homogeneizac~ao da equac~ao da onda com condic~oes de dirichlet relaxadas

Tamanho: px
Começar a partir da página:

Download "homogeneizac~ao da equac~ao da onda com condic~oes de dirichlet relaxadas"

Transcrição

1 SeminarioBrasileirodeAnalise-SBA InstitutodeMatematicaeEstatatstica-USP Edic~aoN067 Maio 2008 homogeneizac~ao da equac~ao da onda com condic~oes de dirichlet relaxadas j. s. souzay & j. q. chagasz Resumo problemasdedirichletrelaxados,denidospormeiodemedidaspositivas, Nessetrabalhoestudamosahomogeneizac~aodaequac~aodaondapara paraoperadoreselpticosdesegundaordemnaformadediverg^encia,em queseuscoecienteseosseusrespectivosdomniosvariamsimultaneamentecom. 1 Introduc~ao Nestetrabalho,estudamosahomogeneizac~aodaequac~aodaonda u00 Au=f; ondeaeumoperadorelpticolineardesegundaordemcomcoecientesmensuraveislimitadosem.consideramosumasequ^enciadeproblemasdeevoluc~ao comcondic~oesdedirichletrelaxadasdaforma 8>< >: 00 div(a Du )=femq = (0;T); T>0 =0em = (0;T); =@ u (x;0)=u(x)eu0 (1.1) (x;0)=u(x)em ; ondeasmatrizesa eosdomniosvariaveis 0 1 dependemdopar^ametroxado. (Oumaisgeralmente,consideramosumasequ^enciadeproblemasdeDirichlet relaxados,denidospormedidaspositivas,paraoperadoreselpticoslinearesde segundaordemsobaformadediverg^enciacommatrizesdecoecientestambem variaveis). Osconjuntos,xo,abertoelimitado,easmatrizesA,abertos,s~aotodoscontidosemumconjunto,denidassobrecomcoecientes mensuraveis,s~aocoercivaselimitadas.oprocessodehomogeneizac~aoconsiste R n emestudarocomportamentodassoluc~oesu quandotendeparazero. Key words: Homogeneizac~ao, Condic~oes de Dirichlet relaxadas, Domnios variaveis. y Centro de Ci^encias Fsicas e Matematicas, UFSC, SC, Brasil, jsouza@mtm.ufsc.br z Departamento de Matematica e Estatstica, 1 UEPG, PR, Brasil, jocemarchagas@uepg.br

2 2 Homogeneizac~ao eq. onda com condic~oes de Dirichlet relaxadas 67 0 SBA Nocasoespecialonde =,existeumasubsequ^encia,aindadenotada por(a ),eumamatriza,chamadadeh-limitede(a ),talqueparacada f 2L1(0;T;L ()),assoluc~oesv 0 2 ( dosproblemas 2L1(0;T;H0()); v 00 div(a Dv 1 )=f; eml1(0;t; D0()); convergemfraco-estrelaeml1(0;t;h ( 0())paraasoluc~aov de v 1 0 v00 2L1(0;T;H0()); 0 div(adv )=f; 1 eml1(0;t; D0()); esatisfazemtambem A Dv *ADv ; fracamenteeml1(0;t;l(; )): R Semfazerqualqueroutrahipoteseadicionalsobreosconjuntosabertos n, prova-sequeexisteumasubsequ^encia,aindadenotadapor( ),talquepara cadaf 2L1(0;T;L()),assoluc~oesu de(1.1)convergemparaasoluc~aou doproblema 2 8>< ddt Z u00ydx ZADuDydx+ Z uyd =<f;y>; 0 em D0(0;T); 8y2H 0 0() \L(;); >: u(x;0)=u(x)eu0(x;0)=u(x)em; (1.2) u 2L1(0;T;H 0 0() \L(; 1 )); onde 1 0(),umaclassedemedidasdeBoreln~aonegativasque 2 0 tendemparazerosobrequalquerconjuntodecapacidadezero,masquepodem 0 pertenceam + assumirovalor+1sobrealgunssubconjuntosde. Problemasdotipo(1.2)s~aochamadosdeproblemasdeDirichletrelaxados, et^emsidoestudadosparadescreveroslimitesdassoluc~oesde(1.1),quandoas matrizesa n~aodependemde.poroutrolado,problemasdotipo(1.1)podem serescritoscomoproblemasdedirichletrelaxadosconsiderando-seasmedidas,denidaspor: (B)= ( 0; secap(bn )=0; +1; casocontrario. (1.3) Pode-seconsiderarn~aosomenteoproblemadeDirichlet(1.1)referenteas medidas denidasem(1.3),masnumcasomaisgeral,estudarumasequ^encia deproblemasdedirichletcommedidasarbitrarias 0(). 2 M + 2 Denic~oes e Notac~oes Daremosnessasec~aoalgumasdenic~oesbasicas:

3 67 0 SBA J. S. Souza & J. Q. Chagas 3 SejaE2.Denimossuacapacidadecomo: cap(e):= inf dx;u 1q.s.emumavizinhancadeE. u2h1 0 () Z DizemosqueumapropriedadeP(x)valeem jduj2 parte(q.e.)eme,se P(x)valeemtodox2E,excetoparaumsubconjuntoN quase toda E,comcap(N)=0. Dizemos que u : Re se > 0; E, com neecontnua.! quase contnua 8 9 cap(e)<,talqueuj DizemosqueU e quase abertose 8>0; 9V,comcap(V 4U)<, ondev eabertoe4denotaadiferencasimetrica. Observamosquetodau 2H ()possuiumarepresentantequasecontnua, queeunicamentedenidaamenosdeumconjuntodecapacidadenula,ouseja, 1 seu 2H (),ent~ao 1 u =v;vjneecontnua,comcap(e)=0: Uma negativasobreeumafunc~aodeconjuntoaditiva contaveldenidasobreossubconjuntosdeboreldecomvaloresem[0;+1]. medida n~ao Uma negativasobreeumamedidadeboreln~ao negativaqueenitasobretodoconjuntocompactode. medida de Radon n~ao (E)=inff(B); Beboreliano,EB g. 0()eoconedetodasasmedidasdeBoreln~aonegativassobre,tais que: ( M + (a)(b)=0; 8B; comcap(b)=0; Bboreliano. (b)(b)=inff(u); Uquaseaberto;B Ug; 8B; boreliano. M0()denotaoconjuntodasmedidasdeBoreln~aonegativasquesomente satisfazemacondic~ao(a). por ParatodoconjuntoquaseabertoU,denimosamedidadeBorel U (B)= ( 0; secap(bnu)=0 U +1; casocontrario: OconedetodasasmedidasdeRadonsobreseradenotadopor M(). O cone de todos os elementos n~ao negativos de H 1()e denotado por H 1(). Como todo elemento de H 1() e uma medida de Radon n~ao + +

4 4 Homogeneizac~ao eq. onda com condic~oes de Dirichlet relaxadas 67 0 SBA negativaquepertencetambema 0(),temosainclus~ao H 1() M + M() 0(): + \ M + 3 H-Converg^encia Sejam; R,com0<<+1. 2 DenimosM()comooconjuntodetodasasmatrizesA 2L1(; ) taisque R n n A(x) I; (A(x)) 1 1I; q.s.em: (3.4) Em(3.4),Ieamatrizidentidadeem,easdesigualdadess~aonosentido R n n. (3.4)implicatambem dasformasquadricasdenidaspora(x)para2 que R n q.s.em (3.5) eque,necessariamente,. ja(x)j Denic~ao 1 Uma sequ^encia(a) de matrizes emm() H-converge para uma matriza emm 8f 2H 0 (), se, 1(), a sequ^enciau ( de soluc~oes dos problemas u 2H0(); div(a 1 Du)=f; D0() (3.6) em u *u satisfaz 0 fracamente emh0() ADu *ADu fracamente eml(; ); 2 R ondeu n 0 ( e a soluc~ao do problema: u 2H0(); 0 div(a 1 Du)=f; D0(): 0 0 em Observac~ao 1 Toda sequ^encia de matrizes emm () possui uma subsequ^encia que H-converge para uma matriz emm (). Teorema 1 Seja(A) uma segu^encia de matrizes emm() que H-converge para uma matriza( emm eu 0 (), uma sequ^encia emh () u *u 1 tal que 0 fracamente emh () div(adu)=f D0(); 1 8 0: (3.7) em ( Assumindo quef =g +v (g ), para todo>0, onde e relativamente compacta emw (); 1;p loc para algump>1; (v) 0; D0(): (3.8) em ent~ao f *f 0 fracamente eml(; ): 2 R n

5 SBA J. S. Souza & J. Q. Chagas Nestetrabalho,esteteoremaserausadocom(g)relativamentecompacto (oumesmoconstante)emh 1(). 4 Problemas de Dirichlet Relaxados DadosA 2M(), 2M 0()ef 2H 1(),chamamosdeproblemade Dirichletrelaxadooproblemadeencontrarutalque + 8< : ZADuDydx+ u 0() \L(;); Z 2H1 2 uyd=<f;y>; 8y2H0() \L(;): (4.9) 1 2 Porumaaplicac~aodolemadeLax-Milgram,oproblema(4.9)temumaunica soluc~aou(ver[3]),quesatisfazaestimativa Z dx+ Z d 1 jduj2 juj2 jjfjj 2 H 1(): (4.10) 4.1 Fixemos Reconstruc~ao da medida A 2M(); 2M 0(); 2H 1() (4.11) + + eumasoluc~aowparaoproblema 8< : w ZADwDydx+ () \L(;); Z 2H1 2 wyd= Z yd; 8y2H0() \L(;); (4.12) 1 2 quesatisfaz w 0q.e.em: (4.13) Observac~ao 2 Do Teorema de Lax-Milgram, existe uma unica soluc~ao de (4.12) que pertence ah 1 0(); pelo princpio da comparac~ao, esta soluc~ao satisfaz (4.13), de modo que o conjunto de tais func~oes e n~ao vazio. Proposic~ao 9v 2H 1() 1 + Assuma que (4.11), (4.12) e (4.13) s~ao verdadeiras. Ent~ao tal que div(adw)+v= D0(): (4.14) em Porraz~oestecnicas, areconstruc~aodamedida dewrequeraseguinte hipotese:partatodoconjuntoquaseabertouem,temos cap(u fw=0g)>0)(u)>0: (4.15) \

6 6 Homogeneizac~ao eq. onda com condic~oes de Dirichlet relaxadas 67 0 SBA Proposic~ao 2 u Assuma 2H0() as \L hipoteses (;) (4.11), )u=0 (4.12), (4.13) fw=0g: e (4.15). Ent~ao (4.16) 1 2 q.e. em Alem disso, para conjuntos de BorelB cap(b fw=0g)>0)(b)=+1:, vale (4.17) \ Proposic~ao 3 Assuma as hipoteses (4.11), (4.12), (4.13) e (4.15), e seja v a medida deh 1() + denida em (4.14). Ent~ao para todo conjunto de Borel B, temos (B)= 8 < dv : ZB w ; secap(b fw=0g)=0 +1; secap(b fw=0g)>0; (4.18) \ \ e v(b fw=0g)= Z Bwd: (4.19) quev=w \ Em particular, isso implica sobre fw>0g. 4.2 Naproximaproposic~ao,assumiremosque Resultados de unicidade e densidade w 2L1(): (4.20) Proposic~ao 4 Assuma que (4.11) - (4.13), (4.15) e (4.20) s~ao verdadeiras. Ent~ao o conjunto fw':'2c1 c ()g e denso emh 1 0() \L 2 (;). Oseguinteresultadodeunicidadeecrucialparaosteoremas2e4. Proposic~ao 5 Assuma as hipoteses (4.11) - (4.13), (4.15) e (4.20). Seja u uma soluc~ao do problema 8< : u ZAD'Duwdx 0() \L1(); ZADwD'udx+ Z 2H1 u'd=0; 8' 2C1(): (4.21) 0 Ent~ao,u=0 q.e. em. 5 Um resultado de converg^encia global Paratodo 0,consideramosumamatrizA emm()eumamedida emm 0(),queseraxadaaolongodorestodestetrabalho.Assumimosque + (A)H-convergeparaA: (5.22) Nestasec~aousamosoargumentodedualidadeparaprovarque,sobhipoteses 0 adequadassobre()(quesempres~aosatisfeitasparaumasubsequ^encia),as soluc~oesu deproblemasdedirichletrelaxados(4.9)para A=A e= convergemparaasoluc~aou doproblemadedirichletrelaxado,coma=a, e=

7 67 0 SBA J. S. Souza & J. Q. Chagas Paratodo Denic~ao 0,denimosasfunc~oesw testes especiais ew comoasunicassoluc~oespara osproblemas 8< : ZA 2H0() \L(;); w Dw 1 Dydx+ Z 2 w yd = Z ydx; 8y2H0() \L(;); (5.23) e8< 1 2 w : ZA 2H0() \L(;); Dw 1 Dydx+ Z 2 w yd = Z ydx; 8y2H0() \L(;): (5.24) 1 2 Alemdisso,peloprincpiodomaximo,temostambem supjjw e supjjw jj L 1()<+1 jj L 1()<+1: (5.25) Pelaproposic~ao1,existemduasmedidasv ev emh 1() taisque div(a Dw )+v =1; e div(a Dw )+v =1; em D0(): + (5.26) Finalmente,de(4.10)obtemos sup dx<+1; sup dx<+1; (5.27) 0 Z jdw j 2 0 Z jdw j 2 d <+1; sup d <+1: (5.28) Z jw j 2 Z jw j 2 sup Dadas,paratoda O principal resultado 0,f ef emh de converg^encia 1(),consideramosassoluc~oesu e u paraosseguintesproblemas: 8< : Z 2H () \L(;); u A Du 1 Dydx+ Z 2 u yd =<f ;y>; 8y2H0() \L(;); 1 2 (5.29) e 8< u : Z 2H0() \L(;); A Du 1 Dydx+ Z 2 u yd =<f ;y>; 8y2H0() \L(;): 1 2 (5.30) Teorema 2 Admita (5.22), e sejamw ew as soluc~oes para (5.23) e (5.24). As seguintes condic~oes s~ao equivalentes: (a)w *w 0 fracamente emh (b)w *w 1 0 fracamente emh0(); 1 (c) para toda(f ) e(u ) satisfazendo (5.29), sef!f H 0 fortemente em ent~aou *u 1(), 0 fracamente emh0(); 1 (d) para toda(f ) e(u ) satisfazendo (5.30), sef!f H 0 fortemente em ent~aou *u 1(), 0 fracamente emh0(). 1 0

8 8 Homogeneizac~ao eq. onda com condic~oes de Dirichlet relaxadas 67 0 SBA 5.3 Um resultado de compacidade () 0() Teorema 3 Admita (5.22). Para toda sequ^encia >0 em M + existe uma subsequ^encia, ainda denotada por( ), e uma medida 0() 0 em M + tal que as condic~oes equivalentes (a)-(d) do Teorema 2 s~ao satisfeitas. 5.4 Introduzimosagoraumafamliamaisgeraldefunc~oestestes(w Func~oes testes ). Paratodo 0,seja 2H 1(),esejaw umasoluc~aodoproblema 8< : Z 2H 1() \L(;); w 2 A Dw Dydx+ Z w yd = Z yd ; 8y2H0() \L(;): 1 2 (5.31) Assumimosque 2H 1() ; 8 0; (5.32) +!; fortementeemh 1(); (5.33) 0 w 0q.e.em8 0; (5.34) w *w fracamenteemh (): (5.35) 0 1 Tambemassumimosque,paratodoconjuntoquaseabertoUem,temos que e cap(u fw =0g)>0)(U)>0; (5.36) \ 0 0 w 0 2L1(): (5.37) Teorema 4 Admita que vale (5.22), e que(w ) ) 0 e( 0 satisfazem (5.31) - (5.37). Ent~ao as condic~oes equivalentes (a)-(d) do Teorema 2 s~ao cumpridas. 6 ProblemasdeDirichletemdomniosvariaveis VamosconsideraragoraocasoparticulardoproblemadeDirichletclassico emdomniosvariaveis. Seja( ) umasequ^enciadeconjuntosabertos,com,eseja umamedidaem 0 >0 0(). Paracada>0,sejamw ew asunicassoluc~oes dosproblemas M + ( w 2H0( ); div(a 1 Dw )=fem D0( ); (6.38)

9 SBA J. S. Souza & J. Q. Chagas e ( w 2H0( ); div(a 1 Dw )=fem D0( ); (6.39) esejamw ew assoluc~oesde(5.23)e(5.24)com= Dadasf ef emh 1(),para>0,consideremosu eu soluc~oesdos problemas: ( u u00 2H0( ); div(a 1 Du )=f em D0(0;T; D0( )); (6.40) e ( u u00 2H0( ); div(a 1 Du )=f em D0(0;T; D0( )): (6.41) Dadasf ef emh 1(),sejamu eu assoluc~oesde(5.29)ede(5.30), com= Corolario 1 Assuma (5.22) e sejamw ew soluc~oes de (6.38) e de (6.39) para>0, e de (5.23) e de (5.24) para =0. As seguintes condic~oes s~ao equivalentes: (a)w *w 0 fracamente emh 1 0(); (b)w *w 0 fracamente emh 1 0(); (c) para toda(f ) e(u ) satisfazendo (6.40) para>0e(5.29) para =0, sef!f 0 fortemente emh 1(), ent~aou * u 0 fraco-estrela em L1(0;T;H 1 0()); (d) para toda(f ) e(u ) satisfazendo (6.41) para>0e(5.30) para =0, sef!f 0 fortemente emh 1(), ent~aou * u 0 fraco-estrela em L1(0;T;H 1 0()). Seja( )umasequ^enciaem H 1() + e, paracada > 0, sejaw uma func~aoemh 1 ()talquew =0q.e.emn,e div(a Dw )= em D0( ): Seja 0 2H 1() +,esejaw 0 umasoluc~aode(5.31)com=0.seascondic~oes (5.32)-(5.37)s~aosatisfeitas,ent~aoascondic~oesequivalentes(a)-(d)docorolario 1s~aosatisfeitas. Umexemploquemostraqueamedida 0 queaparecenoproblemalimite alem de depender da sequ^encia ( ) e da matriz A 0, depende tambem das sequ^encias(a ),podeserencontradoem[3]

10 10 Homogeneizac~ao eq. onda com condic~oes de Dirichlet relaxadas 67 0 SBA Refer^encias [1] DALMASO,G.;GARRONI,A. New domains.math.modelsmethodsappl. results on the asymptotic behaviour Sci.4, of Dirichlet problems in perforated [2] DALMASO,G.;MOSCO,U. Wiener's criterion and -convergence.appl. Math.Optim.15, [3] DALMASO,G.;MURAT,F. Comportament asymptotique et correcteurs pour des problemes simultainement.ann.i.h.poincare-an21, de Dirichlet lineaires avec des operateurs et des domaines qui varient [4] CIORANESCU,D.; DONATO,P.; MURAT,F.; ZUAZUA,E. Homogenization and correctors for the wave equation in domains with small holes. Ann.ScuolaNorm.Sup.Pisa.18, [5] CIORANESCU,D.;MURAT,F. Un terme etrange Applications.collegedeFrance venu d'alleurs. Nonlinear Seminar,vol.IIeIII,ResearchNotesinMathematics.vol.60e70,Pitman, Partial Dierential Equations and their e

uma classe de sistemas elipticos envolvendo o operador p-laplaciano em dominio nao limitado

uma classe de sistemas elipticos envolvendo o operador p-laplaciano em dominio nao limitado Seminário Brasileiro de Análise - SBA Instituto de Matemática e Estatatística - USP Edição N 0 68 Novembro 2008 uma classe de sistemas elipticos envolvendo o operador p-laplaciano em dominio nao limitado

Leia mais

UMA CONDIÇÃO NECESSÁRIA E SUFICIENTE PARA A EXISTÊNCIA DE SOLUÇÃO PARA UM PROBLEMA SEMILINEAR COM EXPOENTE CRÍTICO DE SOBOLEV

UMA CONDIÇÃO NECESSÁRIA E SUFICIENTE PARA A EXISTÊNCIA DE SOLUÇÃO PARA UM PROBLEMA SEMILINEAR COM EXPOENTE CRÍTICO DE SOBOLEV UMA CONDIÇÃO NECESSÁRIA E SUFICIENTE PARA A EXISTÊNCIA DE SOLUÇÃO PARA UM PROBLEMA SEMILINEAR COM EXPOENTE CRÍTICO DE SOBOLEV Alex Jenaro Becker, Mestrando, alexjenaro@gmail.com Bolsista CAPES/FAPERGS

Leia mais

O Teorema da Função Inversa e da Função Implícita

O Teorema da Função Inversa e da Função Implícita Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit O Teorema da Função Inversa

Leia mais

1 Sistemas de Controle e Princípio do Máximo

1 Sistemas de Controle e Princípio do Máximo Sistemas de Controle & Controle Ótimo & Princípio do Máximo Lúcio Fassarella (215) 1 Sistemas de Controle e Princípio do Máximo Essencialmente, sistemas de controle são sistemas dinâmicos cuja evolução

Leia mais

Compacidade de conjuntos e operadores lineares

Compacidade de conjuntos e operadores lineares Compacidade de conjuntos e operadores lineares Roberto Imbuzeiro Oliveira 13 de Janeiro de 2010 No que segue, F = R ou C e (X, X ), (Y, Y ) são Banach sobre F. Recordamos que um operador linear T : X Y

Leia mais

1 Propriedades das Funções Contínuas 2

1 Propriedades das Funções Contínuas 2 Propriedades das Funções Contínuas Prof. Doherty Andrade 2005 Sumário 1 Propriedades das Funções Contínuas 2 2 Continuidade 2 3 Propriedades 3 4 Continuidade Uniforme 9 5 Exercício 10 1 1 PROPRIEDADES

Leia mais

Disciplina: Introdução à Álgebra Linear

Disciplina: Introdução à Álgebra Linear Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte Campus: Mossoró Curso: Licenciatura Plena em Matemática Disciplina: Introdução à Álgebra Linear Prof.: Robson Pereira de Sousa

Leia mais

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC,

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, ESPAÇO VETORIAL Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, + é a operação (função) soma + : V V V, que a cada par (u, v) V V, associa um único elemento de V, denotado

Leia mais

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática Disciplina: Estruturas Algébricas Profs.: Elisangela S. Farias e Sérgio Motta Operações

Leia mais

Exp e Log. Roberto Imbuzeiro Oliveira. 21 de Fevereiro de 2014. 1 O que vamos ver 1. 2 Fatos preliminares sobre espaços métricos 2

Exp e Log. Roberto Imbuzeiro Oliveira. 21 de Fevereiro de 2014. 1 O que vamos ver 1. 2 Fatos preliminares sobre espaços métricos 2 Funções contínuas, equações diferenciais ordinárias, Exp e Log Roberto Imbuzeiro Oliveira 21 de Fevereiro de 214 Conteúdo 1 O que vamos ver 1 2 Fatos preliminares sobre espaços métricos 2 3 Existência

Leia mais

2.2 Subespaços Vetoriais

2.2 Subespaços Vetoriais 32 CAPÍTULO 2. ESPAÇOS VETORIAIS 2.2 Subespaços Vetoriais Sejam V um espaço vetorial sobre R e W um subconjunto de V. Dizemos que W é um subespaço (vetorial) de V se as seguintes condições são satisfeitas:

Leia mais

Capítulo 5: Transformações Lineares

Capítulo 5: Transformações Lineares 5 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 5: Transformações Lineares Sumário 1 O que são as Transformações Lineares?...... 124 2 Núcleo e Imagem....................

Leia mais

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) =

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) = Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Trigonometria I Resumo das principais fórmulas da trigonometria Arcos Notáveis: Fórmulas do arco duplo: ) sen (a) = ) cos (a) = 3)

Leia mais

TÓPICO 2 APROXIMAÇÕES DA IDENTIDADE

TÓPICO 2 APROXIMAÇÕES DA IDENTIDADE TÓPICO 2 APROXIMAÇÕES DA IDENTIDADE EMANUEL CARNEIRO 1. O operador de convolução Sejam f e g funções mensuráveis em. A convolução de f e g é a função f g definida por f g(x) = f(y) g(x y) dy. De modo geral,

Leia mais

UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS DEP ART AMENT O DE MAT EMAT ICA DMAT

UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS DEP ART AMENT O DE MAT EMAT ICA DMAT UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS CCT DEP ART AMENT O DE MAT EMAT ICA DMAT Professora Graciela Moro Exercícios sobre Matrizes, Determinantes e Sistemas

Leia mais

Introdução ao Método dos Elementos Finitos Conceitos Iniciais Divisão do Domínio e Funções de Base Aplicação do Método dos Resíduos Ponderados ao

Introdução ao Método dos Elementos Finitos Conceitos Iniciais Divisão do Domínio e Funções de Base Aplicação do Método dos Resíduos Ponderados ao Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Elétrica Programa de Educação Tutorial Autor: Bruno Pinho Meneses Orientadores: Janailson Rodrigues Lima Prof. Dr. Ricardo

Leia mais

Equação do Calor com Potencial Singular

Equação do Calor com Potencial Singular Universidade Federal de Santa Catarina Curso de Pós-Graduação em Matemática e Computação Científica Equação do Calor com Potencial Singular Eleomar Cardoso Júnior Orientador: Prof. Dr. Gustavo Adolfo Torres

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2013/I

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2013/I 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 013/I 1 Sejam u = ( 4 3) v = ( 5) e w = (a b) Encontre a e b tais

Leia mais

Capítulo 2: Transformação de Matrizes e Resolução de Sistemas

Capítulo 2: Transformação de Matrizes e Resolução de Sistemas 2 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 2: Transformação de Matrizes e Resolução de Sistemas Sumário 1 Transformação de Matrizes.............. 3 1.1

Leia mais

ESPAÇOS QUOCIENTES DANIEL SMANIA. [x] := {y X t.q. x y}.

ESPAÇOS QUOCIENTES DANIEL SMANIA. [x] := {y X t.q. x y}. ESPAÇOS QUOCIENTES DANIEL SMANIA 1. Relações de equivalência Seja uma relação de equivalência sobre um conjunto X, isto é, uma rel ção binária que satisfaz as seguintes propriedades i. (Prop. Reflexiva.)

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C.

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C. Questão TIPO DE PROVA: A José possui dinheiro suficiente para comprar uma televisão de R$ 900,00, e ainda lhe sobrarem da quantia inicial. O valor que so- 5 bra para José é a) R$ 50,00. c) R$ 800,00. e)

Leia mais

Notas de aula número 1: Otimização *

Notas de aula número 1: Otimização * UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL UFRGS DEPARTAMENTO DE ECONOMIA CURSO DE CIÊNCIAS ECONÔMICAS DISCIPLINA: TEORIA MICROECONÔMICA II Primeiro Semestre/2001 Professor: Sabino da Silva Porto Júnior

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LEE, LEIC-T, LEGI e LERC - o semestre - / de Junho de - 9 horas I ( val.). (5, val.) Determine o valor dos integrais: x + (i) x ln x dx (ii) (9 x )( + x ) dx (i) Primitivando

Leia mais

Um Exemplo de Topologia Não Metrizável

Um Exemplo de Topologia Não Metrizável Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática Um Exemplo de Topologia Não Metrizável Autor: Tamyris Marconi Orientadora: Profa. Dra. Cláudia Buttarello

Leia mais

1 Introdução. Problemas Elípticos Assintoticamente Lineares

1 Introdução. Problemas Elípticos Assintoticamente Lineares Problemas Elípticos Assintoticamente Lineares Caíke da Rocha DAMKE; Edcarlos Domingos da SILVA Instituto de Matemática e Estatística, Universidade Federal de Goiás, Campus II- Caixa Postal 131, CEP 74001-970

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES

MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES VERSÃO 1.0.2 Resumo. Este texto resume e complementa alguns assuntos dos Capítulo 9 do Boyce DiPrima. 1. Sistemas autônomos

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares

Leia mais

Teste Intermedio, 20 de Marco de 1999

Teste Intermedio, 20 de Marco de 1999 Faculdade de Economia Universidade Nova de Lisboa Calculo II Teste Intermedio, 0 de Marco de 999 O teste e consttuido por uatro perguntas. Responda a cada uest~ao em folhas separadas. N~ao se esueca de

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 2 a Lista de Exercícios de MAT 336 2004/II

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 2 a Lista de Exercícios de MAT 336 2004/II Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 2 a Lista de Exercícios de MAT 336 2004/II 1. Entre as seguintes funções, veri que quais são transformações

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

38 CAPÍTULO 2. ESPAÇOS VETORIAIS EXERCÍCIOS

38 CAPÍTULO 2. ESPAÇOS VETORIAIS EXERCÍCIOS 38 CAPÍTULO 2. ESPAÇOS VETORIAIS É fácil verificar que Portanto, V = W 1 + W 2. 1 2 (A + At W 1 e 1 2 (A At W 2. EXERCÍCIOS 1. Mostre todas as afirmações deixadas nesta seção. 2. Seja V = R 3.Verifique

Leia mais

Projeto de Pesquisa: Taxas de convergência para atratores globais

Projeto de Pesquisa: Taxas de convergência para atratores globais Projeto de Pesquisa: Taxas de convergência para atratores globais Pesquisador Responsável: Prof. Dr. Ricardo Parreira da Silva Universidade Estadual Paulista Júlio de Mesquita Filho Instituto de Geociências

Leia mais

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x LIMITES e CONTINUIDADE de FUNÇÕES Noções prévias 1. Valor absoluto de um número real: Chama-se valor absoluto ou módulo de um número real ao número x tal que: x se x 0 x = x se x < 0 Está assim denida

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencial Elétrico Havendo uma força eletrostática entre duas ou mais partículas podemos associar um energia potencial elétrica U ao sistema. Suponhaqueosistemamudasuaconfiguraçãodeumestadoinicial

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15 Ondas (continuação) Ondas propagando-se em uma dimensão Vamos agora estudar propagação de ondas. Vamos considerar o caso simples de ondas transversais propagando-se ao longo da direção x, como o caso de

Leia mais

TIPO DE PROVA: A. Questão 4. Questão 1. Questão 2. Questão 5. Questão 3. Questão 6. alternativa D. alternativa C. alternativa D.

TIPO DE PROVA: A. Questão 4. Questão 1. Questão 2. Questão 5. Questão 3. Questão 6. alternativa D. alternativa C. alternativa D. Questão TIPO DE PROVA: A Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % O primeiro pintou 0% do muro, logo restou

Leia mais

1 Ac~oes Proprias. 2 0 Lista de Exerccio de MAT6416 (1 0 semestre 2009)

1 Ac~oes Proprias. 2 0 Lista de Exerccio de MAT6416 (1 0 semestre 2009) ~ p = d dt (exp(t) p) t=0 2 0 Lista de Exerccio de MAT6416 (1 0 semestre 2009) Esta lista cont^em problemas cuja soluc~ao podera ser cobrada em prova. Ela tambem cont^em proposic~oes e teoremas, alguns

Leia mais

Percentual de Reajuste: 12,98% Período de aplicação: 05/2014 a 04/2015

Percentual de Reajuste: 12,98% Período de aplicação: 05/2014 a 04/2015 A001 AMBULATORIAL+HOSPITALAR COM OBSTETRICIA - APARTAMENTO 705.115/99-8 NOVEMBRO/2014 A001 AMBULATORIAL+HOSPITALAR COM OBSTETRICIA - ENFERMARIA 705.114/99-0 NOVEMBRO/2014 A012 AMBULATORIAL+HOSPITALAR COM

Leia mais

Quinta lista de Exercícios - Análise Funcional, período Professor: João Marcos do Ó. { 0 se j = 1 y j = (j 1) 1 x j 1 se j 2.

Quinta lista de Exercícios - Análise Funcional, período Professor: João Marcos do Ó. { 0 se j = 1 y j = (j 1) 1 x j 1 se j 2. UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE MATEMÁTICA PÓS-GRADUAÇÃO EM MATEMÁTICA Quinta lista de Exercícios - Análise Funcional, período 2009.2. Professor:

Leia mais

Aplicação do Método de Galerkin para Equações e Sistemas Elípticos

Aplicação do Método de Galerkin para Equações e Sistemas Elípticos Resumo Neste trabalho estudamos a eficiência do Método de Galerkin na resolução de problemas e sistemas Elípticos lineares, não-lineares, variacionias e não-variacionais. Abstract In this work we study

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

Exercícios de Matemática Funções Função Composta

Exercícios de Matemática Funções Função Composta Exercícios de Matemática Funções Função Composta TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considerando-se as funções f(x) = x

Leia mais

Modelagem Computacional. Parte 8 2

Modelagem Computacional. Parte 8 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 8 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 10 e 11] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

UM TEOREMA QUE PODE SER USADO NA

UM TEOREMA QUE PODE SER USADO NA UM TEOREMA QUE PODE SER USADO NA PERCOLAÇÃO Hemílio Fernandes Campos Coêlho Andrei Toom PIBIC-UFPE-CNPq A percolação é uma parte importante da teoria da probabilidade moderna que tem atraído muita atenção

Leia mais

Aula 7 Valores Máximo e Mínimo (e Pontos de Sela)

Aula 7 Valores Máximo e Mínimo (e Pontos de Sela) Aula 7 Valores Máximo e Mínimo (e Pontos de Sela) MA - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof.

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. 01 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. EDSON VAZ NOTA DE AULA III (Capítulo 7 e 8) CAPÍTULO 7 ENERGIA CINÉTICA

Leia mais

Computabilidade 2012/2013. Sabine Broda Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto

Computabilidade 2012/2013. Sabine Broda Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto Computabilidade 2012/2013 Sabine Broda Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto Capítulo 1 Computabilidade 1.1 A noção de computabilidade Um processo de computação

Leia mais

ANÁLISE FUNCIONAL E APLICAÇÕES

ANÁLISE FUNCIONAL E APLICAÇÕES MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Alfenas - Unifal-MG Rua Gabriel Monteiro da Silva, 700 - Alfenas/MG - CEP 37130-000 Fone: (35) 3299-1000 - Fax: (35) 3299-1063 ANÁLISE FUNCIONAL E APLICAÇÕES

Leia mais

29/Abril/2015 Aula 17

29/Abril/2015 Aula 17 4/Abril/015 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda

Leia mais

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e MÓDULO 2 - AULA 13 Aula 13 Superfícies regradas e de revolução Objetivos Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas

Leia mais

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da FUNÇÃO COMO CONJUNTO Definição 4.4 Seja f uma relação de A em B, dizemos que f é uma função de A em B se as duas condições a seguir forem satisfeitas: i) D(f) = A, ou seja, o domínio de f é o conjunto

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

CAMILA ISOTON CONDIÇÕES NECESSÁRIAS E SUFICIENTES DE OTIMALIDADE PARA PROBLEMAS COM UM E COM VÁRIOS OBJETIVOS

CAMILA ISOTON CONDIÇÕES NECESSÁRIAS E SUFICIENTES DE OTIMALIDADE PARA PROBLEMAS COM UM E COM VÁRIOS OBJETIVOS CAMILA ISOTON CONDIÇÕES NECESSÁRIAS E SUFICIENTES DE OTIMALIDADE PARA PROBLEMAS COM UM E COM VÁRIOS OBJETIVOS CAMILA ISOTON CONDIÇÕES NECESSÁRIAS E SUFICIENTES DE OTIMALIDADE PARA PROBLEMAS COM UM E COM

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Tabela de Vinculação de pagamento Manteve o mesmo nome DDM SIAFI-TABELA-VINCULA-PAGAMENTO

Tabela de Vinculação de pagamento Manteve o mesmo nome DDM SIAFI-TABELA-VINCULA-PAGAMENTO Segue abaixo dados das DDMs que mudaram para o PCASP, tanto as que mudaram de nome como as que mantiveram o mesmo nome. Para estas, os campos que serão excluídos (em 2015) estão em vermelho e os campos

Leia mais

Plano de Ensino. Identificação. Código Disciplina Seriação ideal 0004124 Elementos de Topologia 4

Plano de Ensino. Identificação. Código Disciplina Seriação ideal 0004124 Elementos de Topologia 4 Curso 1503 - Licenciatura em Matemática Enfase Identificação Código Disciplina Seriação ideal 0004124 Elementos de Topologia 4 Departamento Departamento de Matemática Unidade Faculdade de Ciências Créditos

Leia mais

Tópicos Matriciais Pedro Henrique O. Pantoja Natal / RN

Tópicos Matriciais Pedro Henrique O. Pantoja Natal / RN 1. Traço de Matrizes. Definição 1.1: O traço de uma matriz quadrada A a de ordem n é a soma dos elementos da diagonal principal. Em símbolos, TrA a a a a. Daqui em diante, A denotará uma matriz quadrada

Leia mais

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e

Leia mais

ÁLGEBRA LINEAR. Subespaços Vetoriais. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Subespaços Vetoriais. Prof. Susie C. Keller ÁLGEBRA LINEAR Subespaços Vetoriais Prof. Susie C. Keller Às vezes, é necessário detectar, dentro de um espaço vetorial V, subconjuntos S que sejam espaços vetoriais menores. Tais conjuntos S são chamados

Leia mais

Chapter 2. 2.1 Noções Preliminares

Chapter 2. 2.1 Noções Preliminares Chapter 2 Seqüências de Números Reais Na Análise os conceitos e resultados mais importantes se referem a limites, direto ou indiretamente. Daí, num primeiro momento, estudaremos os limites de seqüências

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web . (Pucrj 015) Sejam as funções f(x) = x 6x e g(x) = x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) < g(x) é: a) 8 b) 1 c) 60 d) 7 e) 10 4. (Acafe 014) O vazamento ocorrido

Leia mais

Limites e continuidade

Limites e continuidade Capítulo 3 Limites e continuidade 3.1 Limite no ponto Considere a função f() = 1 1, D f =[0, 1[ ]1, + ). Observe que esta função não é definida em =1. Contudo, fazendo suficientemente próimo de 1 (mas

Leia mais

2 a Lista de Exercícios

2 a Lista de Exercícios 2 a Lista de Exercícios Curso de Probabilidade e Processos Estocásticos 31/03/2003 1 a Questão: Exerc.8 Cap.1 (BJ). Solução: Um possivel espaço amostral seria Ω {(x n ) x n {2,..., 12} n 1} onde cada x

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Mestrados Integrados em Engenharia Mecânica e em Eng Industrial e Gestão ANÁLISE MATEMÁTICA III DEMec 010-11-0 1ºTESTE A duração do exame é horas + 30minutos. Cotação: As perguntas 1 e 6 valem valores,

Leia mais

Gráficos de Curvatura Média Constante com Valores de Bordo ilimitados em M R. Abigail Silva Duarte Folha

Gráficos de Curvatura Média Constante com Valores de Bordo ilimitados em M R. Abigail Silva Duarte Folha Gráficos de Curvatura Média Constante com Valores de Bordo ilimitados em M R Abigail Silva Duarte Folha Tese de Doutorado apresentada ao Programa de Pós graduação em Matemática, da Universidade Federal

Leia mais

3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12

3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 NOTA:. Nota: Toda resolução deve ser feita no seu devido

Leia mais

Universidade Federal do Rio de Janeiro. As Fronteiras de Shilov e de Bishop

Universidade Federal do Rio de Janeiro. As Fronteiras de Shilov e de Bishop Universidade Federal do Rio de Janeiro Rafael Monteiro dos Santos As Fronteiras de Shilov e de Bishop Rio de Janeiro 2008 Rafael Monteiro dos Santos As Fronteiras de Shilov e de Bishop Dissertação de Mestrado

Leia mais

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4 Teorema de Taylor Prof. Doherty Andrade Sumário 1 Fórmula de Taylor com Resto de Lagrange 1 2 Exemplos 2 3 Exercícios 3 4 A Fórmula de Taylor 4 5 Observação 5 1 Fórmula de Taylor com Resto de Lagrange

Leia mais

Algumas vantagens da Teoria das Descrições Definidas (Russel 1905)

Algumas vantagens da Teoria das Descrições Definidas (Russel 1905) Textos / Seminário de Orientação - 12 de Março de 2005 - Fernando Janeiro Algumas vantagens da Teoria das Descrições Definidas (Russel 1905) Assume-se que o objecto de uma teoria semântica é constituído

Leia mais

Oscilador Harmônico Simples

Oscilador Harmônico Simples Motivação Oscilador Harmônico Simples a) espectroscopia molecular, b) cristais e outras estruturas no estado sólido, c) estrutura nuclear, d) teoria de campo, e) ótica, f) mecânica estatística, g) aproximante

Leia mais

Topologia. Fernando Silva. (Licenciatura em Matemática, 2007/2008) 13-agosto-2018

Topologia. Fernando Silva. (Licenciatura em Matemática, 2007/2008) 13-agosto-2018 Topologia (Licenciatura em Matemática, 2007/2008) Fernando Silva 13-agosto-2018 A última revisão deste texto está disponível em http://webpages.fc.ul.pt/~fasilva/top/ Este texto é uma revisão do texto

Leia mais

210 Revista Brasileira de Ensino de Fsica, vol. 22, no. 2, Junho, Relac~oes Termodin^amicas de

210 Revista Brasileira de Ensino de Fsica, vol. 22, no. 2, Junho, Relac~oes Termodin^amicas de 210 Revista Brasileira de Ensino de Fsica, vol. 22, no. 2, Junho, 2000 Relac~oes Termodin^amicas de Maxwell Via Formas Diferenciais Jose Maria Filardo Bassalo e Znia de Aquino Valente Departamento de Fsica

Leia mais

Åaxwell Mariano de Barros

Åaxwell Mariano de Barros ÍÒ Ú Ö Ö Ð ÓÅ Ö Ò Ó Ô ÖØ Ñ ÒØÓ Å Ø Ñ Ø ÒØÖÓ Ò Ü Ø Ì ÒÓÐÓ ÆÓØ ÙÐ ¹¼ ÐÙÐÓÎ ØÓÖ Ð ÓÑ ØÖ Ò Ð Ø Åaxwell Mariano de Barros ¾¼½½ ËÓÄÙ ¹ÅA ËÙÑ Ö Ó 1 Vetores no Espaço 2 1.1 Bases.........................................

Leia mais

Monotonicidade, Simetria e Comportamento Global em EDPs Elípticas Semilineares

Monotonicidade, Simetria e Comportamento Global em EDPs Elípticas Semilineares Universidade Federal de Minas Gerais UFMG Instituto de Ciências Exatas ICEx Departamento de Matemática DMat Monotonicidade, Simetria e Comportamento Global em EDPs Elípticas Semilineares Fabrício Goecking

Leia mais

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3 POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz

Leia mais

Complementos de Análise Matemática

Complementos de Análise Matemática Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Ficha prática n o 1 - Cálculo Diferencial em IR n 1. Para cada um dos seguintes subconjuntos de IR, IR 2 e IR 3, determine

Leia mais

Notas de Aula. Análise na Reta

Notas de Aula. Análise na Reta Notas de Aula (ainda em preparação!) Análise na Reta Higidio Portillo Oquendo http://www.ufpr.br/ higidio Última atualização: 22 de abril de 2015 1 Sumário 1 Preliminares 3 1.1 Conjuntos e Funções....................................

Leia mais

Capítulo 2. Álgebra e imagens binárias. 2.1 Subconjuntos versus funções binárias

Capítulo 2. Álgebra e imagens binárias. 2.1 Subconjuntos versus funções binárias Capítulo 2 Álgebra e imagens binárias Em Análise de Imagens, os objetos mais simples que manipulamos são as imagens binárias. Estas imagens são representadas matematicamente por subconjuntos ou, de maneira

Leia mais

1 Imers~oes isometricas

1 Imers~oes isometricas 2 0 Lista de Exerccio de MAT5771 (1 0 semestre 2013) Esta lista cont^em problemas cuja soluc~ao podera ser cobrada em prova. Ela tambem cont^em proposic~oes e teoremas, alguns enunciados e outros demonstrados

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais

QUADRADO MÁGICO - ORDEM 4

QUADRADO MÁGICO - ORDEM 4 CONCEITO Partindo da definição original, os QUADRADOS MÁGICOS devem satisfazer três condições: a) tabela ou matriz quadrada (número de igual ao número de ); b) domínio: com elementos assumindo valores

Leia mais

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A:

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A: MQI 00 ESTATÍSTICA PARA METROLOGIA - SEMESTRE 008.0 Teste 6/05/008 GABARITO PROBLEMA O preço de um certo carro usado é uma variável Normal com média R$ 5 mil e desvio padrão R$ 400,00. a) Você está interessado

Leia mais

Uma breve introdução ao Método dos Elementos Finitos

Uma breve introdução ao Método dos Elementos Finitos Departamento de Matemática Instituto de Ciências Exatas Universidade Federal de Minas Gerais Uma breve introdução ao Método dos Elementos Finitos Breno Loureiro Giacchini Janeiro de Conteúdo Prefácio...............................................

Leia mais

Teorema (Algoritmo da Divisão)

Teorema (Algoritmo da Divisão) Teorema (Algoritmo da Divisão) Sejam a e b números inteiros, com b > 0. Então existem números inteiros q e r, únicos e tais que a = bq + r, com 0 r < b. Demonstração. Existência: Consideremos S = {a bk

Leia mais

Divisibilidade em Domínios de Integridade

Divisibilidade em Domínios de Integridade Universidade Federal de Sergipe PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL - PROFMAT Divisibilidade em Domínios

Leia mais

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições Programação Não Linear Otimização Univariada E Multivariada Sem Restrições A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um prolema. Eiste um conjunto particular de prolemas

Leia mais

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase 15 de Maio de 010 1 Questão 1 Um tanque de combustível, cuja capacidade é de 000 litros, tinha 600 litros de uma mistura homogênea formada por 5 % de álcool e 75 % de

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

² Servomecanismo: Sistema de controle realimentado para controle automático de posição, velocidade ou aceleração. Muito empregado na indústria.

² Servomecanismo: Sistema de controle realimentado para controle automático de posição, velocidade ou aceleração. Muito empregado na indústria. 1. Introdução 1.1. De nições Básicas ² Sistema: Interconexão de dispositivos e elementos para cumprir um objetivo desejado. ² Processo: Um sistema ou dispositivo a ser controlado. ² Sistema de controle:

Leia mais

Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 42

Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 42 1 / 42 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 42 1 Combinatória 2 3 Grafos 3 / 42 Capítulo 2 4 / 42 Axiomática dos Inteiros Sejam a e b inteiros. Designaremos

Leia mais

Tipos de variáveis aleatórias

Tipos de variáveis aleatórias Tipos de variáveis aleatórias Variáveis aleatórias discretas se assumem um conjunto finito ou infinito numerável de valores. Exemplos: número de pintas que sai no lançamento de um dado; registo, a intervalos

Leia mais

Análise Funcional. José Ferreira Alves. Março de 2002. Faculdade de Ciências da Universidade do Porto Departamento de Matemática Pura

Análise Funcional. José Ferreira Alves. Março de 2002. Faculdade de Ciências da Universidade do Porto Departamento de Matemática Pura Análise Funcional José Ferreira Alves Março de 2002 Faculdade de Ciências da Universidade do Porto Departamento de Matemática Pura ii Introdução Estas notas foram elaboradas para a disciplina de Complementos

Leia mais

3.1 Limite & Continuidade

3.1 Limite & Continuidade 3. FUNÇÕES CONTÍNUAS ANÁLISE NO CORPO R - 2018.1 3.1 Limite & Continuidade 1. Mostre que a função valor absoluto f (x) = jxj é contínua em qualquer ponto x 2 R: 2. A função de Dirichlet ' : R! R é de nida

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

Propriedade Dunford-Pettis Alternativa. Veronica Leão Neves

Propriedade Dunford-Pettis Alternativa. Veronica Leão Neves Propriedade Dunford-Pettis Alternativa Veronica Leão Neves Dissertação apresentada ao Instituto de Matemática e Estatística da Universidade de São Paulo para obtenção do título de Mestre em Matemática

Leia mais