1 Sistemas de Controle e Princípio do Máximo

Tamanho: px
Começar a partir da página:

Download "1 Sistemas de Controle e Princípio do Máximo"

Transcrição

1 Sistemas de Controle & Controle Ótimo & Princípio do Máximo Lúcio Fassarella (215) 1 Sistemas de Controle e Princípio do Máximo Essencialmente, sistemas de controle são sistemas dinâmicos cuja evolução pode ser modi cada visando algum objetivo, e.g., conduzir o sistema de um dado estado inicial para um dado estado nal, preservar, maximizar ou minimizar alguma quantidade do sistema. Genericamente, o Princípio do Máximo de Pontryagin (doravante, Princípio do Máximo) 1 constitui uma condição necessária para a estratégia de controle que maximiza ou minimiza um dado funcional (de certo tipo), admitindo possíveis restrições impostas sobre as variáveis de estado ou de controle. Para o caso de sistemas de controle com tempo contínuo cuja dinâmica satisfaz certas hipóteses de regularidade, o Princípio do Máximo consiste de um conjunto de equações diferenciais com condições de contorno que generaliza as equações de Euler-Lagrange do Cálculo Variacional. Aqui, de nimos matematicamente os conceitos de sistema de controle e de problema de controle ótimo com tempo contínuo, bem como apresentamos uma formulação do Princípio do Máximo que nos permite resolver a alguns problemas de controle ótimo. Pelo bem da simplicidade e da brevidade, omitimos detalhes técnicos e demonstrações, para os quais indicamos [1] e [4]. De nição 1.1 (Sistema de Controle) Um sistema de controle (com tempo contínuo) é um sistema dinâmico da forma onde 2 d z(t) = f(t; z (t) ; w (t)) q.t.p.; dt f R R n R m! R n é uma aplicação contínua por partes chamada de função dinâmica (ou característica); z R! R n é uma aplicação diferenciável por partes chamada de variável de estado; w R! R m é uma aplicação contínua por partes chamada de variável (ou estratégia) de controle. 1 O trabalho original de Pontryagin e seu grupo é [5]. Para uma breve história da descoberta do Princípio do Máximo por Pontryagin vide [3]. 2 q.t.p signi ca em quase todo ponto. Em muitos problemas de controle ótimo, a estratégia de controle ótima possui pontos de descontinuidade mesmo quando a função dinâmica é contínua. Portanto, é razoável admitir na de nição de sistema de controle que a variável de controle seja contínua por partes e que a equação dinâmica seja satisfeita (apenas) em quase todo ponto. 1

2 De nição 1.2 (Problema de Controle Ótimo) Considere um sistema de controle com função dinâmica f (t; z; w), aplicações contínuas por partes L 1 = L 1 (t; z) 2 R e L = L (t; z; w) 2 R, um ponto z 2 R n e um subconjunto S R n tal que S = R n, S = fz 1 g ou S é uma variedade regular em R n com dimensão n q (1 q n 1) 3 S = fz 2 R n ; (z) = ; = 1; ; qg De nimos o índice de performance sobre as variáveis de controle contínuas por partes w [; T ]! R n J [w(t)] = L 1 (T; z w (T )) + Z T L(t; z w (t); w(t))dt; onde z w (t) é um estado do sistema que cumpre as condições de contorno 4 >< > d dt z w(t) = f(t; z w (t); w(t)); z () 2 z ; z (T ) 2 S O problema de controle ótimo de nido por (f; J; ; z ; S) numa família de variáveis de controle admissíveis 5 consiste em descobrir uma estratégia de controle ~w(t) 2 que maximiza ou minimiza o índice de performance. Para uso adiante, de nimos o Hamiltoniano do problema de controle ótimo por H(t; z; ; w) = L(t; z; w) + f(t; z; w); onde 2 R n é chamado variável de adjunta e denota o produto interno em R n. Observação 1.1 Num problema de controle ótimo, o instante nal T > pode ser um parâmetro predeterminado ou uma variável livre a ser obtida pela resolução do problema. 3 No caso em que S é uma variedade regular de R n, a hipótese de regularidade subentende que 1 ; ; q são aplicações diferenciáveis de R n em R que cumprem algumas condições, para as quais indicamos [2]. 4 Aqui, admitimos que cada estratégia de controle w (t) determina uma única solução para o sistema dinâmico que cumpre as condições de contorno. Quando isso não ocorre, podemos incorporar variáveis no argumento de J de modo a estabelecer uma correspondência unívoca. 5 Geralmente, é o conjunto das funções diferenciáveis por partes w R! R m que cumpre algumas condições preestabelecidas no problema. 2

3 Teorema 1.1 (Princípio do Máximo) Considere o problema de controle ótimo da De nição 1.2 com T > sendo variável livre, f e L de classe C 2, L 1 e de classe C 1. Suponha que w (t) seja uma estratégia de controle que minimiza o índice de performance J. Então existem constantes, a 1 ; ; a q 2 R e aplicações diferenciáveis por partes z; [; T ]! R n tais que as seguintes condições são satisfeitas i) Dinâmica da variável de estado com condições de contorno d >< z (t) = f (t; z (t) ; w (t)) ; dt z () = z > ; z (T ) 2 S (1.1) ii) Dinâmica da variável adjunta com condições de contorno 6 < d dt (t) = @z (t;z(t);w(t)) (t;z(t);w(t)) ; (T ) = P q @z z(t ) (T;z(T L 1 (1.2) iii) Condição de transversalidade H(T; z (T ) ; (T ) ; w (T L 1 (1.3) (T;z(T )) iv) Condição de máximo H (t; z (t) ; w (t) ; (t)) H (t; z (t) ; ; (t)) ; 2 (1.4) v) Condição de não-acoplamento + () 6= (1.5) Observação 1.2 Caso L 1, destacamos i) A condição nal sobre o Hamiltoniano H na Eq.(1.3) reduz-se à zero H(T; z (T ) ; (T ) ; w (T )) = ii) Quando o estado nal é predeterminado (i.e., S = fz 1 g), então o coestado nal é livre (i.e., a condição nal da Eq.(1.2) desaparece) (T ) 2 R; quando o estado nal é livre (i.e., S = R n ), então o coestado nal é predeterminado (i.e., a condição nal da Eq.(1.2) se reduz a um ponto) (T ) = 6 Para uma matriz M, a notação [M] indica sua @z 1 @z j i=1;;n @z j i;j=1;;n 3

4 Observação 1.3 O Princípio do Máximo pode ser usado para se obter o controle ótimo quando a condição de máximo Eq.(1.4) nos permite escrever a função de controle em termos das variáveis de estado e coestado, digamos w = W (z; ). Observação 1.4 Dado um problema de controle ótimo, dizemos que uma estratégia de controle w (t) é singular quando i) o Hamiltoniano do problema tem a forma H(t; z; ; w) = (t; z; ; ) w (t) + (t; z; ; ); ii) existem, a 1 ; ; a q 2 R e aplicações diferenciáveis por partes z; [; T ]! R n que satisfazem as condições Eq.(1.1) e Eq.(1.2) correspondentes ao controle w (t); iii) alguma das componentes do coe ciente se anula ao longo da solução em algum aberto de [; T ]. Caso o problema de controle ótimo possua controles singulares, a aplicação do Princípio do Máximo para determinar o controle ótimo requer alguns desenvolvimentos adicionais para os quais recomendamos [4, pp.2-21]. Observação 1.5 Para problemas de minimização do tempo de controle, consideramos T variável livre e adotamos L 1 e L 1. Referências [1] BAUMEISTER, J., LEITÃO, A. Introdução a Teoria do Controle e Programação Dinâmica. Rio de Janeiro IMPA, 2. [2] CARMO, M.P., Geometria Diferencial de Curvas e Superfícies. Rio de Janeiro SBM, 212. [3] GAMKRELIDZE, R.V. Discovery of the Maximum Principle in Optimal Control. In BOOB-BAVNBEK, B., HOYRUP, J. (eds.) Mathematics and War. Berlin Birhäuser Basel, 23 Chapter, pp [4] LOCATELLI, A. Optimal Control An Introduction. Berlin Birhäuser Verlag, 21. [5] PONTRYAGIN, L.S, BOLTAYANSKII, V.G, GAMKRELIDZE, R.V, MISHCHENKO, E.F. The mathematical theory of optimal processes. New Yor Interscience Publishers,

5 2 Exemplos 2.1 Minimização do Tempo de Transporte Problema Considere uma partícula de massa m que pode se movimentar numa única direção e denote sua posição pela coordenada x. Suponha que o movimento da partícula possa ser controlado pela aplicação de uma força u de acordo com a equação (onde t representa o tempo) m d2 x dt 2 = u Suponha que a intensidade da força de controle u é limitada por >, juj Dados estados de posição e velocidade inicial (x ; v ) e nal (x 1 ; v 1 ), determine i) Uma estratégia de controle u = u (t) que leve partícula do estado inicial ao estado nal. ii) A estratégia de controle u = u (t) que leve a partícula do estado inicial ao estado nal no tempo mínimo. Resolução i. Redução de ordem da equação dinâmica. De nimos v = dx dt Assim, a dinâmica do sistema é dada por _x = v _v = u ; o que corresponde à função característica f (x; v; u) = v u ii. Como o problema visa minimizar o tempo, temos L 1, L 1 e Hamiltoniano iii. A condição de minimo é dada por H (x; v; ; 1 ; 2 ; u; t) = + 1 v + 2 u + 1 v + 2 u + 1 v + 2 ; jj ; t 2 [; T ] Portanto 2 (t) > ) u (t) ; 2 (t) < ) u (t) = (2.1) 5

6 iv. A condição de transversalidade é dada por + 1 (T ) v (T ) + 2 (T ) u (T ) = (2.2) v. A condição de não-acoplamento é dada por + j 1 (t)j + j 2 (t)j 6= t 2 [; T ] (2.3) vi. A dinâmica do estado é dada por _x (t) = v; x () = x ; x (T ) = x 1 _v (t) = u; v () = v ; v (T ) = v 1 ; (2.4) vii. A dinâmica do coestado é dada por _1 (t) = _ 2 (t) = 1 ; portanto, o coestado é dado por 1 (constante); 2 = t + ; ; 2 R viii. Vamos analisar a dinâmica do estado (x; v) nos casos =, <, >. (a) Caso =. Então 1 = e 2 = (constante). i. Subcaso =. Então H = ; nesse caso, a condição de transversalidade Eq.(2.2) implica = e a condição de não-acoplamento Eq.(2.3) implica 6=. Absurdo! ii. Subcaso >. Então 2 > e a condição de mínimo Eq.(2.1) implica u. Substituindo esse controle na dinâmica do estado, temos v (t) = t + v ; x (t) = 2 t2 + v t + x ; As condições nais sobre v (t) e x (t) implicam T = v v 1 = v p v (x 1 x ) ; donde seguem as condições necessárias v > v 1 ; v 2 v (x 1 x ) = A segunda condição é excepcional, no sentido de não ser satisfeita por parâmetros típicos; portanto, vamos desconsiderar esse caso! iii. Subcaso <. Então 2 < e temos uma situação excepcional análoga ao caso anterior (ii); portanto, também vamos desconsiderar esse caso! 6

7 (b) Caso >. De na = > i. Subcaso. Então 2 (t) > t 2 (; T ] e temos uma situação excepcional análoga a casos anteriores; portanto, também vamos desconsiderar esse caso. ii. Subcaso <. Então ; t 2 (t) > ; < t T e u (t) = + ; t ; < t T Pela dinâmica do estado Eq.(2.4) com a hipótese de que v (t) e x (t) são contínuos, segue t + v ; t v (t) = t v ; < t T e x (t) = 2 t2 + v t + x ; t 2 t2 + (2 + v ) t + x 2 ; < t T As condições nais v (T ) = v 1 e x (T ) = x 1 implicam v T = 2 1 v T 2 + (2 + v 2 ) T 2 (x 1 x ) = Resolvendo esse sistema de equações algébricas, obtemos 7 e = v p v (x 1 x ) 2 T = v 1 p v (x 1 x ) Condições para consistência desse caso v1 2 2 (x x 1 ) e 2v 1 q v < v (x 1 x ) v x1 x 2 + v2 1 v = 7

8 2.2 Maximização da Receita Investindo na Produção Considere uma empresa que consome parte da produção investindo no aumento da própria produção. Modelando a produção em tempo contínuo, denote x (t) produção no instante t ; u (t) fração da produção reinvestida no instante t Suponha que a receita da fábrica num período T > seja proporcional a produção líquida no período J (u; T ) = Z T (1 u (t)) x (t) dt ( > ) Suponha também que a variação da taxa de produção seja proporcional a parte reinvestida _x (t) = u (t) x (t) ( > ) Fixado o período T >, determine o reinvestimento da produção que maximiza a receita, i.e., determine a u [; T ]! [; 1] tal que Resolução i. Denote a produção inicial por J (u ; T ) J (u; T ) ; u [; T ]! [; 1] x = x () > Como > e u (t), segue que _x (t) t 2 [; T ] no qual x (t) seja derivável; portanto x (t) > t 2 [; T ] ii. Maximizar J [] é equivalente a minimizar ~J [u] = J [u] ; u (t) 2 [; 1] iii. Para ~ J [] temos L = (1 u) x, L 1 e Hamiltoniano iv. A condição de mínimo é dada por H (x; v; ; 1 ; 2 ; u; t) = (1 u) x + ux (1 u) x + ux (1 ) x + x ; 2 [; 1] ; t 2 [; T ] Como x (t) > t 2 [; T ], isso implica ( + ) u ( + ) ; 2 [; 1] ; t 2 [; T ] ; donde u (t) = ; + (t) > 1 ; + (t) < ; t 2 [; T ] (2.5)

9 v. A condição de transversalidade é dada por vi. A condição de não-acoplamento é dada por (1 u (T )) x (T ) + (T ) u (T ) x (T ) = (2.6) + j (t)j 6= t 2 [; T ] (2.7) vii. A dinâmica do estado é dada por _x (t) = u (t) x (t) x () = x (2.) viii. A dinâmica do coestado é dada por _ (t) = (T ) = ( + ) u (2.9) ix. Como (T ) =, a condição de não-acoplamento implica 6=. Vamos analisar a condições do Princípio do Máximo partindo da equação do coestado Eq.(2.9). Considerando a condição de mínimo Eq.(2.5), introduzimos (t) = + (t) (t) = (t) Então _ = ( ) (T ) = onde () = Vamos analisar os casos () e () <. ; < 1 ; > ; (a) Caso (). Nesse caso, ( ()) y () = e _ () > ; portanto, é crescente e ( ) = numa vizinhança de t = ; por conexidade, é crescente e ( ) = em todo [; T ]; portanto _ =, donde (t) = t + () t 2 [; T ] Considerando a condição nal (T ) =, segue a condição de consistência desse caso T = 1 () 9

10 Nesse caso >, u e o correspondente estado do sistema (solução da Eq.(2.)) é dado por x (t) = x ; t 2 [; T ] A condição característica desse caso e a correspondente receita são dados por, respectivamente T 1 ; J 1 = x T (2.1) (b) Caso () <. Nesse caso, ( ) = 1 e numa vizinhança de t = na qual < vale _ = ; donde (t) = ( () ) e t + Seja > o ponto no qual essa função se anula = 1 1 ln () A condição nal (T ) = > implica que < T que signi ca uma restrição sobre (). Considerando o caso anterior, segue ( () ) e (t) = t + ; t ; (t t ) ; < t T Novamente, a condição nal (T ) = determina o valor de (e de ()) Nesse caso = T 1 < ; t 1 ; t (t) > ; < t T ; u (t) = ; < t T e o correspondente estado do sistema (solução da Eq.(2.)) é dado por x e x (t) = t ; t x e ; < t T A condição característica desse caso e a correspondente receita são dados por, respectivamente T > 1 ; J 2 = 1 x e T 1 (2.11) 1

11 x. Em síntese, a solução do problema é dada por < u max ; T 1 x max ; J max = x T ; e T > 1 >< > 1 ; t u max (t) = ; < t T ; x e x max (t) = t ; t x e ; < t T ; 1 J max = x et 1 onde = T 1 11

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Resolução de sistemas lineares

Resolução de sistemas lineares Resolução de sistemas lineares J M Martínez A Friedlander 1 Alguns exemplos Comecemos mostrando alguns exemplos de sistemas lineares: 3x + 2y = 5 x 2y = 1 (1) 045x 1 2x 2 + 6x 3 x 4 = 10 x 2 x 5 = 0 (2)

Leia mais

Exercícios Complementares 5.2

Exercícios Complementares 5.2 Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da edo indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C e 2t + C 2 e 3t ; :: x 0 : x + 6x = 0: (c) y = ln x;

Leia mais

6 SINGULARIDADES E RESÍDUOS

6 SINGULARIDADES E RESÍDUOS 6 SINGULARIDADES E RESÍDUOS Quando uma função f (z) não é diferenciável num complexo z 0 ; diremos que z 0 é uma singularidade de f (z) ; z 0 dir-se-á uma singularidade isolada de f (z) se, contudo, f

Leia mais

Trabalho Computacional. A(h) = V h + 2 V π h, (1)

Trabalho Computacional. A(h) = V h + 2 V π h, (1) Unidade de Ensino de Matemática Aplicada e Análise Numérica Departamento de Matemática/Instituto Superior Técnico Matemática Computacional (Mestrado em Engenharia Física Tecnológica) 2014/2015 Trabalho

Leia mais

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Professor Orientador: Alberto Berly Sarmiento Vera Belo Horizonte 2012 Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Monografia

Leia mais

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito.

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito. 1 I-projeto do campus Programa Sobre Mecânica dos Fluidos Módulos Sobre Ondas em Fluidos T. R. Akylas & C. C. Mei CAPÍTULO SEIS ONDAS DISPERSIVAS FORÇADAS AO LONGO DE UM CANAL ESTREITO As ondas de gravidade

Leia mais

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase 36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e

Leia mais

por séries de potências

por séries de potências Seção 23: Resolução de equações diferenciais por séries de potências Até este ponto, quando resolvemos equações diferenciais ordinárias, nosso objetivo foi sempre encontrar as soluções expressas por meio

Leia mais

Modelo Matemático e Controle de um Robô Móvel. 2.1. Modelo do motor que aciona cada roda do robô

Modelo Matemático e Controle de um Robô Móvel. 2.1. Modelo do motor que aciona cada roda do robô 1. Introdução Modelo Matemático e Controle de um Robô Móvel Nesta aula serão apresentadas leis de controle que permitem a um robô móvel nãoholonômico navegar de maneira coordenada desde uma localização

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce a região R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto (A), fechado (F), limitado (L), compacto (K), ou conexo (C). (a) R = (x; y) 2 R

Leia mais

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser:

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y). PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

Unidade 3 Função Logarítmica. Definição de logaritmos de um número Propriedades operatórias Mudança de base Logaritmos decimais Função Logarítmica

Unidade 3 Função Logarítmica. Definição de logaritmos de um número Propriedades operatórias Mudança de base Logaritmos decimais Função Logarítmica Unidade 3 Função Logarítmica Definição de aritmos de um número Propriedades operatórias Mudança de base Logaritmos decimais Função Logarítmica Definição de Logaritmo de um número Suponha que certo medicamento,

Leia mais

Uma e.d.o. de segunda ordem é da forma

Uma e.d.o. de segunda ordem é da forma Equações Diferenciais de Ordem Superior Uma e.d.o. de segunda ordem é da forma ou então d 2 y ( dt = f t, y, dy ) 2 dt y = f(t, y, y ). (1) Dizemos que a equação (1) é linear quando a função f for linear

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE Preliminares No estudo de sistemas de controle, e comum usar-se diagramas de blocos, como o da figura 1. Diagramas de blocos podem ser utilizados

Leia mais

φ(x,y,y',y'',y''',..., d n y/dx n ) = 0 (1) Esta equação é de n-ésima ordem e tem somente uma variável independente, x.

φ(x,y,y',y'',y''',..., d n y/dx n ) = 0 (1) Esta equação é de n-ésima ordem e tem somente uma variável independente, x. 245 Capítulo 15 Resolução numérica de equações diferenciais Para podermos investigar exemplos de simulação que surgem na Física, Engenharia, Biomatemática etc., estudamos, neste capítulo, alguns métodos

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS RESPOSTA DE ELEMENTOS PRIMÁRIOS

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS RESPOSTA DE ELEMENTOS PRIMÁRIOS INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS RESPOSTA DE ELEMENTOS PRIMÁRIOS Introdução As características dinâmicas de um instrumento de medição podem ser determinadas estudando-se o sistema físico, e escrevendo-se

Leia mais

3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar

3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar 3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar Vimos que as previsões sobre as capacidades caloríficas molares baseadas na teoria cinética estão de acordo com o comportamento

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Equações Diferenciais

Equações Diferenciais Equações Diferenciais EQUAÇÕES DIFERENCIAS Em qualquer processo natural, as variáveis envolvidas e suas taxas de variação estão interligadas com uma ou outras por meio de princípios básicos científicos

Leia mais

3 Matemática financeira e atuarial

3 Matemática financeira e atuarial 3 Matemática financeira e atuarial A teoria dos juros compostos em conjunto com a teoria da probabilidade associada à questão da sobrevivência e morte de um indivíduo são os fundamentos do presente trabalho.

Leia mais

Singularidades de Funções de Variáveis Complexas

Singularidades de Funções de Variáveis Complexas Singularidades de Funções de Variáveis Complexas AULA 11 META: Introduzir o conceito de singularidades de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir

Leia mais

PUCRS FAMAT Exemplos de Equações Diferenciais Parciais- Prof. Eliete

PUCRS FAMAT Exemplos de Equações Diferenciais Parciais- Prof. Eliete PUCRS FAMAT Exemplos de Equações Diferenciais Parciais- Prof. Eliete Equação diferencial parcial (EDP) é a uma equação que envolve duas ou mais variáveis independentes ( x, y,z,t, K ) e derivadas parciais

Leia mais

Os Postulados da Mecânica Quântica

Os Postulados da Mecânica Quântica Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná bettega@fisica.ufpr.br Postulados Introdução Vamos apresentar nestas notas os postulados da mecânica quântica de acordo com o

Leia mais

Exercícios resolvidos P2

Exercícios resolvidos P2 Exercícios resolvidos P Questão 1 Dena as funções seno hiperbólico e cosseno hiperbólico, respectivamente, por sinh(t) = et e t e cosh(t) = et + e t. (1) 1. Verique que estas funções satisfazem a seguinte

Leia mais

Sistemas de Controle Digital

Sistemas de Controle Digital ADL 24 Cap 13 Sistemas de Controle Digital Vantagens dos Computadores Digitais O uso de computadores digitais na malha leva às seguintes vantagens sobre os sistemas analógicos: (1) custo, (2) flexibilidade

Leia mais

UFPB PRG X ENCONTRO DE INICIAÇÃO À DOCÊNCIA

UFPB PRG X ENCONTRO DE INICIAÇÃO À DOCÊNCIA 4CCENDMMT03 ABELHA: GEOMETRIA DOS ALVÉOLOS Thiago Pereira Rique (1), Jorge Costa Duarte Filho (3) Centro de Ciências Exatas e da Natureza/Departamento de Matemática/Monitoria Resumo Este trabalho tem por

Leia mais

Teoria da Firma. Discriminação de preços tarifa em duas partes e concorrência monopolística. Roberto Guena de Oliveira USP. 28 de julho de 2014

Teoria da Firma. Discriminação de preços tarifa em duas partes e concorrência monopolística. Roberto Guena de Oliveira USP. 28 de julho de 2014 Teoria da Firma Discriminação de preços tarifa em duas partes e concorrência monopolística Roberto Guena de Oliveira USP 28 de julho de 2014 Roberto Guena (USP) Discrim. & conc. monop. 28 de julho de 2014

Leia mais

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio Material Teórico - Aplicações das Técnicas Desenvolvidas Exercícios e Tópicos Relacionados a Combinatória Segundo Ano do Ensino Médio Prof Cícero Thiago Bernardino Magalhães Prof Antonio Caminha Muniz

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

O MÉTODO HÚNGARO PARA RESOLUÇÃO DE PROBLEMAS DE OTIMIZAÇÃO

O MÉTODO HÚNGARO PARA RESOLUÇÃO DE PROBLEMAS DE OTIMIZAÇÃO O MÉTODO HÚNGARO PARA RESOLUÇÃO DE PROBLEMAS DE OTIMIZAÇÃO João Cesar Guirado Universidade Estadual de Maringá E-mail: jcguirado@gmail.com Márcio Roberto da Rocha Universidade Estadual de Maringá E-mail:

Leia mais

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Prof. Angelo Papa Neto 1 Máximo divisor comum Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum

Leia mais

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação 1/48 Sumário Arredondamentos Erros 2/48 Sumário Arredondamentos

Leia mais

1) Eficiência e Equilíbrio Walrasiano: Uma Empresa

1) Eficiência e Equilíbrio Walrasiano: Uma Empresa 1) Eficiência e Equilíbrio Walrasiano: Uma Empresa Suponha que há dois consumidores, Roberto e Tomás, dois bens abóbora (bem 1) e bananas (bem ), e uma empresa. Suponha que a empresa 1 transforme 1 abóbora

Leia mais

Introdução às equações diferenciais

Introdução às equações diferenciais Introdução às equações diferenciais Professor Leonardo Crochik Notas de aula 1 O que é 1. é uma equação:... =... 2. a incógnita não é um número x R, mas uma função x(t) : R R 3. na equação estão presentes,

Leia mais

4. Revisão Bibliográfica - Trabalhos sobre Opções Reais no Mercado Imobiliário

4. Revisão Bibliográfica - Trabalhos sobre Opções Reais no Mercado Imobiliário 44 4. Revisão Bibliográfica - Trabalhos sobre Opções Reais no Mercado Imobiliário 4.1. Urban Land Prices under Uncertainty (Titman 1985) No artigo publicado em Junho de 1985, Sheridan Titman, ao observar

Leia mais

SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT

SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT GABARITO da 3 a Avaliação Nacional de Aritmética - MA14-21/12/2013 Questão 1. (pontuação: 2) (1,0) a) Enuncie e demonstre

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 11/Dez/2003 ÁLGEBRA LINEAR A FICHA 8 APLICAÇÕES E COMPLEMENTOS Sistemas Dinâmicos Discretos (1) (Problema

Leia mais

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA ELÉTRICA. Disciplina de Controle II Prof. MC. Leonardo Gonsioroski da Silva

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA ELÉTRICA. Disciplina de Controle II Prof. MC. Leonardo Gonsioroski da Silva UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA ELÉTRICA Disciplina de Controle II Prof. MC. Leonardo Gonsioroski da Silva Controlador Proporcional Controlador PI A Relação entre a saída e o

Leia mais

MD Sequências e Indução Matemática 1

MD Sequências e Indução Matemática 1 Sequências Indução Matemática Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Sequências e Indução Matemática 1 Introdução Uma das tarefas mais importantes

Leia mais

Diferenciais Ordinárias (EDO)

Diferenciais Ordinárias (EDO) Resolução Numérica de Equações Diferenciais Ordinárias (EDO) Ivanovitch Medeiros Dantas da Silva Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação DCA0399

Leia mais

RESOLUÇÃO DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE ORDEM 2 HOMOGÊNEAS, COM COEFICIENTES CONSTANTES

RESOLUÇÃO DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE ORDEM 2 HOMOGÊNEAS, COM COEFICIENTES CONSTANTES Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Matemática Equações Diferenciais RESOLUÇÃO DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE ORDEM HOMOGÊNEAS, COM COEFICIENTES CONSTANTES FORMA

Leia mais

Notas Para um Curso de Cálculo. Daniel V. Tausk

Notas Para um Curso de Cálculo. Daniel V. Tausk Notas Para um Curso de Cálculo Avançado Daniel V. Tausk Sumário Capítulo 1. Diferenciação... 1 1.1. Notação em Cálculo Diferencial... 1 1.2. Funções Diferenciáveis... 8 Exercícios para o Capítulo 1...

Leia mais

Discussão de Sistemas Teorema de Rouché Capelli

Discussão de Sistemas Teorema de Rouché Capelli Material by: Caio Guimarães (Equipe Rumoaoita.com) Discussão de Sistemas Teorema de Rouché Capelli Introdução: Apresentamos esse artigo para mostrar como utilizar a técnica desenvolvida a partir do Teorema

Leia mais

Introdução aos Modelos Biomatemáticos - aulas

Introdução aos Modelos Biomatemáticos - aulas Introdução aos Modelos Biomatemáticos - aulas Teórico-Práticas Mestrado em BBC, 2008/2009 1 Capítulo 1 Nos exercícios 1) e 2) suponha que o crescimento é exponencial. 1. Entre 1700 e 1800 a população humana

Leia mais

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto

Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Maria Angélica Araújo Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação

Leia mais

Aula 9 Plano tangente, diferencial e gradiente

Aula 9 Plano tangente, diferencial e gradiente MÓDULO 1 AULA 9 Aula 9 Plano tangente, diferencial e gradiente Objetivos Aprender o conceito de plano tangente ao gráfico de uma função diferenciável de duas variáveis. Conhecer a notação clássica para

Leia mais

Códigos Reed-Solomon CAPÍTULO 9

Códigos Reed-Solomon CAPÍTULO 9 CAPÍTULO 9 Códigos Reed-Solomon Um dos problemas na Teoria de Códigos é determinar a distância mínima de um dado código. Tratando-se de códigos cíclicos, por vezes conseguimos controlar a distância mínima

Leia mais

Aluno do Curso de Lic. em Matemática da UFMS; e mail: tmviana2000@gmail.com;

Aluno do Curso de Lic. em Matemática da UFMS; e mail: tmviana2000@gmail.com; Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 26 GRUPOS DE PERMUTAÇÕES E ALGUMAS DE PROPOSIÇÕES Thiago Mariano Viana 1, Marco Antônio Travasso 2 & Antônio Carlos

Leia mais

Sistemas Lineares. Módulo 3 Unidade 10. Para início de conversa... Matemática e suas Tecnologias Matemática

Sistemas Lineares. Módulo 3 Unidade 10. Para início de conversa... Matemática e suas Tecnologias Matemática Módulo 3 Unidade 10 Sistemas Lineares Para início de conversa... Diversos problemas interessantes em matemática são resolvidos utilizando sistemas lineares. A seguir, encontraremos exemplos de alguns desses

Leia mais

Um modelo para evolução de HIV positivo para populações em doença plenamente manifesta com parâmetros fuzzy correlacionados.

Um modelo para evolução de HIV positivo para populações em doença plenamente manifesta com parâmetros fuzzy correlacionados. Biomatemática 22 (2012), 27 44 ISSN 1679-365X Uma Publicação do Grupo de Biomatemática IMECC UNICAMP Um modelo para evolução de HIV positivo para populações em doença plenamente manifesta com parâmetros

Leia mais

MM805- Tópicos de Análise I. Blue Sky Catástrofe em Sistemas Dinâmicos Reversíveis e Hamiltonianos

MM805- Tópicos de Análise I. Blue Sky Catástrofe em Sistemas Dinâmicos Reversíveis e Hamiltonianos MM805- Tópicos de Análise I Blue Sky Catástrofe em Sistemas Dinâmicos Reversíveis e Hamiltonianos Luiz Fernando da Silva Gouveia-RA:153130 Prof. Dr. Ricardo Miranda Martins MM805A - 2s/2014 1. Introdução

Leia mais

13 a Aula 2004.10.13 AMIV LEAN, LEC Apontamentos

13 a Aula 2004.10.13 AMIV LEAN, LEC Apontamentos 3 a Aula 2004.0.3 AMIV LEAN, LEC Apontamentos (Ricardo.Coutinho@math.ist.utl.pt) 3. Singularidades isoladas Para na prática podermos aplicar o teorema dos resíduos com eficiência, precisamos de conhecer

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Capítulo 8 Equações Diferenciais Ordinárias Vários modelos utilizados nas ciências naturais e exatas envolvem equações diferenciais. Essas equações descrevem a relação entre uma função, o seu argumento

Leia mais

Sistemas de Apoio à Decisão

Sistemas de Apoio à Decisão Sistemas de Apoio à Decisão Processo de tomada de decisões baseia-se em informação toma em consideração objectivos toma em consideração conhecimento sobre o domínio. Modelar o processo de tomada de decisões

Leia mais

Cap. 7 - Fontes de Campo Magnético

Cap. 7 - Fontes de Campo Magnético Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.

Leia mais

Propriedades das Funções Deriváveis. Prof. Doherty Andrade

Propriedades das Funções Deriváveis. Prof. Doherty Andrade Propriedades das Funções Deriváveis Prof Doerty Andrade 2005 Sumário Funções Deriváveis 2 Introdução 2 2 Propriedades 3 3 Teste da derivada segunda para máimos e mínimos 7 2 Formas indeterminadas 8 2 Introdução

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

O Teorema da Função Inversa e da Função Implícita

O Teorema da Função Inversa e da Função Implícita Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit O Teorema da Função Inversa

Leia mais

8 8 (mod 17) e 3 34 = (3 17 ) 2 9 (mod 17). Daí que 2 67 + 3 34 8 + 9 0 (mod 17), o que significa que 2 67 + 3 34 é múltiplo de 17.

8 8 (mod 17) e 3 34 = (3 17 ) 2 9 (mod 17). Daí que 2 67 + 3 34 8 + 9 0 (mod 17), o que significa que 2 67 + 3 34 é múltiplo de 17. Prova Teoria de Números 23/04/203 Nome: RA: Escolha 5 questões.. Mostre que 2 67 + 3 34 é múltiplo de 7. Solução: Pelo teorema de Fermat 2 6 (mod 7 e 3 7 3 (mod 7. Portanto, 2 67 = 2 64+3 = ( 2 6 4 8 8

Leia mais

Qual o melhor caminho?

Qual o melhor caminho? Qual o melhor caminho? Série Matemática na Escola Objetivos 1. Introduzir a métrica do taxista através de um exemplo cotidiano; 2. Aplicar o conceito de permutação com repetição; 3. Mostrar algumas identidades

Leia mais

Lista 1 para a P2. Operações com subespaços

Lista 1 para a P2. Operações com subespaços Lista 1 para a P2 Observação 1: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós sugerimos

Leia mais

ESTENDENDO A UML PARA REPRESENTAR RESTRIÇÕES DE INTEGRIDADE

ESTENDENDO A UML PARA REPRESENTAR RESTRIÇÕES DE INTEGRIDADE ESTENDENDO A UML PARA REPRESENTAR RESTRIÇÕES DE INTEGRIDADE Fabiana Gomes Marinho Faculdade Lourenço Filho Resumo: Na UML, a modelagem conceitual dos dados é descrita pelo diagrama de classes, que através

Leia mais

aplicada a problemas de poluição do ar

aplicada a problemas de poluição do ar Biomatemática 17 (2007), 21 34 ISSN 1679-365X Uma Publicação do Grupo de Biomatemática IMECC UNICAMP Programação matemática fuzzy aplicada a problemas de poluição do ar Luiza A. Pinto Cantão 1, Depto.

Leia mais

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M.

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Material Teórico - Módulo de FRAÇÕES COMO PORCENTAGEM E PROBABILIDADE Fração como porcentagem Sexto Ano do Ensino Fundamental Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Neto

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

Campos Vetoriais e Integrais de Linha

Campos Vetoriais e Integrais de Linha Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Campos Vetoriais e Integrais de Linha Um segundo objeto de interesse do Cálculo Vetorial são os campos de vetores, que surgem principalmente

Leia mais

Pesquisa Operacional. Componentes de um modelo de PL

Pesquisa Operacional. Componentes de um modelo de PL Pesquisa Operacional Introdução à Modelagem de Problemas Lineares Recursos Escasso. Componentes de um modelo de PL O modelo Matemático é composto por: Função Objetivo (eq. Linear, Ex.: Lucro) Restrições

Leia mais

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1.

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. LIÇÃO 4 QUANTIFICADORES Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. (b) x 2 2x + 1 = 0. (c) x é um país. (d) Ele e

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS 69 EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Rafael de Freitas Manço (UNI-FACEF) Antônio Acra Freiria (UNI-FACEF) INTRODUÇÃO Nas mais diversas áreas das ciências as equações diferenciais aparecem em situações práticas.

Leia mais

Uma introdução à Teoria das Filas

Uma introdução à Teoria das Filas Uma introdução à Teoria das Filas Introdução aos Processos Estocásticos 13/06/2012 Quem nunca pegou fila na vida? Figura: Experiência no bandejão Motivação As filas estão presentes em nosso cotidiano,

Leia mais

A presente seção apresenta e especifica as hipótese que se buscou testar com o experimento. A seção 5 vai detalhar o desenho do experimento.

A presente seção apresenta e especifica as hipótese que se buscou testar com o experimento. A seção 5 vai detalhar o desenho do experimento. 4 Plano de Análise O desenho do experimento realizado foi elaborado de forma a identificar o quão relevantes para a explicação do fenômeno de overbidding são os fatores mencionados na literatura em questão

Leia mais

3 a ij x j ), i = 1,2,3, (1.1)

3 a ij x j ), i = 1,2,3, (1.1) TEMA Tend. Mat. Apl. Comput., 5, No. 2 (2004), 239-248. c Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional. Controle Ótimo para um Sistema Caótico de Lotka-Volterra A. MOLTER

Leia mais

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / 2015. Professor: Rubens Penha Cysne

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / 2015. Professor: Rubens Penha Cysne Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / 2015 Professor: Rubens Penha Cysne Lista de Exercícios 6 Crescimento com Inovações Verticais (Modelo Schumpeteriano)

Leia mais

4. Tangentes e normais; orientabilidade

4. Tangentes e normais; orientabilidade 4. TANGENTES E NORMAIS; ORIENTABILIDADE 91 4. Tangentes e normais; orientabilidade Uma maneira natural de estudar uma superfície S consiste em considerar curvas γ cujas imagens estão contidas em S. Se

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS

Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS Prof. José Roberto Marques (direitos reservados) A ENERGIA DAS REDES ELÉTRICAS A transformação da energia de um sistema de uma forma para outra, dificilmente

Leia mais

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento

Leia mais

Metodologia para seleção de amostras de contratos de obras públicas (jurisdicionados) utilizando a programação linear aplicativo Solver

Metodologia para seleção de amostras de contratos de obras públicas (jurisdicionados) utilizando a programação linear aplicativo Solver REVISTA Metodologia para seleção de amostras de contratos de obras públicas (jurisdicionados) utilizando a programação linear aplicativo Solver André Mainardes Berezowski 1 Resumo Trata da apresentação

Leia mais

CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS.

CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS. 1 CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS. PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS MESTRADO EM ENSINO DE CIÊNCIAS

Leia mais

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4

Teorema de Taylor. Prof. Doherty Andrade. 1 Fórmula de Taylor com Resto de Lagrange. 2 Exemplos 2. 3 Exercícios 3. 4 A Fórmula de Taylor 4 Teorema de Taylor Prof. Doherty Andrade Sumário 1 Fórmula de Taylor com Resto de Lagrange 1 2 Exemplos 2 3 Exercícios 3 4 A Fórmula de Taylor 4 5 Observação 5 1 Fórmula de Taylor com Resto de Lagrange

Leia mais

Juros Simples, Compostos, e Contínuos

Juros Simples, Compostos, e Contínuos Juros Simples, Compostos, e Contínuos Conceito Principal Juros são o preço pago pelo benefício do empréstimo de dinheiro por um certo período de tempo. Tipicamente, a taxa de juros é expressa como uma

Leia mais

Além do Modelo de Bohr

Além do Modelo de Bohr Além do Modelo de Bor Como conseqüência do princípio de incerteza de Heisenberg, o conceito de órbita não pode ser mantido numa descrição quântica do átomo. O que podemos calcular é apenas a probabilidade

Leia mais

Conceitos Básicos em Análise de Sobrevivência Aula Estatística Aplicada

Conceitos Básicos em Análise de Sobrevivência Aula Estatística Aplicada Conceitos Básicos em Análise de Sobrevivência Aula Estatística Aplicada Prof. José Carlos Fogo Departamento de Estatística - UFSCar Outubro de 2014 Prof. José Carlos Fogo (DEs - UFSCar) Material Didático

Leia mais

Flambagem de Colunas Introdução

Flambagem de Colunas Introdução - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Flambagem de Colunas Introdução Os sistemas

Leia mais

b) a 0 e 0 d) a 0 e 0

b) a 0 e 0 d) a 0 e 0 IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA FUNÇÃO DO º GRAU 1. Um grupo de pessoas gastou R$ 10,00 em uma lanchonete. Quando foram pagar a conta,

Leia mais

Base de dados I. Uma base de dados é um simples repositório de informação relacionado com um determinado assunto ou finalidade

Base de dados I. Uma base de dados é um simples repositório de informação relacionado com um determinado assunto ou finalidade Base de dados I O que é? Uma base de dados é um simples repositório de informação relacionado com um determinado assunto ou finalidade Para que serve? Serve para gerir vastos conjuntos de informação de

Leia mais

Capítulo 2: Transformação de Matrizes e Resolução de Sistemas

Capítulo 2: Transformação de Matrizes e Resolução de Sistemas 2 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 2: Transformação de Matrizes e Resolução de Sistemas Sumário 1 Transformação de Matrizes.............. 3 1.1

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

FUNÇÕES E INEQUAÇÕES

FUNÇÕES E INEQUAÇÕES UNIVERSIDADE FEDERAL DO PARANÁ PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO À DOCÊNCIA ANDRÉIA SCHMIDT GEHHANNY ASSIS JAQUELINI ROCHA SIMÃO LARISSA VANESSA DOMINGUES FUNÇÕES E INEQUAÇÕES CURITIBA 2012

Leia mais

Computador E/S, Memória, Barramento do sistema e CPU Onde a CPU Registradores, ULA, Interconexão interna da CPU e Unidade de controle.

Computador E/S, Memória, Barramento do sistema e CPU Onde a CPU Registradores, ULA, Interconexão interna da CPU e Unidade de controle. Introdução Os principais elementos de um sistema de computação são a unidade central de processamento (central processing unit CPU), a memória principal, o subsistema de E/S (entrada e saída) e os mecanismos

Leia mais