Notas de aula número 1: Otimização *

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Notas de aula número 1: Otimização *"

Transcrição

1 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL UFRGS DEPARTAMENTO DE ECONOMIA CURSO DE CIÊNCIAS ECONÔMICAS DISCIPLINA: TEORIA MICROECONÔMICA II Primeiro Semestre/2001 Professor: Sabino da Silva Porto Júnior Estagio Docência: Rafael Tiecher Cusinato. Notas de aula número 1: Otimização * Rafael Tiecher Cusinato. A. Estrutura de um problema de otimização Todo problema de otimização consiste em três elementos: 1. Variáveis de escolha: são as variáveis cujos valores ótimos devem ser determinados. Por exemplo: ( i ) Uma firma quer saber qual nível de produto deve produzir para obter o lucro máximo possível. Neste caso, o produto é a variável de escolha. ( ii ) Uma firma quer saber qual quantidade de trabalho, capital e insumos que deve usar para produzir determinado nível de produto ao mínimo custo possível. ( iii ) Um consumidor deseja comprar uma cesta de bens que ele tenha condições de adquirir e que lhe deixe na melhor situação. Aqui, as variáveis de escolha são as quantidades dos bens. 2. Função objetivo: fornece uma especificação matemática da relação entre as variáveis de escolha e a variável que desejamos maximizar ou minimizar. Assim, seguindo os exemplos do item 1, as funções objetivos podem tomar a forma de relacionar: ( i ) lucro ao nível de produto. ( ii ) custo à quantidade de trabalho, capital e insumos. ( iii ) um indexador da satisfação do consumidor às diferentes quantidades de bens que ele pode comprar.

2 Em ( i ) e (iii ), as funções devem ser maximizadas e em ( ii ), minimizada todas em respeito as suas respectivas variáveis de escolha. 3. Conjunto viável: uma parte essencial de qualquer problema de otimização é a especificação exata de quais alternativas estão disponíveis para o tomador de decisões. O conjunto de alternativas disponíveis é chamado de conjunto viável. Há três maneiras no qual um conjunto viável pode ser especificado: (a) Por enumeração direta, i.e., por uma proposição que afirme: as alternativas são A, B, C... (b) Por uma ou mais desigualdades que define diretamente um conjunto de valores alternativos para as variáveis de escolha. (c) Por uma ou mais funções ou equações que defina um conjunto de valores alternativos. Podemos resumir que um problema de otimização é formado pelas variáveis de escolha, função objetivo e conjunto viável. O problema é escolher a melhor alternativa do conjunto viável. Em geral, a teoria permite a representação do problema em uma procura pelo máximo ou mínimo da função objetivo em respeito às variáveis de escolha e sujeito à restrições. B. Soluções: questões e conceitos A solução de um problema de otimização é tal que o vetor de valores da variável de escolha está no conjunto viável e fornece o máximo ou o mínimo da função objetivo sobre o conjunto viável. A partir de agora, utilizaremos o exemplo de uma maximização cuja função objetivo é f (x 1, x 2,..., x n ) = f (x). Denotaremos o conjunto viável dos vetores por S. Então, a solução para o problema é um vetor de variáveis de escolha x * que possui a seguinte propriedade: f (x * ) f (x) x, x * S (1) (O símbolo significa para todo.)

3 Soluções globais vs locais: uma solução global é aquela que satisfaz a condição (1). Naquele ponto, a função objetivo toma um valor que não é excedido em qualquer outro ponto dentro do conjunto viável. É, portanto, a solução que procuramos. Por outro lado, uma solução local satisfaz a condição: f (x ** ) f (x) x N ** S (2) onde N ** é um conjunto de pontos na vizinhança de x **. Unicidade da solução: a solução não é necessariamente única, é possível que haja mais de um máximo global. Solução interior vs de fronteira: na figura 1, os pontos x = 0 e x = x 0 são pontos de fronteira, enquanto todos os outros pontos no conjunto S são pontos de interior. Uma solução interior é um ponto interior que satisfaz a condição (1). Uma solução de fronteira é um ponto de fronteira que satisfaz a condição (1). A distinção é importante pois pequenas mudanças em uma restrição geralmente não afetam uma solução interior o ponto ótimo continua o mesmo. Porém, tendem a afetar uma solução de fronteira.

4 Dizemos que uma restrição está ou é ativa quando há uma solução de fronteira sob a fronteira definida pela restrição em questão. Uma restrição não está ativa ou é não-ativa quando a solução for interior ou quando a solução é de fronteira mas a solução está sob a fronteira de outra restrição. Continuidade da função objetivo: uma função y = f(x) é contínua se não há cortes no gráfico, ou seja, intuitivamente, se podemos desenhá-la sem tirar a caneta do papel. Na figura 2, as funções desenhadas em (b) e (c) não são contínuas, enquanto que (a) é contínua. Concavidade da função objetivo: na figura 3, temos os gráficos de quatro tipos de funções. Uma função com uma curvatura do tipo mostrado em (a) é chamada de função côncava. Em (b) temos uma função convexa e em (c), uma função que não é côncava nem convexa. Quando uma função for diferenciável, podemos expressar a concavidade pela condição f (x) < 0 e a convexidade por f (x) > 0.

5 Funções quase-côncavas fazer: Dado uma função y = f (x 1, x 2,..., x n ) = f (x), podemos escolher algum número c e f ( x ) = c (3) Podemos dizer que (3) define o contorno da função f (x) e que o conjunto de valores de x que satisfaz (3) é o conjunto dos contornos. A continuidade dos contornos é definida da mesma maneira que a continuidade da função e pode ser pensada como a inexistência de cortes, brechas ou pulos no gráfico. A continuidade de uma função e a de seus contornos estão intimamente relacionados pode ser mostrado que a continuidade da função implica a continuidade de seus contornos. Analisaremos agora, a concavidade dos contornos. Restringiremos nossas atenções às funções com derivadas f 1, f 2 positivas. A figura 4 ilustra a concavidade dos contornos destas funções. Escolha dois pontos sobre o mesmo contorno tal como x e x na figura. Ou seja, f (x ) = f (x ) = c. Escolha qualquer ponto da linha reta que liga x e x tal como x * na figura. Então, dizemos que o contorno é côncavo se: f (x * ) f (x ) = f (x ) = c (4) Em palavras, uma combinação convexa de qualquer dois pontos de um contorno fornece valores pelo menos tão altos quanto da função e, portanto, está sob o mesmo contorno ou sob um contorno mais alto. Uma função cujos contornos satisfazem esta definição é dita função quase-côncava. As funções cujo contornos são mostrados em (a) e (b) da figura 4 são quase-côncavas enquanto a mostrada em (c) não é.

6 Podemos fazer uma distinção observando (a) e (b) da figura acima. Em (a), para qualquer dois pontos do contorno, a linha que liga eles estará sempre acima do contorno e nunca sob o contorno. Tal função é chamada de estritamente quase-côncava. No caso de (b), podemos encontrar pontos em que a linha que os une ficará sob o contorno e, portanto, apesar desta função ser quase-côncava, ela não é estritamente quase-côncava. Em um problema de otimização, dado f 1, f 2 > 0, quanto mais alto o contorno alcançado, maior é o valor da função objetivo. Portanto, maximizar a função objetivo é equivalente a encontrar o contorno mais alto possível. Propriedades do conjunto viável Não-vazio: um conjunto é não-vazio se contém pelo menos um elemento. Um problema de otimização só tem solução se o conjunto viável for não-vazio. Fechado: um conjunto é fechado se todos os pontos de sua fronteira são elementos do conjunto. Portanto, o conjunto de números do intervalo 0 x 1 é fechado enquanto os conjuntos definidos nos intervalos 0 < x < 1 e 0 x < 1 não são. Limitado: um conjunto é limitado quando não é possível ir adiante para o infinito em qualquer direção mantendo-se dentro do conjunto. Assim, o conjunto de números x do intervalo 0 < x < 1 é limitado, enquanto o conjunto x 0 é não-limitado. Note que as definições de conjunto fechado e limitado são diferentes: o conjunto definido por 0 < x < 1 é limitado mas não é fechado; o conjunto de valores x 0 é não-limitado mas é fechado.

7 Convexidade: um conjunto é convexo se para cada par de pontos que pertencem ao conjunto, podemos ligá-los com uma linha reta e esta linha fica completamente dentro do conjunto. Portanto, os conjuntos de (a) da figura 5 são convexos enquanto os de (b) não são convexos. Quando qualquer dois pontos da fronteira de um conjunto convexo são ligados por uma reta que, exceto em seus pontos terminais, estão no interior do conjunto, então o conjunto é estritamente convexo. C. Existência de soluções Teorema da existência: Um problema de otimização sempre tem solução se: ( i ) a função objetivo é contínua ( ii ) o conjunto viável é não-vazio, fechado e limitado. D. Ótimo local e global Teorema: Um máximo local é sempre um máximo global se: ( i ) a função objetivo é quase-côncava ( ii ) o conjunto viável é convexo. E. Unicidade da solução Teorema da unicidade: Dado um problema de otimização no qual o conjunto viável é convexo e a função objetivo é quase-côncava, a solução é única se: ( i ) o conjunto viável é estritamente convexo ou ( ii ) a função objetivo é estritamente quase-côncava ou ( iii ) ambos

8 F. Ótimo de interior e de fronteira Em geral, a solução de um problema de otimização que é um ponto interior do conjunto viável não é afetada por pequenas mudanças nas fronteiras do conjunto. Por outro lado, uma solução de fronteira deverá ser sensitiva à mudanças em pelo menos uma restrição. Nas partes (a) e (b) da figura 6, o conjunto viável está inicialmente na área 0ab. Em (a), temos um ótimo interior em x * e em (b) e (c), temos ótimo de fronteira também denotado por x *. A solução (a) não é afetada por pequenas mudanças na restrição por exemplo, para a b. Em (b), a mudança para a b afeta a solução e em (c), uma mudança da restrição cd têm efeito sobre a otimização, mas o mesmo não ocorre para pequenas mudanças em ab, como ilustrado. A ausência de resposta da solução (a) à mudanças é devido a existência de um ponto de saciedade em x * no qual a função objetivo atinge o máximo. A ocorrência de um ponto de saciedade no interior do conjunto viável é claramente uma condição necessária para existir um máximo interior. Portanto, podemos caracterizar um máximo de fronteira como um máximo em que não existe um ponto de saciedade. Uma classe deste tipo de máximo é quando a função objetivo é monotonicamente crescente; i.e., f i > 0, onde f i é a i-ésima derivada parcial da função. Neste caso, a solução estará necessariamente sob a fronteira superior do conjunto viável.

9 As partes (b) e (c) da figura 6 mostram dois tipos de ótimos de fronteira. Em (b), existe apenas uma fronteira superior e, dado a suposição que c 2 > c 1, a mudança na fronteira modifica o ótimo. Em (c), conjunto viável inicial é dado pela área 0ceb definida pelas duas desigualdades lineares fracas. O ótimo inicial é na fronteira em x *. Neste ponto, a restrição definida pela linha ab é satisfeita. Esta restrição é efetivamente inoperante na solução e, portanto, esta restrição é não-ativa. Uma vez que sabemos onde a solução está, uma restrição não-ativa pode ser deixada de fora de qualquer análise que esteja interessada em movimentos pequenos nas vizinhanças do ótimo. Seguidamente, isto permite uma simplificação da análise. G. Localização do ótimo A condição necessária para o ponto x * = (x * 1, x * 2,..., x * n ) alcançar o máximo da função f (x) quando não há restrições é f i (x * ) = 0 i = 1, 2,..., n (5) isto é, cada derivada parcial da função, avaliada em x *, deve ser zero. Quando há restrições garantindo a inadimissibilidade de quantidades negativas, i.e., x i 0 para i = 1,2,...,n, temos as seguintes condições necessárias: f i (x * ) 0 x i * 0 x i * f i (x * ) = 0 i=1,2,...,n (6) Método de Lagrange Quando há restrições funcionais, devemos utilizar o método dos multiplicadores de Lagrange. Suponha o problema da maximização da função objetivo f (x 1,x 2 ) sujeito à restrição funcional g (x 1,x 2 ) b. Na figura 7, o problema está colocado na forma gráfica.

10 Neste caso, devemos montar a função lagrangeano: L (x 1, x 2, ) = f (x 1, x 2 ) [ g (x 1, x 2 ) b ] (7) E, a partir de sua diferenciação, temos as condições necessárias para maximização: f 1 - * g 1 = 0 f 2 - * g 2 = 0 (8) g (x 1 *, x 2 * ) b = 0 Interpretação do multiplicadores de Lagrange ( * ) Em economia, as derivadas são usualmente designadas pelo termo marginal. Assim, * pode ser pensado como a mudança marginal no valor otimizado da função objetivo com respeito à mudanças na restrição. H. Generalização adicional Suponha que queremos o maximizar o problema na forma geral: Max f (x) s. a. g j (x) b j x 0 ( j=1,..., m ) (9)

11 Desta forma, temos a função lagrangeano: L (x, ) = f (x) j [ g j (x) b j ] (10) As condições necessárias são: f i j * g i j 0; x i * 0; x i * L i = 0 ( i=1,..., n ) (11) b g i (x * ) 0; i * 0; i* L i = 0 ( j=1,..., m ) (12) * Resumo do capítulo 2, optimization, de GRAVELLE, H & REES, R. Microeconomia. London, Longman, 1981.

OTIMIZAÇÃO VETORIAL. Formulação do Problema

OTIMIZAÇÃO VETORIAL. Formulação do Problema OTIMIZAÇÃO VETORIAL Formulação do Problema Otimização Multiobjetivo (também chamada otimização multicritério ou otimização vetorial) pode ser definida como o problema de encontrar: um vetor de variáveis

Leia mais

Dificuldades de Modelos de PNL. Onde está a solução ótima? Outro exemplo: Condição ótima Local vs. Global. 15.053 Quinta-feira, 25 de abril

Dificuldades de Modelos de PNL. Onde está a solução ótima? Outro exemplo: Condição ótima Local vs. Global. 15.053 Quinta-feira, 25 de abril 15.053 Quinta-feira, 25 de abril Teoria de Programação Não-Linear Programação Separável Dificuldades de Modelos de PNL Programa Linear: Apostilas: Notas de Aula Programas Não-Lineares 1 2 Análise gráfica

Leia mais

Esboço de Gráficos (resumo)

Esboço de Gráficos (resumo) Esboço de Gráficos (resumo) 1 Máximos e Mínimos Definição: Diz-se que uma função tem um valor máximo relativo (máximo local) em c se existe um intervalo ( a, b) aberto contendo c tal que f ( c) f ( x)

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Linear Aula 25: Programação Não-Linear - Funções de Uma única variável Mínimo; Mínimo Global; Mínimo Local; Optimização Irrestrita; Condições Óptimas; Método da Bissecção; Método de Newton.

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Prova de Microeconomia

Prova de Microeconomia UNIVERSIDADE FEDERAL DO PARÁ CURSO DE MESTRADO EM ECONOMIA PROCESSO SELETIVO 2010 Prova de Microeconomia INSTRUÇÕES PARA A PROVA Leia atentamente as questões. A interpretação das questões faz parte da

Leia mais

1. Extremos de uma função

1. Extremos de uma função Máximo e Mínimo de Funções de Várias Variáveis 1. Extremos de uma função Def: Máximo Absoluto, mínimo absoluto Seja f : D R R função (i) Dizemos que f assume um máximo absoluto (ou simplesmente um máximo)

Leia mais

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO Luciano Pereira Magalhães - 8º - noite lpmag@hotmail.com Orientador: Prof Gustavo Campos Menezes Banca Examinadora: Prof Reinaldo Sá Fortes, Prof Eduardo

Leia mais

MATEMÁTICA I AULA 07: TESTES PARA EXTREMOS LOCAIS, CONVEXIDADE, CONCAVIDADE E GRÁFICO TÓPICO 02: CONVEXIDADE, CONCAVIDADE E GRÁFICO Este tópico tem o objetivo de mostrar como a derivada pode ser usada

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

Limites e continuidade

Limites e continuidade Capítulo 3 Limites e continuidade 3.1 Limite no ponto Considere a função f() = 1 1, D f =[0, 1[ ]1, + ). Observe que esta função não é definida em =1. Contudo, fazendo suficientemente próimo de 1 (mas

Leia mais

Microeconomia 1 - Teoria da Firma - Parte 2

Microeconomia 1 - Teoria da Firma - Parte 2 Microeconomia 1 - Teoria da Firma - Parte 2 Rodrigo Nobre Fernandez Pelotas, 2015 DECON/UFPEL Rodrigo Nobre Fernandez Microeconomia 1 / 30 Minimização de Custos 1 Suponha que a firma escolhe um certo nível

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

UM TEOREMA QUE PODE SER USADO NA

UM TEOREMA QUE PODE SER USADO NA UM TEOREMA QUE PODE SER USADO NA PERCOLAÇÃO Hemílio Fernandes Campos Coêlho Andrei Toom PIBIC-UFPE-CNPq A percolação é uma parte importante da teoria da probabilidade moderna que tem atraído muita atenção

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia ENG 1403 Circuitos Elétricos e Eletrônicos Resposta Transitória de Circuitos com Elementos Armazenadores de Energia Guilherme P. Temporão 1. Introdução Nas últimas duas aulas, vimos como circuitos com

Leia mais

Levando em conta decisões de investimento não-triviais.

Levando em conta decisões de investimento não-triviais. Levando em conta decisões de investimento não-triviais. Olivier Blanchard* Abril de 2002 *14.452. 2º Trimestre de 2002. Tópico 4. 14.452. 2º Trimestre de 2002 2 No modelo de benchmark (e na extensão RBC),

Leia mais

Módulo 2 Custos de Oportunidade e Curva de Possibilidades de Produção

Módulo 2 Custos de Oportunidade e Curva de Possibilidades de Produção Módulo 2 Custos de Oportunidade e Curva de Possibilidades de Produção 2.1. Custo de Oportunidade Conforme vínhamos analisando, os recursos produtivos são escassos e as necessidades humanas ilimitadas,

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

GABARITO OTM 09 [ ] [ ] ( ) [ ] O que mostra que e, logo o sistema não possui solução. [ ]

GABARITO OTM 09 [ ] [ ] ( ) [ ] O que mostra que e, logo o sistema não possui solução. [ ] GABARITO OTM 09 Questão 1 a) Observe que o, deste modo o sistema não possui única solução ou não possui solução. Como [ ] [ ] [ ] [ ] O que mostra que e, logo o sistema não possui solução. b) Sim. Basta

Leia mais

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC,

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, ESPAÇO VETORIAL Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, + é a operação (função) soma + : V V V, que a cada par (u, v) V V, associa um único elemento de V, denotado

Leia mais

8. Mercado de Trabalho, Emprego e Desemprego

8. Mercado de Trabalho, Emprego e Desemprego 8. Mercado de Trabalho, Emprego e Desemprego 8.1. Introdução 8.3. Interpretação Estática do Desemprego 8.4. Interpretação Dinâmica do Desemprego Burda & Wyplosz, 5ª Edição, Capítulo 5 1 8.1. Introdução

Leia mais

CURSO DE MICROECONOMIA 2

CURSO DE MICROECONOMIA 2 CURSO DE MICROECONOMIA 2 TEORIA DOS CONTRATOS - Seleção Adversa PROF Mônica Viegas e Flavia Chein Cedeplar/UFMG 2/2009 Cedeplar/UFMG (Institute) MICRO 2 2/2009 1 / 25 O Modelo Padrão Agente que troca um

Leia mais

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas? Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões

Leia mais

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Professor Orientador: Alberto Berly Sarmiento Vera Belo Horizonte 2012 Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Monografia

Leia mais

Ricardo Bento Afonso Nº51571 Rubén Ruiz Holgado Nº64643

Ricardo Bento Afonso Nº51571 Rubén Ruiz Holgado Nº64643 Ricardo Bento Afonso Nº51571 Rubén Ruiz Holgado Nº64643 Programação não linear para que serve? A programação linear tem a função objectivo e os constrangimentos lineares. O que nem sempre acontece na realidade,

Leia mais

O mercado de bens CAPÍTULO 3. Olivier Blanchard Pearson Education. 2006 Pearson Education Macroeconomia, 4/e Olivier Blanchard

O mercado de bens CAPÍTULO 3. Olivier Blanchard Pearson Education. 2006 Pearson Education Macroeconomia, 4/e Olivier Blanchard O mercado de bens Olivier Blanchard Pearson Education CAPÍTULO 3 3.1 A composição do PIB A composição do PIB Consumo (C) são os bens e serviços adquiridos pelos consumidores. Investimento (I), às vezes

Leia mais

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48 Conteúdo 1 Princípios de Contagem e Enumeração Computacional Permutações com Repetições Combinações com Repetições O Problema do Troco Principio da Casa dos Pombos > Princípios de Contagem e Enumeração

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Chapter 2. 2.1 Noções Preliminares

Chapter 2. 2.1 Noções Preliminares Chapter 2 Seqüências de Números Reais Na Análise os conceitos e resultados mais importantes se referem a limites, direto ou indiretamente. Daí, num primeiro momento, estudaremos os limites de seqüências

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof.

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof. Pesquisa Operacional Prof. José Luiz Prof. José Luiz Função Linear - Introdução O conceito de função é encontrado em diversos setores da economia, por exemplo, nos valores pagos em um determinado período

Leia mais

BCC202 - Estrutura de Dados I

BCC202 - Estrutura de Dados I BCC202 - Estrutura de Dados I Aula 04: Análise de Algoritmos (Parte 1) Reinaldo Fortes Universidade Federal de Ouro Preto, UFOP Departamento de Ciência da Computação, DECOM Website: www.decom.ufop.br/reifortes

Leia mais

CURSO de CIÊNCIAS ECONÔMICAS - Gabarito

CURSO de CIÊNCIAS ECONÔMICAS - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA 2 o semestre letivo de 2006 e 1 o semestre letivo de 2007 CURSO de CIÊNCIAS ECONÔMICAS - Gabarito INSTRUÇÕES AO CANDIDATO Verifique se este caderno contém:

Leia mais

PASSEIOS ALEATÓRIOS E CIRCUITOS ELÉTRICOS

PASSEIOS ALEATÓRIOS E CIRCUITOS ELÉTRICOS PASSEIOS ALEATÓRIOS E CIRCUITOS ELÉTRICOS Aluno: Ricardo Fernando Paes Tiecher Orientador: Lorenzo Justiniano Díaz Casado Introdução A teoria da probabilidade, assim como grande parte da matemática, está

Leia mais

Método de Eliminação de Gauss. Eduardo Camponogara

Método de Eliminação de Gauss. Eduardo Camponogara Sistemas de Equações Lineares Método de Eliminação de Gauss Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação

Leia mais

Resolução da Lista 2 - Modelos determinísticos

Resolução da Lista 2 - Modelos determinísticos EA044 - Planejamento e Análise de Sistemas de Produção Resolução da Lista 2 - Modelos determinísticos Exercício 1 a) x ij são as variáveis de decisão apropriadas para o problemas pois devemos indicar quantos

Leia mais

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO CURSO DE MATEMÁTICA APLICADA À ECONOMIA E GESTÃO ANÁLISE MATEMÁTICA I ELEMENTOS DE ANÁLISE REAL Volume 1 Por : Gregório Luís I PREFÁCIO O presente texto destina-se

Leia mais

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições Programação Não Linear Otimização Univariada E Multivariada Sem Restrições A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um prolema. Eiste um conjunto particular de prolemas

Leia mais

Aula 03 Custos de um algoritmo e funções de complexidade

Aula 03 Custos de um algoritmo e funções de complexidade BC1424 Algoritmos e Estruturas de Dados I Aula 03 Custos de um algoritmo e funções de complexidade Prof. Jesús P. Mena-Chalco jesus.mena@ufabc.edu.br 1Q-2015 1 Custo de um algoritmo e funções de complexidade

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

Lista de Exercícios 4: Soluções Sequências e Indução Matemática

Lista de Exercícios 4: Soluções Sequências e Indução Matemática UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios : Soluções Sequências e Indução Matemática Ciências Exatas & Engenharias o Semestre de 05 O conjunto dos números racionais Q é enumerável, ou seja,

Leia mais

Pesquisa Operacional

Pesquisa Operacional Pesquisa Operacional Prof. José Luiz Resolver um problema de Programação Linear significa basicamente resolver sistemas de equações lineares; Esse procedimento, apesar de correto, é bastante trabalhoso,

Leia mais

ão: modelagem e técnicas

ão: modelagem e técnicas Curso de Especialização em Gestão Empresarial (MBA Executivo Turma 15) Disciplina: Pesquisa Operacional Prof. Dr. Álvaro José Periotto 3. Otimização ão: modelagem e técnicas de resolução Passando da daetapa

Leia mais

CMg Q P RT P = RMg CT CF = 100. CMg

CMg Q P RT P = RMg CT CF = 100. CMg Pindyck & Rubinfeld, Capítulo 8, Oferta :: EXERCÍCIOS 1. A partir dos dados da Tabela 8.2, mostre o que ocorreria com a escolha do nível de produção da empresa caso o preço do produto apresentasse uma

Leia mais

Otimização Aplicada à Engenharia de Processos

Otimização Aplicada à Engenharia de Processos Otimização Aplicada à Engenharia de Processos Aula 1: Introdução Felipe Campelo http://www.cpdee.ufmg.br/~fcampelo Programa de Pós-Graduação em Engenharia Elétrica Belo Horizonte Março de 2013 Antes de

Leia mais

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 1998/99 Erros Objectivos: Arredondar um número para n dígitos significativos. Determinar os erros máximos absoluto e relativo

Leia mais

IND 2072 - Análise de Investimentos com Opções Reais

IND 2072 - Análise de Investimentos com Opções Reais IND 2072 - Análise de Investimentos com Opções Reais PROVA P2 1 o Semestre de 2007-03/07/2007 OBS: 1) A prova é SEM CONSULTA. Nota da prova = mínimo{10; pontuação da P2 + crédito da P1} 2) Verdadeiro ou

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

Utilização do SOLVER do EXCEL

Utilização do SOLVER do EXCEL Utilização do SOLVER do EXCEL 1 Utilização do SOLVER do EXCEL José Fernando Oliveira DEEC FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO MAIO 1998 Para ilustrar a utilização do Solver na resolução de

Leia mais

O USO DA FERRAMENTA SOLVER DO EXCEL NA RESOLUÇÃO DE PROBLEMAS DE PROGRAMAÇÃO LINEAR

O USO DA FERRAMENTA SOLVER DO EXCEL NA RESOLUÇÃO DE PROBLEMAS DE PROGRAMAÇÃO LINEAR O USO DA FERRAMENTA SOLVER DO EXCEL NA RESOLUÇÃO DE PROBLEMAS DE PROGRAMAÇÃO LINEAR João Batista de Jesus FATEC-JAHU Célio Favoni 2 FATEC-JAHU Resumo Este trabalho expõe de maneira sintetizada as funcionalidades

Leia mais

Microeconomia Teoria do Consumidor Oferta - Equilíbrio

Microeconomia Teoria do Consumidor Oferta - Equilíbrio Aula 6 Abordagens da Teoria do Consumidor Microeconomia Teoria do Consumidor Oferta - Equilíbrio Prof. Dr. Daniel Bertoli Gonçalves UNESP Sorocaba -SP Historicamente, ao observar-se o desenvolvimento da

Leia mais

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da FUNÇÃO COMO CONJUNTO Definição 4.4 Seja f uma relação de A em B, dizemos que f é uma função de A em B se as duas condições a seguir forem satisfeitas: i) D(f) = A, ou seja, o domínio de f é o conjunto

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Complemento de Grafos Mostre que para qualquer Grafo G com 6 pontos, G ou possui um triângulo Considere um vértice v de V(G). Sem perda de generalidade, podemos assumir v é adjacente a outros

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

1) Eficiência e Equilíbrio Walrasiano: Uma Empresa

1) Eficiência e Equilíbrio Walrasiano: Uma Empresa 1) Eficiência e Equilíbrio Walrasiano: Uma Empresa Suponha que há dois consumidores, Roberto e Tomás, dois bens abóbora (bem 1) e bananas (bem ), e uma empresa. Suponha que a empresa 1 transforme 1 abóbora

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

REFLEXÃO DA LUZ: ESPELHOS 412EE TEORIA

REFLEXÃO DA LUZ: ESPELHOS 412EE TEORIA 1 TEORIA 1 DEFININDO ESPELHOS PLANOS Podemos definir espelhos planos como toda superfície plana e polida, portanto, regular, capaz de refletir a luz nela incidente (Figura 1). Figura 1: Reflexão regular

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Exercícios resolvidos P2

Exercícios resolvidos P2 Exercícios resolvidos P Questão 1 Dena as funções seno hiperbólico e cosseno hiperbólico, respectivamente, por sinh(t) = et e t e cosh(t) = et + e t. (1) 1. Verique que estas funções satisfazem a seguinte

Leia mais

ExemResumo parcial da última. 15.053 Quinta-feira, 28 de fevereiro. Os preços-sombra podem ser encontrados ao se examinar os quadros inicial e final!

ExemResumo parcial da última. 15.053 Quinta-feira, 28 de fevereiro. Os preços-sombra podem ser encontrados ao se examinar os quadros inicial e final! 15.053 Quinta-feira, 28 de fevereiro Análise de Sensibilidade 2 Mais sobre pricing out Efeitos sobre os quadros finais Apostilas: Notas de Aula ExemResumo parcial da última O preço-sombra é a alteração

Leia mais

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y). PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx

Leia mais

Lógica Matemática e Computacional 5 FUNÇÃO

Lógica Matemática e Computacional 5 FUNÇÃO 5 FUNÇÃO 5.1 Introdução O conceito de função fundamenta o tratamento científico de problemas porque descreve e formaliza a relação estabelecida entre as grandezas que o integram. O rigor da linguagem e

Leia mais

1 Propriedades das Funções Contínuas 2

1 Propriedades das Funções Contínuas 2 Propriedades das Funções Contínuas Prof. Doherty Andrade 2005 Sumário 1 Propriedades das Funções Contínuas 2 2 Continuidade 2 3 Propriedades 3 4 Continuidade Uniforme 9 5 Exercício 10 1 1 PROPRIEDADES

Leia mais

Pesquisa Operacional

Pesquisa Operacional Faculdade de Engenharia - Campus de Guaratinguetá Pesquisa Operacional Livro: Introdução à Pesquisa Operacional Capítulo 2 - Programação Linear Fernando Marins fmarins@feg.unesp.br Departamento de Produção

Leia mais

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Método Simple.. Solução eata para os modelos de Programação Linear O modelo de Programação Linear (PL) reduz um sistema real a um conjunto

Leia mais

Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1

Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1 Prof. M. Sc. Jarbas Thaunahy Santos de Almeida 1 Aula 7 Covariância e suas aplicações Roteiro Introdução Covariância Valor esperado, Variância e Desvio-padrão da soma entre duas variáveis aleatórias Retorno

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2013/I

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2013/I 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 013/I 1 Sejam u = ( 4 3) v = ( 5) e w = (a b) Encontre a e b tais

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

Tópico 3. Limites e continuidade de uma função (Parte 2)

Tópico 3. Limites e continuidade de uma função (Parte 2) Tópico 3. Limites e continuidade de uma função (Parte 2) Nessa aula continuaremos nosso estudo sobre limites de funções. Analisaremos o limite de funções quando o x ± (infinito). Utilizaremos o conceito

Leia mais

Qual é Mesmo a Definição de Polígono Convexo?

Qual é Mesmo a Definição de Polígono Convexo? Qual é Mesmo a Definição de Polígono Convexo? Elon Lages Lima IMPA, Rio de Janeiro Quando pensamos num polígono convexo, imaginamos seus vértices todos apontando para fora, ou seja, que ele não possui

Leia mais

Números fuzzy interativos

Números fuzzy interativos Números fuzzy interativos Francielle Santo Pedro Orientador: Laécio Carvalho de Barros Instituto de Matemática, Estatística e Computação Científica- IMECC Unicamp - Campinas 29 de Agosto, 2013 Francielle

Leia mais

NIVELAMENTO MATEMÁTICA 2012

NIVELAMENTO MATEMÁTICA 2012 NIVELAMENTO MATEMÁTICA 202 Monitor: Alexandre Rodrigues Loures Monitor: Alexandre Rodrigues Loures SUMÁRIO. LOGARITMOS... 3.. Mudança de base... 3.2. Propriedades dos logaritmos... 4 2. DERIVADAS... 4

Leia mais

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA CURSO BIETÁPICO EM ENGENHARIA CIVIL º ciclo Regime Diurno/Nocturno Disciplina de COMPLEMENTOS DE MATEMÁTICA Ano lectivo de 7/8 - º Semestre Etremos

Leia mais

MESTRADO EM ECONOMIA APLICADA

MESTRADO EM ECONOMIA APLICADA UNIVERSIDADE FEDERAL DE ALAGOAS PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO Coordenadoria de Pós-Graduação Prova de Conhecimentos Específicos do Processo Seletivo Stricto Sensu UFAL 2012.1 CADERNO DE PROVA

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

Disciplina: Introdução à Álgebra Linear

Disciplina: Introdução à Álgebra Linear Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte Campus: Mossoró Curso: Licenciatura Plena em Matemática Disciplina: Introdução à Álgebra Linear Prof.: Robson Pereira de Sousa

Leia mais

Aula 03 - Modelagem em PPLIM

Aula 03 - Modelagem em PPLIM Thiago A. O. 1 1 Universidade Federal de Ouro Preto 1 Componentos do modelo 2 3 4 5 6 Componentes de uma modelagem matemática Elementos; Conjuntos; Parâmetros; Variáveis; Objetivo; Restições; Elementos

Leia mais

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola Álgebra Booleana Introdução ao Computador 2010/01 Renan Manola Histórico George Boole (1815-1864) Considerado um dos fundadores da Ciência da Computação, apesar de computadores não existirem em seus dias.

Leia mais

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática Disciplina: Estruturas Algébricas Profs.: Elisangela S. Farias e Sérgio Motta Operações

Leia mais

INTRODUÇÃO AO ASSUNTO PESQUISA OPERACIONAL. O que é Pesquisa Operacional?

INTRODUÇÃO AO ASSUNTO PESQUISA OPERACIONAL. O que é Pesquisa Operacional? INTRODUÇÃO AO ASSUNTO PESQUISA OPERACIONAL O que é Pesquisa Operacional? Denomina-se Management Sciences (Ciência de Negócios) a área de estudos que utiliza computadores, estatística e matemática para

Leia mais

As leis da procura e oferta são fundamentais para o entendimento correcto do funcionamento do sistema de mercado.

As leis da procura e oferta são fundamentais para o entendimento correcto do funcionamento do sistema de mercado. CAPÍTULO 3 PROCURA, OFERTA E PREÇOS Introdução As leis da procura e oferta são fundamentais para o entendimento correcto do funcionamento do sistema de mercado. O conhecimento destas leis requer que, em

Leia mais

Ponto de partida para o estudo da organização industrial. CT determinante das tomadas de decisões das empresas.

Ponto de partida para o estudo da organização industrial. CT determinante das tomadas de decisões das empresas. TEORIA DOS CUSTOS Os custos totais de produção preocupações dos empresários. uma das principais Como medir os custos? Como controlar os custos? Como reduzir os custos? Ponto de partida para o estudo da

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

8 O Método de Alocação de Shapley

8 O Método de Alocação de Shapley 8 O Método de Alocação de Shapley Este capítulo é dividido em duas partes. A primeira apresenta o método de benefícios incrementais à medida que os agentes vão entrando na coalizão, ou seja, atribui a

Leia mais

MAT2454 - Cálculo Diferencial e Integral para Engenharia II

MAT2454 - Cálculo Diferencial e Integral para Engenharia II MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Exercícios -. Ache os pontos do hiperboloide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6).. Encontre

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

Complemento IV Introdução aos Algoritmos Genéticos

Complemento IV Introdução aos Algoritmos Genéticos Complemento IV Introdução aos Algoritmos Genéticos Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações e

Leia mais

CURSO DE MICROECONOMIA 2

CURSO DE MICROECONOMIA 2 CURSO DE MICROECONOMIA 2 TEORIA DOS CONTRATOS - Seleção Adversa PROF Mônica Viegas e Flavia Chein Cedeplar/UFMG 2/2009 Cedeplar/UFMG (Institute) MICRO 2 2/2009 1 / 30 Seleção Adversa Seleção adversa: se

Leia mais

Análise e Complexidade de Algoritmos

Análise e Complexidade de Algoritmos Análise e Complexidade de Algoritmos Uma visão de Intratabilidade, Classes P e NP - redução polinomial - NP-completos e NP-difíceis Prof. Rodrigo Rocha prof.rodrigorocha@yahoo.com http://www.bolinhabolinha.com

Leia mais

APLICAÇÕES DE NÚMEROS COMPLEXOS

APLICAÇÕES DE NÚMEROS COMPLEXOS http://hermes.ucs.br/ccet/deme/emsoares/inipes/complexos/ APLICAÇÕES DE NÚMEROS COMPLEXOS Silvia Carla Menti Propicio Universidade de Caxias do Sul Centro de Ciências Exatas e Tecnologia Departamento de

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão Microeconomia II Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 3.2 Utilidade Esperada Von Neumann-Morgenstern: Aplicação ao Mercado de Seguros Isabel Mendes 2007-2008 18-03-2008

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP. I ERROS EM CÁLCULO NUMÉRICO 0. Introdução Por método numérico entende-se um método para calcular a solução de um problema realizando apenas uma sequência finita de operações aritméticas. A obtenção

Leia mais

MD Teoria dos Conjuntos 1

MD Teoria dos Conjuntos 1 Teoria dos Conjuntos Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Teoria dos Conjuntos 1 Introdução O que os seguintes objetos têm em comum? um

Leia mais

Aula 7 Valores Máximo e Mínimo (e Pontos de Sela)

Aula 7 Valores Máximo e Mínimo (e Pontos de Sela) Aula 7 Valores Máximo e Mínimo (e Pontos de Sela) MA - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

Universidade de Brasília Faculdade de Economia, Administração, Contabilidade e Ciência da Informação e Documentação Departamento de Ciência da

Universidade de Brasília Faculdade de Economia, Administração, Contabilidade e Ciência da Informação e Documentação Departamento de Ciência da Universidade de Brasília Faculdade de Economia, Administração, Contabilidade e Ciência da Informação e Documentação Departamento de Ciência da Informação e Documentação Disciplina: Planejamento e Gestão

Leia mais