZAÇÃO DAS PERDAS E RENDIMENTO NO TRANSFORMADOR EM CARGA: PERDAS NO FERRO (HISTERÉTICA E FOUCAULT) PEA 400 - MÁQUINAS ELÉTRICAS I 60 CARACTERIZAÇÃO DAS PERDAS E RENDIMENTO NO TRANSFORMADOR EM CARGA: PERDAS NO FERRO (HISTERÉTICA E FOUCAULT) PERDAS CONSTANTES: p C INDEPENDENTES DA CARGA EFEITO DO CAMPO

Leia mais

Simulac~ao Graca em Computador do Comportamento. (Computer graphic simulation of the linear atomic chain behaviour) Departamento de Fsica,

Simulac~ao Graca em Computador do Comportamento. (Computer graphic simulation of the linear atomic chain behaviour) Departamento de Fsica, Revista Brasileira de Ensino de Fsica, vol. 20, n ọ 2, junho, 1998 111 Simulac~ao Graca em Computador do Comportamento de uma Cadeia At^omica Linear (Computer graphic simulation of the linear atomic chain

Leia mais

29/Abril/2015 Aula 17

29/Abril/2015 Aula 17 4/Abril/015 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda

Leia mais

Atividades para classe

Atividades para classe Módulo 1: Expressões algébricas Página 78 Atividades para classe 1 Sérgio escreveu três expressões algébricas no caderno dele: uma racional inteira, uma racional fracionária e outra irracional. Identifique

Leia mais

Tópicos Matriciais Pedro Henrique O. Pantoja Natal / RN

Tópicos Matriciais Pedro Henrique O. Pantoja Natal / RN 1. Traço de Matrizes. Definição 1.1: O traço de uma matriz quadrada A a de ordem n é a soma dos elementos da diagonal principal. Em símbolos, TrA a a a a. Daqui em diante, A denotará uma matriz quadrada

Leia mais

Extens~ao do isomorsmo C-H a (!; ^ ; _ )

Extens~ao do isomorsmo C-H a (!; ^ ; _ ) Extens~ao do isomorsmo C-H a (!; ^ ; _ ) Extens~ao dos tipos simples a ^ (ou ) e a _ (ou + ) Extens~ao dos -termos tipicados a pares e somas disjuntas: Se M : e N : s~ao -termos, ent~ao < M; N : ^ e um

Leia mais

Análise Funcional. José Ferreira Alves. Março de 2002. Faculdade de Ciências da Universidade do Porto Departamento de Matemática Pura

Análise Funcional. José Ferreira Alves. Março de 2002. Faculdade de Ciências da Universidade do Porto Departamento de Matemática Pura Análise Funcional José Ferreira Alves Março de 2002 Faculdade de Ciências da Universidade do Porto Departamento de Matemática Pura ii Introdução Estas notas foram elaboradas para a disciplina de Complementos

Leia mais

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11.

MAT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado 13.11. MT 2352 - Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - tualizado 13.11.2012 1. Segunda-feira, 30 de julho de 2012 presentação do curso. www.ime.usp.br/

Leia mais

Djalma M. Redondo e V. L. Lbero. Departamento de Fsica e Informatica. Instituto de Fsica des~ao Carlos,

Djalma M. Redondo e V. L. Lbero. Departamento de Fsica e Informatica. Instituto de Fsica des~ao Carlos, Revista Brasileira de Ensino de Fsica, vol. 18, n ọ 2, junho, 1996 137 Conceitos Basicos Sobre Capacitores e Indutores (Basic Concepts About Capacitors and Inductors) Djalma M. Redondo e V. L. Lbero Departamento

Leia mais

TEOREMA DE ZORN DAS AULAS DE ANÁLISE SUPERIOR DO PROF. A. WEIL EDISON FARAH

TEOREMA DE ZORN DAS AULAS DE ANÁLISE SUPERIOR DO PROF. A. WEIL EDISON FARAH TEOREMA DE ZORN DAS AULAS DE ANÁLISE SUPERIOR DO PROF. A. WEIL EDISON FARAH 1. Um importante teorema de caráter existencial, que intervem na teoria dos conjuntos, é o chamado Teorema de Zorn, devido a

Leia mais

Universidade Federal do Rio de Janeiro. As Fronteiras de Shilov e de Bishop

Universidade Federal do Rio de Janeiro. As Fronteiras de Shilov e de Bishop Universidade Federal do Rio de Janeiro Rafael Monteiro dos Santos As Fronteiras de Shilov e de Bishop Rio de Janeiro 2008 Rafael Monteiro dos Santos As Fronteiras de Shilov e de Bishop Dissertação de Mestrado

Leia mais

Este capítulo explica como resolver os quatro tipos de equações diferenciais apresentados abaixo.

Este capítulo explica como resolver os quatro tipos de equações diferenciais apresentados abaixo. Capítulo Equações diferenciais Este capítulo explica como resolver os quatro tipos de equações diferenciais apresentados abaixo. 3 Equações diferenciais de primeira ordem Equações diferenciais lineares

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias 4 Equações Diferenciais Ordinárias 4.1 Descrição Matemática da Dinâmica de Sistemas Suponhamos que a função y = f(x) expressa quantitativamente um fenômeno. Ao estudar este fenômeno é em geral impossível

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15 Ondas (continuação) Ondas propagando-se em uma dimensão Vamos agora estudar propagação de ondas. Vamos considerar o caso simples de ondas transversais propagando-se ao longo da direção x, como o caso de

Leia mais

Exercícios de Lógica

Exercícios de Lógica Universidade Estadual de Maringá Centro de Ciências Exatas Departamento de Matemática Exercícios de Lógica = ƒ abril de 007 Maringá PR Organizador: João Roberto Gerônimo Introdução O objetivo deste material

Leia mais

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18 /Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis

Leia mais

UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS DEP ART AMENT O DE MAT EMAT ICA DMAT

UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS DEP ART AMENT O DE MAT EMAT ICA DMAT UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS CCT DEP ART AMENT O DE MAT EMAT ICA DMAT Professora Graciela Moro Exercícios sobre Matrizes, Determinantes e Sistemas

Leia mais

2 a Lista de Exercícios

2 a Lista de Exercícios 2 a Lista de Exercícios Curso de Probabilidade e Processos Estocásticos 31/03/2003 1 a Questão: Exerc.8 Cap.1 (BJ). Solução: Um possivel espaço amostral seria Ω {(x n ) x n {2,..., 12} n 1} onde cada x

Leia mais

Introdução as Leis de Conservação e Aplicações

Introdução as Leis de Conservação e Aplicações Universidade Federal de Juiz de Fora Instituto de Ciências Exatas Departamento de Matemática William Massayuki Sakaguchi Yamashita Introdução as Leis de Conservação e Aplicações Juiz de Fora 2014 William

Leia mais

Gráficos de Curvatura Média Constante com Valores de Bordo ilimitados em M R. Abigail Silva Duarte Folha

Gráficos de Curvatura Média Constante com Valores de Bordo ilimitados em M R. Abigail Silva Duarte Folha Gráficos de Curvatura Média Constante com Valores de Bordo ilimitados em M R Abigail Silva Duarte Folha Tese de Doutorado apresentada ao Programa de Pós graduação em Matemática, da Universidade Federal

Leia mais

Divisibilidade em Domínios de Integridade

Divisibilidade em Domínios de Integridade Universidade Federal de Sergipe PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL - PROFMAT Divisibilidade em Domínios

Leia mais

Carlos José Braga Barros e Josiney Alves de Souza Departamento de Matemática, Universidade Estadual de Maringá cjbbarros@uem.br jasouza@uem.

Carlos José Braga Barros e Josiney Alves de Souza Departamento de Matemática, Universidade Estadual de Maringá cjbbarros@uem.br jasouza@uem. Minicurso sobre transitividade e transitividade por cadeias para ações de semigrupos em espaços topológicos Apresentado na Escola e Workshop de Teoria de Lie, Unicamp, 2010 Carlos José Braga Barros e Josiney

Leia mais

MÉTODO DE PONTO PROXIMAL PARA O PROBLEMA DE OTIMIZAÇÃO QUASE-CONVEXA E DESIGUALDADE VARIACIONAL COM RESTRIÇÕES LINEARES. Arnaldo Silva Brito

MÉTODO DE PONTO PROXIMAL PARA O PROBLEMA DE OTIMIZAÇÃO QUASE-CONVEXA E DESIGUALDADE VARIACIONAL COM RESTRIÇÕES LINEARES. Arnaldo Silva Brito MÉTODO DE PONTO PROXIMAL PARA O PROBLEMA DE OTIMIZAÇÃO QUASE-CONVEXA E DESIGUALDADE VARIACIONAL COM RESTRIÇÕES LINEARES Arnaldo Silva Brito Tese de Doutorado apresentada ao Programa de Pós-graduação em

Leia mais

Limalhas de ferro sob ação de um campo magnético (Esquerda). Linhas de campo magnético da Terra (Direita)

Limalhas de ferro sob ação de um campo magnético (Esquerda). Linhas de campo magnético da Terra (Direita) O ampo Magnético Os primeiros registros de campos magnéticos foram feitos pelos gregos quando descobriram a quase 6 anos A.. uma pedra que tinha a propriedade de atrair metais Esta pedra, mais precisamente

Leia mais

Propriedade Dunford-Pettis Alternativa. Veronica Leão Neves

Propriedade Dunford-Pettis Alternativa. Veronica Leão Neves Propriedade Dunford-Pettis Alternativa Veronica Leão Neves Dissertação apresentada ao Instituto de Matemática e Estatística da Universidade de São Paulo para obtenção do título de Mestre em Matemática

Leia mais

O Conceito de n-varifold e EDP

O Conceito de n-varifold e EDP UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA O Conceito de n-varifold e EDP Fernanda Gonçalves de Paula São Carlos - SP 2006 UNIVERSIDADE

Leia mais

Teorema (Algoritmo da Divisão)

Teorema (Algoritmo da Divisão) Teorema (Algoritmo da Divisão) Sejam a e b números inteiros, com b > 0. Então existem números inteiros q e r, únicos e tais que a = bq + r, com 0 r < b. Demonstração. Existência: Consideremos S = {a bk

Leia mais

RESOLUÇÃO DE EQUAÇÕES COM RÉGUA E COMPASSO ELETRÔNICO COM CABRI GÉOMÈTRE II 1

RESOLUÇÃO DE EQUAÇÕES COM RÉGUA E COMPASSO ELETRÔNICO COM CABRI GÉOMÈTRE II 1 RESOLUÇÃO DE EQUAÇÕES COM RÉGUA E COMPASSO ELETRÔNICO COM CABRI GÉOMÈTRE II 1 Santos Richard Wieller Sanguino Bejarano RESUMO Motivado pelas construções dos macros operações onde todas as operações elementares

Leia mais

Exp e Log. Roberto Imbuzeiro Oliveira. 21 de Fevereiro de 2014. 1 O que vamos ver 1. 2 Fatos preliminares sobre espaços métricos 2

Exp e Log. Roberto Imbuzeiro Oliveira. 21 de Fevereiro de 2014. 1 O que vamos ver 1. 2 Fatos preliminares sobre espaços métricos 2 Funções contínuas, equações diferenciais ordinárias, Exp e Log Roberto Imbuzeiro Oliveira 21 de Fevereiro de 214 Conteúdo 1 O que vamos ver 1 2 Fatos preliminares sobre espaços métricos 2 3 Existência

Leia mais

1 B 1 Dado z = ( 1 + 3 i), então z n é igual a

1 B 1 Dado z = ( 1 + 3 i), então z n é igual a MATEMÁTICA NOTAÇÕES : conjunto dos números naturais : conjunto dos números inteiros : conjunto dos números racionais : conjunto dos números reais : conjunto dos números complexos i: unidade imaginária:

Leia mais

Existência de Soluções Simétricas e Não-Simétricas para uma Classe de Equações de Schrödinger Semilineares

Existência de Soluções Simétricas e Não-Simétricas para uma Classe de Equações de Schrödinger Semilineares Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Programa de Pós-Graduação em Matemática Curso de Mestrado em Matemática Existência de Soluções Simétricas e Não-Simétricas para uma

Leia mais

4.2 Teorema do Valor Médio. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

4.2 Teorema do Valor Médio. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html 4.2 Teorema do Valor Médio Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Teorema de Rolle: Seja f uma função que satisfaça as seguintes hipóteses: a) f é contínua no intervalo

Leia mais

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4 Teorema de Taylor Prof. Doherty Andrade Sumário 1 Fórmula de Taylor com Resto de Lagrange 1 2 Exemplos 2 3 Exercícios 3 4 A Fórmula de Taylor 4 5 Observação 5 1 Fórmula de Taylor com Resto de Lagrange

Leia mais

Introdução ao Método dos Elementos Finitos Conceitos Iniciais Divisão do Domínio e Funções de Base Aplicação do Método dos Resíduos Ponderados ao

Introdução ao Método dos Elementos Finitos Conceitos Iniciais Divisão do Domínio e Funções de Base Aplicação do Método dos Resíduos Ponderados ao Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Elétrica Programa de Educação Tutorial Autor: Bruno Pinho Meneses Orientadores: Janailson Rodrigues Lima Prof. Dr. Ricardo

Leia mais

Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio de Fatoração Única.

Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio de Fatoração Única. Universidade Estadual de Campinas Instituto de Matemática, Estatística e Computação Científica Departamento de Matemática Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio

Leia mais

Forca da Mec^anica Classica? (Is it possible to eliminate the concept of force from classical mechanics?)

Forca da Mec^anica Classica? (Is it possible to eliminate the concept of force from classical mechanics?) 346 Revista Brasileira de Ensino de Fsica vol. 0, no. 4, Dezembro, 1998 E Possvel Eliminar o Conceito de Forca da Mec^anica Classica? (Is it possible to eliminate the concept of force from classical mechanics?)

Leia mais

Notas de Aula. Equações Diferenciais Parciais I/II

Notas de Aula. Equações Diferenciais Parciais I/II Notas de Aula Equações Diferenciais Parciais I/II Rodney Josué Biezuner 1 Departamento de Matemática Instituto de Ciências Exatas (ICEx) Universidade Federal de Minas Gerais (UFMG) Notas de aula dos cursos

Leia mais

M. Eisencraft 6.5 Processos aleatórios gaussianos 86. t1 +T. x(t)y(t+τ)dt. (6.35) t 1 T. x(t)y(t+τ)dt R xy (τ) = R XY (τ). (6.36)

M. Eisencraft 6.5 Processos aleatórios gaussianos 86. t1 +T. x(t)y(t+τ)dt. (6.35) t 1 T. x(t)y(t+τ)dt R xy (τ) = R XY (τ). (6.36) M. Eisencraft 6.5 Processos aleatórios gaussianos 86 R 0 (t 1 +2T) = 1 2T t1 +T t 1 Assim, tomando t 1 = 0 e assumindo que T é grande, temos x(t)y(t+τ)dt. (6.35) R 0 (2T) = 1 2T x(t)y(t+τ)dt R xy (τ) =

Leia mais

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x LIMITES e CONTINUIDADE de FUNÇÕES Noções prévias 1. Valor absoluto de um número real: Chama-se valor absoluto ou módulo de um número real ao número x tal que: x se x 0 x = x se x < 0 Está assim denida

Leia mais

Estabilidade Linear e Exponencial de Semigrupos C 0 e

Estabilidade Linear e Exponencial de Semigrupos C 0 e ERMAC 2: I ENCONTRO REGIONAL DE MATEMÁTICA APLICADA E COMPUTACIONAL - 3 de Novembro de 2, São João del-rei, MG; pg 232-236 232 Estabilidade Linear e Exponencial de Semigrupos C e Aplicações Francis F.

Leia mais

Pré-Seleção OBM Nível 3

Pré-Seleção OBM Nível 3 Aluno (a) Pré-Seleção OBM Nível 3 Questão 1. Hoje é sábado. Que dia da semana será daqui a 99 dias? a) segunda-feira b) sábado c) domingo d) sexta-feira e) quinta feira Uma semana tem 7 dias. Assim, se

Leia mais

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e

Leia mais

Aula 4_2. Capacitores II. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 4

Aula 4_2. Capacitores II. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 4 Aula 4_2 apacitores II Física Geral e Experimental III Prof. láudio Graça apítulo 4 1 apacitores II arga de um capacitor Dielétrico: constante dielétrica e ruptura apacitores em série e em paralelo onservação

Leia mais

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se

Leia mais

INTEGRAIS DEFINIDAS E ECONOMIA

INTEGRAIS DEFINIDAS E ECONOMIA Capítulo 13 INTEGRAIS DEFINIDAS E ECONOMIA 13.1 A Integral Definida como Variação Total Neste capítulo estudaremos o problema inverso do estudado na Análise Marginal. Suponha que desejamos determinar o

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

Aula 15. Integrais inde nidas. 15.1 Antiderivadas. Sendo f(x) e F (x) de nidas em um intervalo I ½ R, dizemos que

Aula 15. Integrais inde nidas. 15.1 Antiderivadas. Sendo f(x) e F (x) de nidas em um intervalo I ½ R, dizemos que Aula 5 Integrais inde nidas 5. Antiderivadas Sendo f() e F () de nidas em um intervalo I ½, dizemos que F e umaantiderivada ou uma rimitiva de f, emi, sef 0 () =f() ara todo I. Ou seja, F e antiderivada

Leia mais

1 C. Logo, A B = {c} e P(A B) = {Ø, {c}}

1 C. Logo, A B = {c} e P(A B) = {Ø, {c}} MATEMÁTICA NOTAÇÕES = {,,,,...} : conjunto dos números reais : conjunto dos números compleos [a, b] = { ; a b} (a, + ) = ]a, + [ = { ; a < < + } A\B = { A; B} A C : complementar do conjunto A i: unidade

Leia mais

Lista de Exercícios 4: Soluções Sequências e Indução Matemática

Lista de Exercícios 4: Soluções Sequências e Indução Matemática UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios : Soluções Sequências e Indução Matemática Ciências Exatas & Engenharias o Semestre de 05 O conjunto dos números racionais Q é enumerável, ou seja,

Leia mais

CURSO DE CÁLCULO INTEGRAIS

CURSO DE CÁLCULO INTEGRAIS CURSO DE CÁLCULO MÓDULO 4 INTEGRAIS SUMÁRIO Unidade 1- Integrais 1.1- Introdução 1.2- Integral Indefinida 1.3- Propriedades da Integral Indefinida 1.4- Algumas Integrais Imediatas 1.5- Exercícios para

Leia mais

N umeros Felizes e Sucess6es de Smarandache:

N umeros Felizes e Sucess6es de Smarandache: N umeros Felizes e Sucess6es de Smarandache: Digress6es com 0 Maple Delfim F. M. Torres delfim@mat.ua.pt Departamento de Nlatematica U niversidade de A veiro 3810-193 Avciro, Portugal Resumo Dando jus

Leia mais

FUNC» ~OES E ALGUMA HIST ORIA

FUNC» ~OES E ALGUMA HIST ORIA Um pouquinho da hist oria das func»~oes 1 UNIVERSIDADE FEDERAL DE S ~AO CARLOS CENTRO DE CI^ENCIAS EXATAS E DE TECNOLOGIA DEPARTAMENTO DE MATEM ATICA OENSINODA ALGEBRA ELEMENTAR ATRAV ES DE SUA HIST ORIA

Leia mais

MD Teoria dos Conjuntos 1

MD Teoria dos Conjuntos 1 Teoria dos Conjuntos Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Teoria dos Conjuntos 1 Introdução O que os seguintes objetos têm em comum? um

Leia mais

Método de Eliminação de Gauss. Eduardo Camponogara

Método de Eliminação de Gauss. Eduardo Camponogara Sistemas de Equações Lineares Método de Eliminação de Gauss Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação

Leia mais

14 Revista Brasileira de Ensino de Fsica, vol. 21, no. 1, Marco, 1999. Sobre a Integrabilidade de Problemas em Mec^anica

14 Revista Brasileira de Ensino de Fsica, vol. 21, no. 1, Marco, 1999. Sobre a Integrabilidade de Problemas em Mec^anica 14 Revista Brasileira de Ensino de Fsica, vol. 21, no. 1, Marco, 1999 Sobre a Integrabilidade de Problemas em Mec^anica Classica com Depend^encia Temporal Explicita (On the integrability of explicitly

Leia mais

Um modelo para evolução de HIV positivo para populações em doença plenamente manifesta com parâmetros fuzzy correlacionados.

Um modelo para evolução de HIV positivo para populações em doença plenamente manifesta com parâmetros fuzzy correlacionados. Biomatemática 22 (2012), 27 44 ISSN 1679-365X Uma Publicação do Grupo de Biomatemática IMECC UNICAMP Um modelo para evolução de HIV positivo para populações em doença plenamente manifesta com parâmetros

Leia mais

LISTA 2. 4. y = e 2 x + y 1, y(0) = 1

LISTA 2. 4. y = e 2 x + y 1, y(0) = 1 MAT 01167 Equações Diferenciais LISTA Resolva: 1. x y y = x sen x. y + y tan x = x sen x cos x, y0) =. x + 1) dy dx x y = 1 4. y = e x + y 1, y0) = 1 5. x y + x + x + ) dy dx = 0 ) x 6. Resolva a equação

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Notas de aulas - 21 de Maio de 2003 Computação, Engenharia Elétrica e Engenharia Civil Prof. Ulysses Sodré ii Copyright c 2002 Ulysses Sodré. Todos os direitos reservados.

Leia mais

Mestrados Integrados em Engenharia Mecânica e em Eng Industrial e Gestão ANÁLISE MATEMÁTICA III DEMec 010-11-0 1ºTESTE A duração do exame é horas + 30minutos. Cotação: As perguntas 1 e 6 valem valores,

Leia mais

RELÉS 24V CA / CC 24 240V CA/CC 3RR21 41-1AA30 3RR21 41-1AW30 3RR21 42-1AA30 3RR21 42-1AW30

RELÉS 24V CA / CC 24 240V CA/CC 3RR21 41-1AA30 3RR21 41-1AW30 3RR21 42-1AA30 3RR21 42-1AW30 Reles de Monitoramento de Corrente SIRIUS Os reles de monitoramento de corrente supervisionam não apenas os motores ou outras cargas, mas adicionam facilidades para o monitoramento da corrente ideal do

Leia mais

Cronograma da Disciplina Matemática Básica 2012/1

Cronograma da Disciplina Matemática Básica 2012/1 Cronograma da Disciplina Matemática Básica 2012/1 Período letivo do 1º semestre de 2012 para Matemática Básica De 30 de janeiro de 2012 a 01 de julho de 2012 1ª semana 30/01 a 05/02 Assunto: Números Naturais

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente,

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente, Questão Os trabalhadores A e B, trabalhando separadamente, levam cada um 9 e 0 horas, respectivamente, para construir um mesmo muro de tijolos Trabalhando juntos no serviço, sabe-se que eles assentam 0

Leia mais

Números, Relações e Criptografia

Números, Relações e Criptografia Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Matemática Números, Relações e Criptografia AntôniodeAndradeeSilva A minha esposa Rosângela. Prefácio A idéia de

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: CALCULO B UNIDADE III - LISTA DE EXERCÍCIOS Atualizado 2008.2 Domínio, Imagem e Curvas/Superfícies de Nível y2 è [1] Determine o domínio

Leia mais

242 Revista Brasileira de Ensino de Fsica, vol. 21, no. 2, Junho, 1999. Aplicac~ao a Moleculas Diat^omicas

242 Revista Brasileira de Ensino de Fsica, vol. 21, no. 2, Junho, 1999. Aplicac~ao a Moleculas Diat^omicas 4 Revista Brasileira de Ensino de Fsica, vol. 1, no., Junho, 1999 O Potencial de Lennard-Jones: Aplicac~ao a Moleculas Diat^omicas (The Lennard-Jones Potential: aplication to diatomic molecules) Adenilson

Leia mais

Cash Management Folha de Pagamento

Cash Management Folha de Pagamento Cash Management Folha de Pagamento Layout de Arquivo Padrão CNAB 240 Padrão 240 Folha de Pagamento Versão Atualizada Composição do Arquivo Header do arquivo (registro tipo 0) Header do lote (registro tipo

Leia mais