Probabilidade e Estatística

Tamanho: px
Começar a partir da página:

Download "Probabilidade e Estatística"

Transcrição

1 Probabilidade e Estatística Frederico Caeiro 2009/10

2 Observação: Estas folhas servem de apoio às aulas de Probabilidades e Estatística. Para uma melhor compreensão dos assuntos abordados, aconselha-se a leitura de alguns dos livros indicados nas referências bibliográficas.

3 Conteúdo 1 Introdução à Teoria da Probabilidade Espaço de Resultados e Acontecimentos Probabilidade Cálculo Combinatório Probabilidade Condicional e Independência Variáveis aleatórias Variáveis aleatórias Função de distribuição Classificação das variáveis aleatórias Momentos Outros parâmetros relevantes Funções de uma variável aleatória Vectores aleatórios Par aleatório discreto Par aleatório contínuo Momentos de vectores aleatórios Principais Distribuições Distribuições discretas Distribuição Uniforme Distribuição de Bernoulli Distribuição Binomial Distribuição Geométrica Distribuição Hipergeométrica Distribuição de Poisson Distribuições Contínuas Distribuição Uniforme Contínua Distribuição Exponencial Distribuição Gama Distribuição Normal Distribuição do Qui Quadrado Distribuição t de Student Teorema Limite Central 39 i

4 6 Estimação Pontual Alguns conceitos importantes Propriedades dos estimadores Método dos Momentos Método da máxima verosimilhança Distribuições por Amostragem Distribuição por amostragem da média amostral, X Distribuição por amostragem da diferença de médias amostrais, X 1 X Distribuição por amostragem da variância amostral, S Distribuição por amostragem da proporção, ˆP Estimação por Intervalo de Confiança Intervalo de Confiança para a média da população, µ População Normal com variância conhecida População Normal com variância desconhecida População não-normal com variância conhecida e n > População não-normal com variância desconhecida e n > Intervalo de Confiança para a variância populacional, σ 2, e para o desvio padrão populacional, σ Intervalo de Confiança para proporção populacional, p Teste de Hipóteses Introdução Teste de Hipóteses para a média da população Teste bilateral Teste unilateral direito Teste unilateral esquerdo Teste de Hipóteses para a variância, σ 2, de uma população Normal Teste de Hipóteses para a proporção p de uma população Teste das sequências ascendentes e descendentes Teste de ajustamento do Qui Quadrado Regressão Linear Introdução Estimadores dos Mínimos Quadrados de β 0 e β Estimação de σ 2 e Qualidade do Ajuste Propriedades dos estimadores dos mínimos quadrados Distribuição por amostragem de ˆσ Distribuição por amostragem de ˆβ 0 e ˆβ Inferência sobre os parâmetros do Modelo de Regressão Intervalo de Confiança e Teste de Hipóteses para β Intervalo de Confiança e Teste de Hipóteses para β Intervalo de Confiança e Teste de Hipóteses para σ Estimação do valor esperado de Y para uma observação x 0 da variável controlada Previsão do valor da variável resposta Y para um novo valor x 0 da variável controlada 84

5 10 Exercícios Introdução à Teoria da Probabilidade Variáveis aleatórias Vectores Aleatórios Principais distribuições Teorema Limite Central Estimação Pontual Estimação por Intervalo de Confiança Teste de Hipóteses Regressão Linear Tabelas 111

6

7 Capítulo 1 Introdução à Teoria da Probabilidade 1.1 Espaço de Resultados e Acontecimentos Definição 1.1 (Experiência aleatória). Uma experiência aleatória é uma experiência cujo resultado é desconhecido (antes da sua realização), apesar de se conhecerem todos os possíveis resultados. Exemplo 1.2 (Experiência aleatória). Considere os seguintes exemplos: E 1 : Lançamento de uma moeda e observação da face voltada para cima; E 2 : Lançamento de um dado e observação da face voltada para cima; E 3 : Tempo de vida de uma lâmpada. Definição 1.3 (Espaço de resultados ou universo). Chamamos espaço de resultados ou universo, e representamos por Ω, ao conjunto de todos os possíveis resultados de uma experiência aleatória. Observação: Diz-se que o espaço de resultados, Ω, é discreto se tem um número finito ou infinito numerável de elementos. Se Ω contém um intervalo (finito ou infinito) de números reais, então o espaço de resultados é contínuo. Exemplo 1.4 (Espaço de resultados). Considere novamente as experiências aleatórias do Exemplo 1.2. Temos: E 1 : Ω = {Cara, Coroa}; E 2 : Ω = {1, 2, 3, 4, 5, 6}; E 3 : Ω = R +. 1

8 2 CAPÍTULO 1. INTRODUÇÃO À TEORIA DA PROBABILIDADE Exemplo 1.5 (Espaço de resultados). Na experiência aleatória que consiste em lançar um dado, numerado de 1 a 6, e observar a face voltada para cima, Ω = {1, 2, 3, 4, 5, 6}. Se forem lançados dois dados, o espaço de resultados é, Ω = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1),..., (6, 5), (6, 6)}, ou seja, Ω = {(i, j) : i = 1,..., 6; j = 1,..., 6}. Definição 1.6 (Acontecimento e Acontecimento elementar). Um acontecimento é um subconjunto do espaço de resultados, Ω. Cada acontecimento formado por apenas um ponto amostral é designado por acontecimento elementar ou simples. Observação: Ao conjunto chamamos acontecimento impossível e a Ω acontecimento certo. Definição 1.7 (Sub-acontecimento). A é sub-acontecimento de B, e escreve-se A B, se e só se a realização de A implica a realização de B. Observação: Podemos aplicar as operações usuais sobre conjuntos de modo a obter outros acontecimentos de interesse. As operações mais usuais são: A união de dois acontecimentos A e B, e representa-se por A B; A intersecção de dois acontecimentos A e B, e representa-se por A B; O complementar do acontecimento A e representa-se por A; A diferença dos acontecimentos A e B e representa-se por A B (= A B); Algumas propriedades importantes: 1. Distributiva: A (B C) = (A B) (A C) e A (B C) = (A B) (A C); 2. Leis de De Morgan: A B = A B e A B = A B. Definição 1.8 (Acontecimentos disjuntos ou mutuamente exclusivos). Dois acontecimentos A e B dizem-se disjuntos se não têm elementos em comum, ou seja, se A B =.

9 1.2. PROBABILIDADE Probabilidade Em muitas experiência aleatórias estamos interessados em medir a possibilidade de ocorrer um determinado acontecimento ocorrer. A probabilidade permite-nos quantificar essa possibilidade. Definição 1.9 (Definição Clássica ou de Laplace de Probabilidade). Se uma experiência aleatória tem a si associado um número finito N de resultados, mutuamente exclusivos e igualmente prováveis, então a probabilidade de qualquer acontecimento A, P (A), é dada por: P (A) = N A N = no de resultados favoráveis a A n o. de resultados possíveis Exemplo A probabilidade de sair face ímpar, num lançamento de um dado equilibrado é P ( Sair face ímpar ) = 3 6 = 1 2. Definição 1.11 (Definição Frequencista de Probabilidade). A probabilidade de um acontecimento A é dada pelo limite da frequência relativa com que se observou A, isto é, n A P (A) = lim n n, onde n A representa o número de observações de A, e n o número de realizações da experiência aleatória. Para valores elevados de n, podemos assumir que P (A) n A n. Definição 1.12 (Definição Axiomática de Probabilidade). A Probabilidade é uma função, que a cada acontecimento A faz corresponder um valor real, P (A), e que verifica as seguintes condições ou axiomas: 1. P (A) 0, qualquer que seja o acontecimento A; 2. P (Ω) = 1; 3. Se A e B são acontecimentos disjuntos, P (A B) = P (A) + P (B). Esta axiomática não contempla situações com uma infinidade numerável de acontecimentos. É assim usual substituir o 3 o axioma, por: 3. Se A 1, A 2,... são acontecimentos disjuntos dois a dois, então P ( ) A i = P (A i ). Proposição Sejam A e B dois acontecimentos. Os seguintes resultados são consequência imediata dos axiomas da definição 1.12: 1. P ( ) = 0; 2. Se A B então P (A) P (B);

10 4 CAPÍTULO 1. INTRODUÇÃO À TEORIA DA PROBABILIDADE 3. P (Ā) = 1 P (A); 4. P (A) [0, 1]; 5. P (A B) = P (A B) = P (A) P (A B); 6. P (A B) = P (A) + P (B) P (A B). Demonstração. 1. Como e Ω são acontecimentos disjuntos e P ( Ω) = P (Ω) = 1, resulta pelo 3 o axioma que P ( Ω) = P ( ) + P (Ω), ou seja, P ( ) = Sejam A e B dois acontecimentos tais que A B. Então B = B (A A) = (B A) (B A) = A (B A). Como A e B A são acontecimentos disjuntos, podemos utilizar o 3 o axioma, resultando, P (B) = P (A (B A)) = P (A) + P (B A). Usando o 1 o axioma, podemos garantir que P (B A) 0 e consequentemente P (B) P (A). 3. Como A e A são acontecimentos disjuntos, podemos utilizar o 3 o axioma. Assim, 1 = P (Ω) = P (A A) = P (A) + P (A), ou seja, P (Ā) = 1 P (A). 4. Pelo 1 o axioma, para qualquer acontecimento A, P (A) 0. Logo, basta apenas demonstrar que P (A) 1. Como A Ω, resulta que P (A) P (Ω) = Como A = (A B) (A B) = (A B) (A B), e (A B) e (A B) são acontecimentos disjuntos, então podemos utilizar o 3 o axioma. Assim, P (A) = P (A B) + P (A B) P (A B) = P (A) P (A B). 6. Como A B = (A B) (B A) (A B) e (A B), (B A) e (A B) são acontecimentos disjuntos dois a dois, podemos utilizar o resultado do 3 o axioma, obtendo: P (A B) = P (A B) + P (B A) + P (A B) = = P (A) P (A B) + P (B) P (A B) + P (A B) = = P (A) + P (B) P (A B). Observação: O último resultado da Proposição 1.13 pode ser generalizado para a união de n acontecimentos (n 2). Assim, dados os acontecimentos A i, i = 1,..., n, n P ( n A i ) = P (A i ) P (A i A j )+ P (A i A j A k )...+( 1) n 1 P ( n A i ) ; i j i j k

11 1.3. CÁLCULO COMBINATÓRIO 5 Para n = 3 obtemos o caso particular: P (A B C) = P (A) + P (B) + P (C) P (A B) P (A C) P (B C) + P (A B C). Definição 1.14 (Acontecimentos incompatíveis). Dois acontecimentos A e B dizem-se incompatíveis se P (A B) = Cálculo Combinatório O cálculo de uma probabilidade, através da definição clássica, depende da contagem do número de casos favoráveis e do número de casos possíveis. Em muitas situações este cálculo pode não ser imediato. O cálculo combinatório é uma ferramenta que nos poderá auxiliar em muitas dessas situações. Definição 1.15 (Produto Cartesiano). Seja A = {a 1,..., a n } um conjunto com n elementos e B = {b 1,..., b m } um conjunto com m elementos. Designa-se por produto cartesiano o conjunto de pares (a i, b j ) em que o primeiro provém de A e o segundo de B e representa-se por A B. O número de elementos de A B é dados por #(A B) = n m. Considere agora que temos n elementos distintos, e pretendemos seleccionar k. De quantas maneiras distintas é possível seleccionar os k elementos? Como existem várias formas distintas de escolher os k elementos, a resposta à questão anterior é dada pela seguinte tabela: Interessa Há Número de maneiras distintas de Designação a ordem? repetição? escolher os k elementos Sim Não Arranjos n A k = n! (n k)!, Sim Sim Arranjos com repetição n A k = nk Não Não Combinações n C k = ( n) k = n! (n k)!k!, Não Sim Combinações com repetição n C k = (n+k 1)! (n 1)!k! k n k n Observações:! representa a função factorial (por convenção 0! = 1); No caso particular em que interessa a ordem, não há repetição e estamos a seleccionar todos os elementos disponíveis (k = n), é mais usual designarmos Permutações de n elementos, P n, em vez de n A n. É obvio que n A n = P n = n!.

12 6 CAPÍTULO 1. INTRODUÇÃO À TEORIA DA PROBABILIDADE 1.4 Probabilidade Condicional e Independência Vamos começar por um exemplo que irá introduzir a noção de probabilidade condicional. Exemplo Uma empresa farmacêutica realizou um ensaio clínico para comparar a eficácia de um novo medicamento (medicamento experimental). Escolheram-se ao acaso 200 doentes com a doença que se pretende curar. Metade desses doentes foram tratados com o novo medicamento e os restantes com um medicamento convencional. Ao fim de 5 dias, os resultados são os seguintes: Melhorou (M) Não melhorou (M) Total Medicamento Experimental E Medicamento Convencional (E) Total Qual a probabilidade, de um doente escolhido ao acaso, (a) tomar o medicamento experimental? Resposta: Usando a regra de Laplace, P (E) = = 1 2. (b) tomar o medicamento experimental e melhorar? Resposta: Usando a regra de Laplace, P (E M) = Qual a probabilidade de um doente, que melhorou, ter tomado o medicamento experimental? Resposta: Observação: A solução da pergunta 2, do exemplo anterior, é igual a P (E M) P (M). Definição 1.17 (Probabilidade Condicional). Sejam A e B dois acontecimentos. A probabilidade condicional de A dado B é P (A B) = P (A B), se P (B) > 0. P (B) Teorema 1.18 (Teorema da Probabilidade Composta). Sejam A e B dois acontecimentos tais que P (B) > 0. Então, resulta da definição de Probabilidade Condicional, P (A B) = P (A B ) P (B). Observação: Nalguns casos, a probabilidade condicional P (A B) pode ser igual a P (A), ou seja, o conhecimento da ocorrência de B não afecta a probabilidade de A ocorrer. Definição 1.19 (Acontecimentos Independentes). Dois acontecimentos A e B dizem-se independentes se e só se, P (A B) = P (A) P (B).

13 1.4. PROBABILIDADE CONDICIONAL E INDEPENDÊNCIA 7 Definição 1.20 (Partição do espaço de resultados). Dizemos que {E 1,..., E n } é uma partição do espaço de resultados Ω quando E i E j = (i j) e n E i = Ω. Teorema 1.21 (Teorema da Probabilidade Total). Seja {E 1,..., E n } uma partição do espaço de resultados Ω, com P (E i ) > 0, i. Dado um qualquer acontecimento A, tem-se, P (A) = P (A E 1 ) P (E 1 ) P (A E n ) P (E n ). Teorema 1.22 (Teorema de Bayes). Seja {E 1,..., E n } uma partição do espaço de resultados Ω, com P (E i ) > 0, i. Dado um qualquer acontecimento A, com P (A) > 0, tem-se P (E i A) = P (A E i ) P (E i ). n P (A E i ) P (E i ) Demonstração. Aplicando a definição 1.17, de Probabilidade Condicional, depois o Teorema 1.18 da Probabilidade Composta e o Teorema 1.21 da Probabilidade Total, P (E i A) = P (E i A) P (A) = P (A E i ) P (E i ). n P (A E i ) P (E i ) Exemplo 1.23 (Teste de P.E. D /08). Diga, justificando, se a seguinte afirmação é verdadeira ou falsa: Três máquinas A, B e C produzem botões, respectivamente, 15%, 25% e 60% da produção total. As percentagens de botões defeituosos fabricados por estas máquinas são respectivamente 5%, 7% e 4%. Se ao acaso, da produção total de botões, for encontrado um defeituoso, a probabilidade de ele ter sido produzido pela máquina B é de cerca de 36%. Resolução: Sejam A, B, C e D os seguintes acontecimentos: A - O Botão é produzido pela máquina A; B - O Botão é produzido pela máquina B; C - O Botão é produzido pela máquina C; D - O Botão tem defeito; De acordo com o enunciado, temos as seguintes probabilidades: P (A) = 0.15, P (B) = 0.25, P (C) = 0.6, P (D A) = 0.05, P (D B) = 0.07 e P (D C) = 0.04.

14 8 CAPÍTULO 1. INTRODUÇÃO À TEORIA DA PROBABILIDADE Pretende-se determinar P (B D). Usando o Teorema de Bayes, obtemos: P (B D) = P (D B)P (B) P (D A)P (A) + P (D B)P (B) + P (D C)P (C) = %. Logo a afirmação está correcta, isto é, a probabilidade de um botão defeituoso ter sido produzido pela máquina B é de cerca de 36%.

15 Capítulo 2 Variáveis aleatórias 2.1 Variáveis aleatórias Definição 2.1 (Variável aleatória). Uma variável aleatória (v.a.), X : Ω R, é uma função real e finita, tal que a imagem inversa de ] ; x] é um acontecimento, isto é, A x = X 1 ( ; x] = {ω Ω : X (ω) x} com x R é um acontecimento. Observação: É fácil de verificar que se X é uma variável aleatória e g : R R uma função, então Y = g(x) é também uma variável aleatória. Exemplo 2.2 (Variável aleatória). Considere a experiência aleatória que consiste no lançamento de 2 moedas equilibradas, e registo da face voltada para cima. O espaço de resultados é Ω = {(Ca, Ca), (Ca, Co), (Co, Ca), (Co, Co)}. Podemos, por exemplo, atribuir a cada um dos acontecimentos elementares de Ω, os seguinte valores: Repare que A x = X 1 ]( ; x]) = ω (Ca,Ca) (Ca,Co) (Co,Ca) (Co,Co) X(ω) , x < 0 {(Co, Co)} 0 x < 1 {(Co, Co), (Ca, Co), (Co, Ca)} 1 x < 2 Ω x 2 Como todas as imagens inversas, X 1 (] ; x]), são acontecimentos de Ω, então de acordo com a definição 2.1, X é uma variável aleatória. Observação: Relativamente ao Exemplo 2.2, X é a aplicação que atribui a cada acontecimento de Ω o número de caras. 9

16 10 CAPÍTULO 2. VARIÁVEIS ALEATÓRIAS 2.2 Função de distribuição Definição 2.3 (Função de distribuição). A função de distribuição da v.a. X é: F X (x) = P (X x) = P ({ω : X(ω) x}), x R. Exemplo 2.4. Considere novamente o Exemplo 2.2. A função de distribuição desta v.a. é: F X (x) = P (X x) = 0, x < 0 1 4, 0 x < 1 3 4, 1 x < 2 1, x 2 Observação: Como F X (x) = P (X x), conclui-se que a função de distribuição existe sempre. Quando não existir mais do que uma v.a., pode-se representar a função de distribuição simplesmente por F. Propriedades da função de distribuição: 1. lim F (x) = 0 e lim F (x) = 1; x x + 2. F é contínua à direita, isto é, lim F (x) = F (a); x a + 3. F é não decrescente, isto é, se x < y, então F (x) F (y). Teorema 2.5. Qualquer função F é uma função de distribuição se e só se verificar as três propriedades anteriores. Proposição 2.6. Seja X uma v.a. com função de distribuição F. Tem-se: P (X = x) = P (X x) P (X < x) = F (x) F (x ), x R, onde F (x ) = lim t x F (t). Definição 2.7 (Variáveis aleatórias identicamente distribuídas). Duas variáveis aleatórias X e Y dizem-se identicamente distribuídas, se têm a mesma função de distribuição, isto é, se F X (x) = F Y (x), x R.

17 2.3. CLASSIFICAÇÃO DAS VARIÁVEIS ALEATÓRIAS Classificação das variáveis aleatórias A função de distribuição não é necessariamente contínua em todos os valores x R. Podemos por isso classificar as variáveis aleatórias em função da continuidade da respectiva função de distribuição. Considere o conjunto de pontos de descontinuidade da função de distribuição F, D = {a R : P (X = a) > 0}. (2.1) Definição 2.8 (Variável aleatória discreta). Uma v.a. X diz-se do tipo discreto ou simplesmente discreta se o conjunto D é quanto muito numerável, e se P (X D) = 1. Definição 2.9 (Função de probabilidade). Seja X uma v.a. discreta. Chama-se função de probabilidade (f.p.), ou função massa de probabilidade, de X à função definida pelo conjunto dos valores de D e pelas respectivas probabilidades, isto é, por (x i, p i ) onde x i D e p i = P (X = x i ). Uma representação usual para a função de probabilidade da v.a. X, é: X = { x 1 x 2... x i... P (X = x 1 ) P (X = x 2 )... P (X = x i )... Propriedades da função de probabilidade: 1. P (X = x i ) = f(x i ) = p i 0; 2. p i = 1. Observação: Para qualquer subconjunto real I, P (X I) = x i I D P (X = x i). Exemplo Considere novamente o Exemplo 2.2. O conjunto de pontos de descontinuidade da função de distribuição é D = {0, 1, 2}. Como P (X D) = 1, conclui-se que X é uma v.a. discreta com função de probabilidade, X { Definição 2.11 (Variável aleatória contínua). Uma v.a. X diz-se do tipo contínuo ou simplesmente contínua se D = e se existe uma função não negativa, f, tal que para I R, P (X I) = f(x)dx. I À função f chamamos função densidade probabilidade ou função densidade.

18 12 CAPÍTULO 2. VARIÁVEIS ALEATÓRIAS Propriedades da função densidade probabilidade: 1. f (x) 0, x R; 2. + f (x) dx = 1. Observação: Como I f(x)dx é um integral de uma função não negativa e é sempre convergente, então a P (X I), corresponde ao valor da área entre o eixo das abcissas e o gráfico da função f no intervalo I considerado. Consequentemente P (X = x) = 0, x R e P (x 1 X x 2 ) = P (x 1 <X x 2 ) = P (x 1 X <x 2 ) = P (x 1 <X <x 2 ), x 1 x 2. Observação: Por definição, F (x) = f(x), nos pontos onde existe derivada. derivada, f(x) = 0. Se não existir 2.4 Momentos Qualquer variável aleatória possui algumas características numéricas importantes. As mais conhecidas são o valor médio e a variância. Nesta secção vamos estudar outras características mais gerais: os Momentos. Definição 2.12 (Valor médio). O valor médio, valor esperado ou simplesmente média da v.a. X é dado por, x i P (X = x i ) µ = E(X) = + xf(x)dx se X é uma v.a. discreta; se X é uma v.a. contínua; desde que a série/integral seja absolutamente convergente. Definição 2.13 (Valor médio de uma função de uma variável aleatória). Seja X uma v.a. e g uma função real de variável real contínua com quanto muito um conjunto numerável de pontos de descontinuidade. Então o valor médio de Y = g(x) é dado por: g(x i )P (X = x i ) se X é uma v.a. discreta; E(g(X)) = + g(x)f(x)dx se X é uma v.a. contínua; desde que a série/integral seja absolutamente convergente. Exemplo Considere a variável aleatória introduzida no Exemplo 2.2. Os valores médios de X e g(x) = X 2, são respectivamente: E(X) = = 1, E(g(X)) = E(X 2 ) = = 3 2.

19 2.4. MOMENTOS 13 Propriedades do valor esperado: 1. Se a é uma constante, E(a) = a; 2. Se a e b são constantes, E(aX + b) = ae(x) + b. 3. Se existirem E(g 1 (X)) e E(g 2 (X)), então E(g 1 (X) + g 2 (X)) = E(g 1 (X)) + E(g 2 (X)). Definição 2.15 (Momentos de ordem k). Seja X uma variável aleatória. Definem-se momentos de ordem k em torno da origem por: m k = E(X k ), e os momentos centrais de ordem k de X por: µ k = E((X µ) k ), desde que os valores esperados existam. Definição 2.16 (Variância e desvio padrão). A variância da v.a. X, σ 2 ou V (X), é o momento central de ordem dois, isto é, σ 2 = V (X) = E((X µ) 2 ), desde que exista o valor esperado de (X µ) 2. À sua raiz quadrada positiva, σ = V (X), chamamos desvio padrão da v.a. X. Proposição Se X é uma v.a., para a qual existe variância, V (X)=E ( X 2) E 2 (X). Propriedades da Variância: 1. Se a é uma constante, V (a) = 0; 2. Se a e b são constantes, V (ax + b) = a 2 V (X). Exemplo Considere a variável aleatória introduzida no Exemplo 2.2. A variância de X é: V (X) = E((X 1) 2 ) = (0 1) (1 1) (2 1)2 1 4 = 1 2. Nota: A variância também podia ser calculada através do resultado da Proposição 2.17.

20 14 CAPÍTULO 2. VARIÁVEIS ALEATÓRIAS Teorema 2.19 (Desigualdade de Chebychev). Se X é uma v.a. para a qual existe variância σ 2 e c > 0 é uma constante real positiva, então P ( X µ cσ) 1 c 2 P ( X µ < cσ) 1 1 c 2. Exemplo 2.20 (Desigualdade de Chebychev). Para c = 2, podemos dizer que a probabilidade da v.a. X assumir valores no intervalo ]µ 2σ, µ + 2σ[ é superior a 1 1/4 = Observação: A generalidade da Desigualdade de Chebychev impede-a de ser muito precisa. 2.5 Outros parâmetros relevantes Definição 2.21 (Coeficiente de variação). Seja X uma v.a. com suporte não negativo. O Coeficiente de variação de X é, CV = σ µ 100%. Definição 2.22 (Coeficiente de Simetria). O Coeficiente de simetria, de uma v.a. X, é definido por β 1 = µ 3 σ 3. Definição 2.23 (Coeficiente de achatamento ou Kurtosis). Define-se o coeficiente de achatamento ou kurtosis como β 2 = µ 4 σ 4 3. Definição 2.24 (Quantil). O quantil de ordem p, χ p, da v.a. X é a solução da equação: F (χ p ) = p, 0 < p < 1. Se X é uma v.a. discreta, a equação F (χ p ) = p pode não ter solução exacta. Neste caso considera-se χ p = min{x : F (x) p}. Definição 2.25 (Mediana). Trata-se do quantil de ordem p = 1/2. Costuma-se representar a mediana, da v.a. X, por med(x). Definição 2.26 (Moda). A Moda, representada por mo, é o valor que maximiza a função de probabilidade ou a função densidade probabilidade, desde que seja único.

21 2.6. FUNÇÕES DE UMA VARIÁVEL ALEATÓRIA Funções de uma variável aleatória Existem muitas formas de criar novas variáveis aleatórias, a partir de outras já conhecidas. Muitas destas variáveis aparecem de forma natural com a resolução de problemas. Assim, sejam X e Y variáveis aleatórias tais que Y é função de X (Y = g(x)). Interessa-nos saber como conhecer a distribuição de Y. Para isso basta conhecer a sua função de distribuição, F Y. Independentemente de X ser uma v.a. discreta ou contínua, podemos sempre obter a sua função de distribuição do seguinte modo: F Y (y) = P (Y y) = P (g(x) y) = P (A y ), onde A y = {x D x : g(x) y}. Geralmente consegue-se calcular P (A y ), a partir da função de distribuição de X, F X. Exemplo Considere a v.a. X com função de distribuição, 0, x 0 F X (x) = 5x 4 4x 3, 0 < x < 1 1, x 1 Estamos interessados em conhecer a distribuição das v.a. s Y = 2X 1 e W = X 2. Comecemos por determinar a f.d. da v.a. Y : F Y (y) = P (Y y) = P (2X 1 y) = P (X y+1 2 ) = F X( y+1 2 ) = y+1 0, 2 0 = 5 ( y+1) 4 ( 2 4 y+1 ) 3, 2 0 < y+1 2 < 1 y+1 1, 2 1 0, y 1 = 5 ( y+1) 4 ( 2 4 y+1 ) 3, 2 1 < y < 1 1, y 1 Determinemos agora a função de distribuição de W. É obvio que se w < 0, F W (w) = 0. Se w 0, F W (w) = P (W w) = P ( w X w) = F X ( w) F X ( w) = F X ( w) = { 5 w 4 4 w 3, 0 w < 1 = 1, w 1 { 5w = 2 4w 3/2, 0 w < 1 1, w 1 A procedimento, acima indicado, é válido quer X seja uma v.a. contínua ou uma v.a. discreta. Contudo no caso de X ser uma v.a. discreta, Y = g(x) é também uma v.a. discreta. Nesta situação podemos também conhecer de distribuição de Y a partir da sua função de probabilidade.

22 16 CAPÍTULO 2. VARIÁVEIS ALEATÓRIAS Assim, seja D x o suporte de X, isto é, o conjunto dos valores de X com probabilidade positiva. Então, P (Y = y) = P (g(x) = y) = P (X A y ), onde A y = {x D x : g(x) = y}. Exemplo Considere novamente a variável aleatória introduzida no Exemplo 2.2 e a nova variável aleatória Y = (X 1) 2. Sendo X uma v.a. discreta, concluímos que Y é também uma v.a. discreta. Como X tem como suporte os valores 0, 1,e 2, o suporte de Y é o conjunto dos valores 0 e 1. Resulta que P (Y = 0) = P ((X 1) 2 = 0) = P (X = 1) = 1 2, P (Y = 1) = P ((X 1) 2 = 1) = P (X 1 = 1 X 1 = 1) = = P (X = 0) + P (X = 2) = Então a função de probabilidade de Y é Y {

23 Capítulo 3 Vectores aleatórios Sejam X 1, X 2,..., X m m variáveis aleatórias. Então X = (X 1, X 2,..., X m ) é um vector aleatório de dimensão m. Vamos restringir-nos apenas aos pares aleatórios (X, Y ) = (X 1, X 2 ), isto é, aos vectores aleatórios com m = 2. Estes podem ser do tipo discreto, contínuo ou misto, conforme X e Y são v.a. de tipo discreto, contínuo ou uma discreta e a outra contínua. Definição 3.1 (Função de distribuição conjunta). Seja (X, Y ) um par aleatório. A função de de distribuição de (X, Y ) é: F X,Y (x, y) = P (X x, Y y), (x, y) R Par aleatório discreto Definição 3.2 (Par aleatório discreto). Diz-se que (X, Y ) é um par aleatório discreto se e só se X e Y são variáveis aleatórias discretas. Definição 3.3 (Função de probabilidade conjunta). Seja (X, Y ) um par aleatório discreto tomando valores no conjunto D = {(x i, y j ) R 2 : P (X = x i, Y = y j ) > 0}. Chamamos função de probabilidade conjunta (f.p.c.) de (X, Y ) à função: p ij = P (X = x i, Y = y j ), i = 1, 2,..., j = 1, 2,... Propriedades da função de probabilidade conjunta: 1. 0 p ij 1, (x i, y j ) D; 2. p ij = 1 i j Observação: Quando o conjunto D é finito e pequeno é costume representar a f.p.c. numa tabela, idêntica à que a seguir se apresenta: 17

24 18 CAPÍTULO 3. VECTORES ALEATÓRIOS X\Y y 1 y 2... y n x 1 p 11 p p 1n p 1 x 2 p 21 p p 2n p x m p m1 p m2... p mn p m p 1 p 2... p m 1 Definição 3.4 (Função de probabilidade marginal). Define-se função de probabilidade marginal de X e função de probabilidade marginal de Y como: p i = P (X = x i ) = P (X = x i, Y = y j ) = p ij, i = 1, 2,... p j = P (Y = y j ) = j=1 P (X = x i, Y = y j ) = j=1 p ij, j = 1, 2,... Definição 3.5 (Função de probabilidade condicional). Seja (X, Y ) um par aleatório discreto. Define-se probabilidade condicional de X dado Y = y j como, P (X = x i Y = y j ) = P (X = x i, Y = y j ) P (Y = y j ) e probabilidade condicional de Y dado X = x i como P (Y = Y j X = X i ) = P (X = x i, Y = y j ) P (X = x i ) = p ij p j, se P (Y = y j ) > 0, = p ij p i, se P (X = x i ) > 0. Definição 3.6 (Independência entre variáveis aleatórias discretas). As v.a. s X e Y dizem-se independentes se, e só se, p ij = p i p j, i, j. Exemplo 3.7. Seja (X, Y ) um par aleatório discreto com a seguinte f.p.c.: X \ Y /4 1/8 0 3/8 1 1/8 1/8 1/8 3/ /4 1/4 3/8 1/4 3/8 (a) Qual a probabilidade de X ser maior que Y? (Solução: 1/8) (b) Calcule P (X 1; Y > 0). (Solução: 3/8) (c) X e Y são v.a. s independentes? (Solução: X e Y não são independentes) (d) Determine a função de probabilidade de X Y = 2 e calcule E(X Y = 2).

25 3.2. PAR ALEATÓRIO CONTÍNUO Par aleatório contínuo Definição 3.8 (Par aleatório contínuo). Um par aleatório (X, Y ) diz-se contínuo se existe uma função não negativa f X,Y tal que, tal que, para qualquer região I R 2, P ((X, Y ) I) = f X,Y (u, v)dudv. I A f X,Y chamamos função densidade probabilidade conjunta ou função densidade conjunta. Propriedades da função densidade probabilidade conjunta: 1. f X,Y (x, y) 0, (x, y) R 2 ; f X,Y (x, y)dxdy = 1. Definição 3.9 (Função densidade de probabilidade marginal). Define-se a função densidade de probabilidade marginal de X, como: f X (x) = + f (X,Y ) (x, y) dy, x R De modo análogo obtêm-se a função densidade de probabilidade marginal de Y, f Y (y) = + f (X,Y ) (x, y) dx, y R Definição 3.10 (Função densidade condicional). Em todos os pontos (x, y) onde f X,Y contínua, f Y (y) > 0 e é contínua, a função densidade condicional de X, dado Y = y, existe e calcula-se como: f X Y (x y) = f X,Y (x, y). f Y (y) De modo análogo, em todos os pontos (x, y) onde f X,Y função densidade condicional de Y, dado X = x, existe e calcula-se como: f Y X (y x) = f X,Y (x, y). f X (x) é contínua, f X (x) > 0 e é contínua, a é Definição 3.11 (Independência entre variáveis aleatórias contínuas). Seja (X, Y ) um par aleatório contínuo. As variáveis X e Y dizem-se independentes se e só se f X,Y (x, y) = f X (x)f Y (y), (x, y) R 2

26 20 CAPÍTULO 3. VECTORES ALEATÓRIOS Exemplo Os tempos de vida, em centenas de horas, das duas componentes principais de um sistema de controlo são v.a. s (X, Y ) com função densidade conjunta { cx f X,Y (x, y) = 2 y 0 < x < 3, 0 < y < 2 0 outros valores de (x, y) R 2 (a) Qual o valor de c? f X,Y (x, y) 0, (x, y) R 2 c ( 3 f X,Y (x, y) dxdy = ) cx 2 y dx dy = 1 c = 1 18 (b) Qual a probabilidade de cada uma das componentes durar mais de 100 horas? P (X > 1, Y > 1) = x2 y dxdy = (c) Qual a probabilidade da 1 a componente durar mais de 100 horas? Como f X (x) = + f (X,Y ) (x, y) dy = x2 y dy = x2 9, 0 < x < 3, resulta que: P (X > 1) = 3 1 f X dx = 3 1 x 2 26 dx = 9 27 (d) Os tempos de vida das componentes são independentes? Como f Y (y) = f (x, y) = { { y/2 0 < y < 2 x f 0 o. v. de y X (x) = 2 /9 0 < x < 3 0 o. v. de x { 1 18 x2 y 0 < x < 3, 0 < y < 2 = f 0 o. v. (x, y) X (x) f Y (y) Conclui-se que X e Y são v.a. s independentes. 3.3 Momentos de vectores aleatórios Definição 3.13 (Valor médio). Seja (X, Y ) um par aleatório e g : R 2 R uma função real. Define-se valor médio ou valor esperado ou média de g(x, Y ) como: g(x i, y j )p ij se X e Y são v.a. s discretas; j=1 E(g(X, Y ))= + + g(x, y)f X,Y (x, y)dxdy se X e Y são v.a. s contínuas. Nota: Uma das funções mais utilizadas é g(x, y) = xy, obtendo-se: x i y j p ij se X e Y são v.a. s discretas; j=1 E(XY )= + + xyf X,Y (x, y)dxdy se X e Y são v.a. s contínuas.

27 3.3. MOMENTOS DE VECTORES ALEATÓRIOS 21 Definição 3.14 (Covariância). Sendo µ X = E(X) e µ Y as v.a. s X e Y por: = E(Y ), define-se covariância entre Cov (X, Y ) = E [(X µ X ) (Y µ Y )]. Proposição Caso exista a covariância entre X e Y, esta pode ser calculada através da fórmula: Cov (X, Y ) = E (XY ) E (X) E (Y ). Outras propriedades do valor médio e variância: 1. E(X ± Y ) = E(X) ± E(Y ); 2. V (X ± Y ) = V (X) + V (Y ) ± 2 Cov(X, Y ). Proposição Se X e Y são independentes, então E(XY ) = E(X)E(Y ), e consequentemente Cov(X, Y ) = 0. Propriedades da Covariância: Sejam X, Y, e Z v.a. s, a, b e c constantes reais. Então: 1. Cov(X, Y ) = Cov(Y, X); 2. Cov(X, X) = V (X); 3. Cov (a + bx, c + dy ) = bd Cov (X, Y ); 4. Cov (ax + by, cz) = ac Cov (X, Z) + bc Cov (Y, Z). Definição 3.17 (Coeficiente de correlação). Define-se coeficiente de correlação de (X, Y ) por ρ (X, Y ) = Cov (X, Y ) V (X) V (Y ). Propriedades do coeficiente de correlação: 1. 1 ρ (X, Y ) 1; 2. Se X e Y são v.a. s independentes, então ρ (X, Y ) = 0.

28 22 CAPÍTULO 3. VECTORES ALEATÓRIOS

29 Capítulo 4 Principais Distribuições 4.1 Distribuições discretas Distribuição Uniforme Definição 4.1 (Distribuição Uniforme Discreta). Dizemos que a variável aleatória X segue uma distribuição Uniforme Discreta de parâmetro n e escrevemos X U nif(n), ou abreviadamente, X U(n), se a função de probabilidade de X é dada por: X { n n n... n ou P (X = x) = 1, x = 1,..., n. n A respectiva função de distribuição é: 0, x < 1 F (x) = k n, k x < k + 1, k = 1,..., n 1 1, x n. Proposição 4.2 (Valor médio e Variância). Considere a v.a. X Unif(n). Então, E(X) = n Demonstração. 1 e V (X) = n n E(X) = x 1 n = 1 n x = 1 n n x=1 x=1 n(n + 1) 2 = n Para calcular a variância, é mais fácil utilizar o resultado V (X) = E(X 2 ) E 2 (X). Assim, n E(X 2 ) = x 2 1 n = 1 n x 2 = 1 n n x=1 x=1 ( n+1 2 Logo V (X) = (n+1)(2n+1) 6 ) 2 = n n(n + 1)(2n + 1) 6 = (n + 1)(2n + 1). 6 1 Utilizam-se aqui os resultados, n = n(n+1) 2 e n 2 = n(n+1)(2n+1) 6, n N, que se podem confirmar por Indução Matemática. 23

30 24 CAPÍTULO 4. PRINCIPAIS DISTRIBUIÇÕES Distribuição de Bernoulli Definição 4.3 (Prova de Bernoulli). Trata-se de um experiência aleatória com apenas dois resultados possíveis (que se costumam designar por Sucesso ou Insucesso ). Definição 4.4 (Distribuição de Bernoulli). É sempre possível definir uma variável aleatória X que toma o valor 1 se o resultado da experiência é Sucesso e 0 se é Insucesso. Denotando p = P ( Sucesso ) > 0, então a função de probabilidade de X é dada por: X { p p Dizemos que a v.a. X Ber(p). ou P (X = x) = p x (1 p) 1 x, x = 0, 1, 0 < p < 1. X segue uma distribuição de Bernoulli, de parâmetro p, e escrevemos Proposição 4.5. Seja a v.a. X Ber(p). Então E(X) = p e V (X) = p(1 p) Distribuição Binomial Definição 4.6 (Distribuição Binomial). Considere-se uma sucessão de provas de Bernoulli independentes, onde em cada prova a probabilidade de sucesso, p, é constante. A v.a. X= número de sucessos em n provas de Bernoulli segue uma distribuição Binomial de parâmetros n e p, e escrevemos X Bin(n, p). A função de probabilidade é: P (X = x) = ( ) n p x (1 p) n x, x = 0, 1,..., n, 0 < p < 1. x Bin(n=4, p=0.25) Bin(n=4, p=0.5) Bin(n=4, p=0.75) P(X=k) P(X=k) P(X=k) x x x Figura 4.1: Gráficos da função de probabilidade de uma v.a. Bin(4, p), para alguns valores de p.

31 4.1. DISTRIBUIÇÕES DISCRETAS 25 Observação: Pela definição anterior, temos que X = I 1 + I I n, onde I i, i = 1,..., n são v.a. s independentes com distribuição Ber(p). Proposição 4.7. Seja X uma variável aleatória com distribuição Bin(n, p). Então a nova v.a. Y = n X tem distribuição Bin(n, 1 p). Proposição 4.8 (Valor médio e Variância). Considere a v.a. X Bin(n, p). Então, E(X) = np e V (X) = np(1 p). Demonstração. A demonstração torna-se mais simples se usarmos a representação X = I 1 + I I n, introduzida na última observação. Assim, E(X) = E(I 1 + I I n ) = E(I 1 ) + E(I 2 ) E(I n ) = p + p p = np. Atendendo à independência das variáveis I i, V (X) = V (I 1 + I I n ) = V (I 1 ) + V (I 2 ) V (I n ) = np(1 p). Exemplo 4.9 (Exame de P.E. D /08). Num concurso de televisão o apresentador propõe ao concorrente o seguinte jogo: atiram-se ao ar 3 moedas, em simultâneo, e se todos os lançamentos resultarem em caras o apresentador dá 10 e ao concorrente; Se todos os lançamentos resultarem em coroas o apresentador dá igualmente ao concorrente 10 e. Mas se os lançamentos resultarem em 2 caras e 1 coroa ou em 2 coroas e 1 cara, o concorrente tem de dar ao apresentador 5 e. (a) Represente X a quantidade de dinheiro ganha pelo concorrente. Determine a sua função de probabilidade. (b) Baseado no valor esperado de X, diga se o concorrente deve aceitar jogar este jogo. Resolução: (a) Considere a v.a. Y: número de caras obtidas em 3 lançamentos de uma moeda (equilibrada). Então como em cada lançamento o resultado é cara (sucesso) ou coroa (insucesso) e os resultados dos lançamentos são mutuamente independentes, Y Bin(3, 1/2). Como P (X = 5) = P (Y = 1) + P (Y = 2) = 3/4 e P (X = 10) = P (Y = 0) + P (Y = 3) = 1/4, resulta a seguinte função de probabilidade: { 5 10 X 3/4 1/4 (b) Como E(X) = 5/4 < 0, o concorrente não deve jogar.

32 26 CAPÍTULO 4. PRINCIPAIS DISTRIBUIÇÕES Proposição 4.10 (Aditividade). Sejam X i, i = 1,..., m, m v.a. s independentes tais que X i Bin(n i, p). Então a sua soma tem também distribuição Binomial, isto é, m S m = X i Bin(n n m, p) Distribuição Geométrica Definição 4.11 (Distribuição Geométrica). Considere-se uma sucessão de provas de Bernoulli independentes, onde em cada prova a probabilidade de sucesso, p, é constante. A v.a. X= número de provas necessárias até ocorrer o primeiro sucesso segue uma distribuição Geométrica de parâmetro p, e escrevemos X G(p). A função de probabilidade é: P (X = x) = p(1 p) x 1, x = 1, 2,..., 0 < p < 1. Observação: O nome desta distribuição deve-se ao facto da sucessão das probabilidades ser uma progressão geométrica de razão 1 p. G(0.25) G(0.5) P(X=k) x P(X=k) x Figura 4.2: Gráficos da função de probabilidade de uma v.a. G(p), para alguns valores de p. Proposição 4.12 (Valor médio e Variância). Considere a v.a. X G(p). Então, E(X) = 1 p e V (X) = 1 p p 2 Demonstração. O cálculo do valor médio e da variância é mais fácil se usarmos alguns dos resultados das séries de funções: Assim seja S(r) = k=0 r k uma série geométrica de razão r. Resulta que: 1. S(r) = k=0 2. S (r) = k=1 r k = 1 1 r, r < 1; kr k 1 = 1 (1 r) 2, r < 1;

33 4.1. DISTRIBUIÇÕES DISCRETAS S (r) = Assim, k=2 k(k 1)r k 2 = 2 (1 r) 3, r < 1. E(X) = x p(1 p) x 1 = p S (1 p) = p 1 = 1 p 2 p. x=1 Para se conseguir calcular a variância, de um modo mais fácil, usa-se mais uma vez o resultado V (X) = E(X 2 ) E 2 (X). Tem-se, Então, E(X 2 ) = x 2 p(1 p) x 1 = x(x 1 + 1) p(1 p) x 1 = x=1 x=1 = x(x 1) p(1 p) x 1 + x p(1 p) x 1 = x=1 x=1 = p(1 p) x(x 1) (1 p) x 2 + E(X) = p(1 p)s (1 p) + E(X) = x=2 = p(1 p) p 3 p = 2(1 p)+p = 2 p p 2 p 2 V (X) = 2 p p 2 1 p 2 = 1 p p 2. Proposição Temos que F (x) = P (X x) = 1 (1 p) [x], x 1, onde [x] representa a parte inteira de x; Como as provas de Bernoulli são independentes, a contagem do número de provas necessárias até ao proximo sucesso pode ser recomeçada em qualquer prova, sem que isso altere a distribuição da variável aleatória. Proposição 4.14 (Propriedade da falta de memória da distribuição Geométrica). Seja X G(p). Sendo x e y inteiros positivos, P (X > x + y X > y) = P (X > x) Distribuição Hipergeométrica Definição 4.15 (Distribuição Hipergeométrica). Considere-se uma população de N elementos, dos quais M possuem determinada característica e os restantes (N M) não a possuem (dicotomia). Considere-se a experiência aleatória que consiste em seleccionar ao acaso e sem reposição n elementos (amostra). Associada a esta experiência aleatória, defina-se a v.a. X - n o

34 28 CAPÍTULO 4. PRINCIPAIS DISTRIBUIÇÕES de elementos com a característica, entre os seleccionados sem reposição. Esta v.a. X tem uma função de probabilidade, ( M )( N M ) x n x P (X = x) = ( N, max(0, M + n N) x min(m, n), n) e diz-se ter distribuição Hipergeométrica de parâmetros (N, M, n) (pode ser escrito abreviadamente X H(N, M, n)). Proposição 4.16 (Valor médio e Variância). Seja a v.a. X H(N, M, n). Então: E(X) = n M M N e V (X) = n (N M)(N n). N 2 (N 1) Exemplo Num aquário existem 9 peixes, dos quais 5 estão saudáveis (S) e os restantes 4 estão doentes (D). Considere-se a experiência aleatória: extracção ao acaso e sem reposição de 3 peixes e registo do seu estado de saúde. Associada a esta experiência, considere-se a v.a. X - número de peixes saudáveis na amostra extraída de 3 peixes. Quantos peixes saudáveis esperamos encontrar em cada extracção? Resposta: Como X H(9, 5, 3), o número de peixes saudáveis, que esperamos encontrar em cada extracção de 3 peixes, é E(X) = 5/3. Nota: Em situações em que se conhece totalmente a composição da população e há apenas dois resultados possíveis, a distribuição Binomial caracteriza extracções com reposição. Se não houver reposição, a distribuição adequada é a Hipergeométrica. Quando n é pequeno, relativamente ao valor de N, a probabilidade de sucesso em cada tiragem sem reposição varia muito pouco de prova para prova (na distribuição Binomial este valor é constante). Este argumento permitenos aproximar o(s) valor(es) da(s) probabilidade(s) pela distribuição Hipergeométrica, pelo(s) valor(es) da(s) probabilidade(s) pela distribuição Binomial. Aproximação da distribuição Hipergeométrica pela distribuição Binomial: Seja X uma v.a. tal que X H(N, M, n). Então, caso n N 0.1, isto é, caso o tamanho da amostra seja muito pequeno em relação ao tamanho da população, podemos aproximar a distribuição de X pela distribuição Bin(n, p), com p = M N, ou seja, P (X = x) = (M x )( N M n x ) ( N n) ( ) n (M/N) x (1 M/N) n x. x

35 4.1. DISTRIBUIÇÕES DISCRETAS Distribuição de Poisson Definição 4.18 (Processo de Poisson). Suponha que estamos interessados em estudar a variável aleatória X que conta o número de ocorrências de um acontecimento num dado intervalo de tempo 2 de duração t (por exemplo, o número de acidentes rodoviários ocorridos num dia ou o número de clientes que entram numa loja durante 1 hora). Temos um processo de Poisson de parâmetro λ > 0, quando se verificam as seguintes condições: 1. A probabilidade p de ocorrer exactamente um acontecimento num intervalo de amplitude arbitrariamente pequena d é proporcional à sua duração, isto é, p = λd; 2. A probabilidade de ocorrer mais do que um acontecimento num intervalo de amplitude arbitrariamente pequena é aproximadamente igual a zero; 3. O número de acontecimentos que ocorrem em dois intervalos disjuntos são independentes. 4. O número de ocorrências em dois intervalos com a mesma duração, têm a mesma distribuição. Para deduzir a função de probabilidade, vamos considerar um intervalo unitário (t = 1), dividido em n sub-intervalos, todos com amplitude d = 1/n, com n suficientemente grande. Nas condições acima indicadas, o número de ocorrências em cada sub-intervalo é bem aproximado por uma v.a. Ber(p), com p = λ/n. Então X tem aproximadamente distribuição Bin(n, λ/n), isto é, Se n, P (X = x) ( n x ) ( λ n ) x ( 1 λ n) n x, x = 0, 1,..., n. ( n P (X = x) = lim n x ) ( λ n ) x ( ) 1 λ n x e λ λ x n = x! x = 0, 1,..., n. Definição 4.19 (Distribuição de Poisson). Dizemos que a variável aleatória X segue uma distribuição de Poisson de parâmetro λ, e escrevemos X P (λ), se a função de probabilidade de X é: P (X = x) = e λ λ x, x = 0, 1, 2,..., λ > 0. x! Observação: Se num processo de Poisson, os acontecimentos acorrem a uma taxa média λ, por unidade de tempo, então o número de ocorrências num intervalo de amplitude t > 0 tem distribuição de Poisson de parâmetro λt. 2 Note que podemos também considerar uma área, um volume, etc.

36 30 CAPÍTULO 4. PRINCIPAIS DISTRIBUIÇÕES Por exemplo, se durante a hora de almoço (das 12 às 14 horas) a chegada de automóveis a um parque se processa a uma taxa de 180 automóveis por hora e tem distribuição de Poisson, então a distribuição do número de automóveis que chegam em 15 minutos é Poisson com parâmetro λt = = 45. A distribuição do número de automóveis que chegam durante a hora do almoço é Poisson de parâmetro λt = = 360. P(X=k) P(2) x P(X=k) P(10) x Figura 4.3: Função de probabilidade de uma v.a. P (λ), para alguns valores de λ. Proposição 4.20 (Valor médio e Variância). Seja X uma v.a. com distribuição P (λ). Então, E(X) = λ e V (X) = λ. Aproximação da distribuição Binomial pela distribuição de Poisson Seja X uma v.a. tal que X Bin(n, p). É possível de verificar que lim n np λ ( ) n p x (1 p) (n x) = e x λ λx, x = 0, 1, 2,... x! Então, caso n 50 e np 5, pode-se aproximar a distribuição de Binomial pela distribuição de Poisson com λ = np. Teorema 4.21 (Aditividade). Sejam X 1, X 2,..., X m variáveis aleatórias independentes com X i P (λ i ), i = 1,..., m. Então, m S m = X i P (λ λ m ).

37 4.2. DISTRIBUIÇÕES CONTÍNUAS Distribuições Contínuas Distribuição Uniforme Contínua Definição 4.22 (Distribuição Uniforme Contínua). Dizemos que a variável aleatória X segue uma distribuição Uniforme (contínua) no intervalo [a, b], < a < b < +, e escrevemos X Unif(a, b), ou X U(a, b), se a função densidade probabilidade de X é dada por: f(x) = { 1 b a, a x b 0, c.c. A respectiva função de distribuição é dada por, F (x) = 0, x < a x a b a, a x < b 1, x b 1 b a f(x) 1 F (x) a b x a b x Figura 4.4: Função densidade (esquerda) e função de distribuição (direita) de uma v.a. U(a, b). Proposição 4.23 (Valor médio e Variância). Seja a v.a. X U(a, b). Então: E(X) = a + b 2 e V (X) = (b a)2. 12 Demonstração. Como, E(X) = E(X 2 ) = + + xf(x)dx = x 2 f(x)dx = b a [ x b a dx = x 2 2(b a) b a ] a x 2 [ b a dx = x 3 3(b a) b = b2 a 2 2(b a) = a + b 2 ] a b = b2 + ab + a 2, 3

38 32 CAPÍTULO 4. PRINCIPAIS DISTRIBUIÇÕES resulta que a variância é V (X) = E(X 2 ) E 2 (X) = b2 + ab + a 2 3 (a + b)2 4 = b2 + a 2 2ab 12 = (b a)2. 12 O caso particular da distribuição Uniforme com a = 0 e b = 1 é o que apresenta mais interesse, devido ao seguinte teorema: Teorema 4.24 (Teorema da Transformação Uniformizante). Seja X uma variável aleatória contínua, com função de distribuição F X (x). Então a variável aleatória Y = F X (X) tem distribuição U(0, 1) Distribuição Exponencial Começamos por introduzir a função Gama, presente em muitos livros de Análise Matemática. A função Gama corresponde ao integral: Γ(a) = 0 x a 1 e x dx, a > 0 (4.1) Propriedades da função Gama: 1. Γ(α + 1) = αγ(α); 2. Γ(n) = (n 1)!, n N 3. Γ(1/2) = π 4. 0 x α 1 e βx dx = Γ(α) β α. Definição 4.25 (Distribuição Exponencial). Uma variável aleatória X diz-se seguir uma distribuição Exponencial de parâmetro λ, e escrevemos X Exp(λ), se a sua função densidade probabilidade for dada por: { 0, x 0; f(x) = λ e λx, x > 0; λ > 0. A sua função de distribuição é dada por: { 0, x 0 F (x) = 1 e λx, x > 0

39 4.2. DISTRIBUIÇÕES CONTÍNUAS Função densidade Exponencial x λ=1 λ= Função de distribuição Exponencial λ=1 λ= x Figura 4.5: Função densidade (esquerda) e função de distribuição (direita) de uma v.a. Exp(λ). Proposição 4.26 (Valor médio e Variância). Considere a v.a. X Exp(λ). Então, E(X) = 1 λ e V (X) = 1 λ 2. Demonstração. Vamos utilizar as propriedades da função Gama para calcular o valor médio. Assim, E(X) = + xf(x)dx = 0 xλ e λx dx = λ x 2 1 e λx dx = λ Γ(2) 0 λ 2 = 1 λ. De modo análogo se calcula E(X 2 ) e se verifica que V (X) = 1 λ 2. Proposição 4.27 (Relação entre a distribuição Exponencial e Poisson). Considere um acontecimento que ocorre de acordo com um Processo de Poisson de parâmetro λ, por unidade de tempo. Então, o tempo até à primeira ocorrência e o tempo entre duas ocorrências consecutivas tem distribuição Exp(λ). Exemplo Admita que o número de avarias de uma fotocopiadora é um processo de Poisson com taxa λ =5/ano. Calcule a probabilidade do tempo entre avarias consecutivas ser inferior a um mês. Resolução: O tempo X entre avarias consecutivas tem distribuição Exp(5). Assim, a probabilidade pedida é: P (X < 1/12) = F X (1/12) = 1 e λ/12 = 1 e 5/12 = Teorema 4.29 (Falta de memória da distribuição exponencial). Seja X Exp(λ). Então: P (X x + y X y) = P (X x).

40 34 CAPÍTULO 4. PRINCIPAIS DISTRIBUIÇÕES Distribuição Gama A distribuição Gama é uma generalização da distribuição Exponencial. Definição 4.30 (Distribuição Gama). Uma variável aleatória X tem distribuição Gama de parâmetros α > 0 e λ > 0, e escrevemos X G(α, λ), se a sua função densidade probabilidade for dada por: { f(x) = 0, x 0; 1 Γ(α) λα x α 1 e λx, x > 0; e a sua função de distribuição é dada por: { 0, x 0 F (x) = x 1 0 Γ(α) λα t α 1 e λt dt, x > 0 Proposição 4.31 (Valor médio e Variância). Considere a v.a. X G(α, λ). Então, E(X) = α λ e V (X) = α λ 2. Só é possível determinar a função de distribuição se α N. Considere a v.a. X G(α, λ), com α N (neste caso particular a distribuição é também conhecida por distribuição de Erlang). Então a a sua função densidade probabilidade é: { 0, x 0; f(x) = 1 (α 1)! λα x α 1 e λx, x > 0; e a sua função de distribuição é dada por: 0, x 0 F (x) = α 1 1 e λx (λx) i i!, x > 0 i=0 Proposição 4.32 (Distribuição da soma de Exponenciais i.i.d.). Sejam X i, i = 1, 2,..., n variáveis aleatórias independentes com distribuição Exp(λ), então, n S n = X i G(n, λ). Exemplo Admita que o número de avarias de uma fotocopiadora é um processo de Poisson com taxa λ =5/ano. O tempo Y que decorre até à segunda avaria é uma variável aleatória G(2, 5). A probabilidade da segunda avaria ocorrer após 6 meses é 1 P (Y > 1/2) = 1 P (Y 1/2) = 1 (1 e 5/2 i=0 (5/2) i ) = e 5/2 7 i! 2 =

41 4.2. DISTRIBUIÇÕES CONTÍNUAS Distribuição Normal Definição 4.34 (Distribuição Normal). Uma variável aleatória X diz-se seguir uma distribuição Normal de parâmetros µ e σ 2, e escrevemos X N(µ, σ 2 ), se a sua função densidade probabilidade for dada por: f(x) = 1 2πσ e (x µ)2 2σ 2, x R, µ R, σ > 0. A função de distribuição é dada pelo integral: F (x) = x 1 e (t µ)2 2σ 2 dt, 2πσ para o qual não existe solução analítica. É assim necessário recorrer a métodos numéricos para obter os valores desta função µ=0, σ=1 µ=0, σ=1.5 Função densidade normal x Função de distribuição normal µ=0, σ=1 µ=0, σ= x Figura 4.6: Função densidade (esquerda) e função de distribuição (direita) de uma v.a. N(µ, σ). Observações: Esta distribuição é também conhecida pelo nome de Gaussiana ou distribuição de Gauss. Quando µ = 0 e σ = 1, a v.a. toma o nome de Normal reduzida. Neste caso é costume representar por φ e Φ, respectivamente, a função densidade e função de distribuição. A distribuição Normal é simétrica em torno de µ. Proposição 4.35 (Valor médio e Variância). Seja a v.a. X N(µ, σ 2 ). Então E(X) = µ e V (X) = σ 2. Teorema Seja X N(µ, σ 2 ). Resulta que, Z = X µ σ N(0, 1).

42 36 CAPÍTULO 4. PRINCIPAIS DISTRIBUIÇÕES Teorema Se X N(µ, σ 2 ) e a, b são constantes reais, com a 0, então Y = ax + b N(aµ + b, a 2 σ 2 ). Teorema Sejam X 1, X 2,..., X n, n variáveis aleatórias independentes com distribuições X i N ( µ i, σ 2 i ), i = 1, 2,..., n. Considerando as constantes reais a1, a 2,..., a n, com algum a i 0, temos que: Note que: Y = a 1 X a n X n N ( a 1 µ a n µ }{{ n, a 2 } 1σ a 2 nσ 2 ) n. }{{} =µ Y µ Y = E(Y ) = E ( n ) n n a i X i = a i E (X i ) = a i µ i σy 2 = V (Y ) = V ( n ) n n a i X i = a 2 i V (X i ) = a 2 i σi 2 =σ 2 Y Distribuição do Qui Quadrado Definição 4.39 (Distribuição do Qui Quadrado). Uma variável aleatória X diz-se seguir uma distribuição Qui-quadrado com n graus de liberdade, e escrevemos X χ 2 n, se a sua função densidade probabilidade for dada por: f(x) = 1 Γ(n/2)2 n/2 e x/2 x n/2 1, x > 0 0, x 0, onde Γ representa a função Gama, introduzida em (4.1) Função densidade do Qui Quadrado x n=1 n= Função de distribuição do Qui Quadrado n=1 n= x Figura 4.7: Função densidade (esquerda) e função de distribuição (direita) de uma v.a. χ 2 n.

43 4.2. DISTRIBUIÇÕES CONTÍNUAS 37 Proposição Considere a v.a. X χ 2 n. Então, E(X) = n, e V (X) = 2n. Teorema Sejam X 1, X 2,..., X n v.a. s independentes com distribuição Normal Reduzida. Então, Xi 2 χ 2 1, e Y = X1 2 + X Xn 2 χ 2 n Distribuição t de Student Definição 4.42 (Distribuição t de Student). Uma v.a. T diz-se ter distribuição t de Student com n graus de liberdade, e escreve-se T t n, se a sua função densidade probabilidade é dada por: ( ) f(t) = Γ n+1 2 Γ ( ( ) n 1 + t 2 nπ n 2 ) (n+1) 2, t R n=1 n=3 Função densidade x n=1 n=3 Função de distribuição x Figura 4.8: Função densidade (esquerda) e função de distribuição (direita) de uma v.a. t n. Proposição 4.43 (Valor médio e Variância). Seja X t n. Então, E(X) = 0, n > 1, e V (X) = n n 2, n > 2. Teorema Sejam X N(0, 1) e Y χ 2 n, com X e Y independentes. Então a variável aleatória, T = X Y/n, tem distribuição t de Student com n graus de liberdade.

44 38 CAPÍTULO 4. PRINCIPAIS DISTRIBUIÇÕES

45 Capítulo 5 Teorema Limite Central Apresentamos neste capítulo, um dos mais importantes resultados da teoria das probabilidades e da estatística, o Teorema Limite Central. Este teorema dá-nos a distribuição aproximada da soma de n variáveis aleatórias independentes e identicamente distribuídas. Teorema 5.1 (Teorema Limite Central). Seja X 1, X 2..., uma sucessão de variáveis aleatórias independentes e identicamente distribuídas (i.i.d.), com valor médio µ e variância σ 2 0, finitos. Considere as variáveis aleatórias S n e Z n, definidas por S n = n X i e, Z n = S n nµ nσ. (5.1) Então a distribuição de Z n converge para uma distribuição Normal reduzida, quando n +, isto é, Z n = S n nµ nσ a N(0, 1). Observação: Se no quociente da equação (5.1), que define Z n, dividirmos tanto o numerador como o denominador por n, obtemos Z n = n X n µ, σ onde X n representa a média S n /n. O Teorema Limite Central pode assim também ser enunciado em relação à média das variáveis aleatórias X i, em vez da soma, S n. Observação: O Teorema Limite Central não indica nada sobre a velocidade de convergência de Z n para a distribuição N(0, 1). Essa velocidade de convergência depende da distribuição das v.a. s X i. Na prática, este teorema usa-se muitas vezes quando n 30 (embora este valor nem sempre garanta uma boa aproximação). Exemplo 5.2. Num estudo sobre vendas num hipermercado, concluiu-se que a procura diária de arroz (em Kg) é uma v.a. com valor médio 40Kg e desvio-padrão 5Kg. Tendo sido encomendado Kg de arroz para venda venda no próximo ano, qual a probabilidade deste stock cobrir a procura de arroz nesse período? (Considere-se um ano com 364 dias). 39

46 40 CAPÍTULO 5. TEOREMA LIMITE CENTRAL Resolução: Seja X i = procura de arroz no dia i, i = 1, 2,..., 364 e admitamos que estas v.a. s são i.i.d.. Sabemos que: E (X i ) = 40Kg, V (X i ) = 25Kg 2, i = 1, 2,..., 364. A procura de arroz durante um ano será S 364 = X i e queremos calcular P (S ). Ignoramos qual a distribuição de S 364, mas como se trata de uma soma de um grande número de v.a. s i.i.d. (364 > 30), então pelo T.L.C., 364 S = S a N(0, 1). Assim, P (S ) = P ( ) S P (Z 0.63) = Φ ( 0.63) = 1 Φ (0.63) = = Conclusão: É recomendável comprar mais arroz! Corolário 5.3. Seja X uma v.a. com distribuição Binomial de parâmetros n e p. Se n 30 e p tal que np > 5 e n(1 p) > 5, então: X a N(np, np(1 p)). Exemplo 5.4. Considere-se a v.a. X Bin (100, 0.1). Calculemos P (X = 10) Como n = , np = = 10 > 5 e n(1 p) = = 90, P (X = 10) = P (X 10) P (X 9) Φ ( = = Nota: O valor exacto é P (X = 10) = ( ) = ) ( Φ 9 10 ) 3 = Φ(0) Φ( 0.33) = Corolário 5.5. Seja X uma v.a. com distribuição Poisson de parâmetro λ. Se λ > 5, então: X a N(λ, λ). Exemplo 5.6. Considere X P (230). Calculemos um valor aproximado de P (X = 241). P (X = 241) = P (X 241) P (X 240) P = Φ(0.73) Φ(0.66) = = Nota: O valor exacto é P (X = 241) = e ! = ( ) ( ) Z P Z =

47 Capítulo 6 Estimação Pontual 6.1 Alguns conceitos importantes Definição 6.1 (População). Uma população consiste em todas as possíveis observações de um dado fenómeno. Definição 6.2 (Amostra). Uma amostra é um subconjunto da população. Observação: Nos métodos estatísticos, que iremos estudar, a amostra recolhida deve ser representativa da população. Caso isso não aconteça, podemos retirar conclusões erradas. É assim conveniente escolher os elementos da amostra de forma aleatória, ou seja, trabalhar com uma amostra aleatória. Definição 6.3 (Amostra aleatória). Vamos admitir que cada valor observado x i é a realização da variável aleatória X i, com função de distribuição F. O vector (X 1, X 2,..., X n ) constitui uma amostra aleatória se e só se as n variáveis aleatórias são independentes e têm todas a mesma distribuição. Os valores que se obtêm por concretização da amostra aleatória são representados por (x 1, x 2,..., x n ). Definição 6.4 (Estatística). Uma estatística é uma qualquer função da amostra aleatória, (X 1, X 2,..., X n ), que não depende de qualquer parâmetro desconhecido. Observação: Da definição anterior, conclui-se que uma estatística é uma variável aleatória. Logo qualquer estatística tem função de distribuição. A essa função de distribuição dá-se o nome de distribuição por amostragem da estatística. Exemplo 6.5 (Estatística). Dada uma amostra aleatória (X 1, X 2,..., X n ), de dimensão n, são estatísticas: A média amostral (X), a variância amostral (S 2 ), o mínimo da amostra, o máximo da amostra, a mediana, os quartis ou a própria amostra. 41

48 42 CAPÍTULO 6. ESTIMAÇÃO PONTUAL Definição 6.6 (Estimador pontual e estimativa pontual). Seja (X 1, X 2,..., X n ) uma amostra aleatória de dimensão n duma população com função de distribuição F (x θ), com parâmetro desconhecido θ. A estatística ˆΘ = h(x 1, X 2,..., X n ) é um estimador pontual de θ. Depois da amostra ter sido recolhida, o valor particular de ˆθ = h(x 1, x 2,..., x n ), é designado estimativa pontual de θ. Tabela 6.1: Alguns dos parâmetros populacionais que interessam estimar e respectivos estimadores pontuais. Parâmetro Populacional Estimador Pontual Média populacional Média amostral µ X = 1 n n X i Variância populacional Variância amostral σ 2 S 2 = 1 n n 1 (X i X) 2 Desvio padrão populacional Desvio padrão amostral n σ S = (X i X) 2 Proporção populacional p 1 n 1 Proporção amostral ˆP = X n 6.2 Propriedades dos estimadores Um dos principais objectivos da Estatística é a estimação de parâmetros desconhecidos, como por exemplo a média da população, a partir de uma amostra. Como muitas vezes temos vários estimadores para o mesmo parâmetro, qual devemos utilizar? É aconselhável a escolha do estimador que melhor satisfaça um critério de eficiência. Para definir o critério de eficiência que iremos utilizar, precisamos das seguintes definições: Definição 6.7 (Estimador centrado e assintoticamente centrado). Um estimador pontual, ˆΘ, diz-se centrado para o parâmetro θ se e só se E( ˆΘ) = θ. Caso E( ˆΘ) θ, o estimador diz-se enviesado. A diferença b( ˆΘ) = E( ˆΘ) θ corresponde ao valor do enviesamento ou viés de ˆΘ. Se E( ˆΘ) θ, e lim n E( ˆΘ) = θ, diz-se que o estimador é assintoticamente centrado.

49 6.2. PROPRIEDADES DOS ESTIMADORES 43 Definição 6.8 (Erro Padrão de um estimador). Dado um estimador pontual ˆΘ, centrado, define-se o seu erro padrão, SE ˆΘ, por SE ˆΘ = V ( ˆΘ). Caso o erro padrão envolva parâmetros desconhecidos, que possam ser estimados a partir dos valores da amostra, a substituição destes valores estimados no erro padrão produz o chamado erro padrão estimado, denotado por ŜE ˆΘ. Definição 6.9 (Eficiência). Sejam ˆΘ 1 e ˆΘ 2 dois estimador pontuais, centrados para θ. Diz-se que ˆΘ 1 é mais eficiente que ˆΘ 2, se e só se, SE ˆΘ1 SE ˆΘ2. Exemplo 6.10 (Cálculo do erro padrão do estimador da média da população - µ). Seja (X 1, X 2,..., X n ) uma amostra aleatória de uma população com valor médio µ e variância σ 2. Como, ( 1 E(X) = E n n ) X i = 1 n E(X i ) = 1 n n n µ = 1 nµ = µ, n concluímos que X é estimador centrado do valor médio da população, µ. Temos ainda, ( ) 1 n V (X) = V X i = 1 ( n ) n n 2 V X i = (X i v.a. s independentes) ou seja, SE X = = 1 n n 2 V (X i ) = 1 n 2 V (X) = σ n. n σ 2 = 1 n 2 nσ2 = σ2 n, O próximo resultado é importante porque indica-nos o limite inferior da variância de um estimador centrado. Um estimador com variância igual ao valor mínimo é mais eficiente do que qualquer outro estimador centrado. Definição 6.11 (Limite inferior de Cramér-Rao). Seja (X 1, X 2,..., X n ) uma amostra aleatória retirada de uma população com função densidade f(x θ) (ou função de probabilidade P (X θ)), satisfazendo as condições de regularidade (f duas vezes diferenciável e com suporte independente de θ). Dado um estimador pontual ˆΘ, centrado para θ, V ( ˆΘ) 1 ni(θ), com I(θ) = E ( 2 ln f(x θ) θ 2 ).

50 44 CAPÍTULO 6. ESTIMAÇÃO PONTUAL Exemplo 6.12 (Limite inferior de Cramér-Rao do modelo Poisson). Seja (X 1, X 2,..., X n ) uma amostra aleatória retirada de uma população com distribuição Poisson de parâmetro λ. Como ln[p (X λ)] = λ + X ln λ ln(x!), resulta que Logo, ln P (X λ) λ = 1 + X λ ; e 2 ln P (X λ) λ 2 = 1 λ 2. ( 2 ln P (X λ)) I(λ) = E λ 2 = 1 λ 2. Conclui-se assim que, V (ˆλ) 1 ni(λ) = λ n, para qualquer estimador ˆλ, centrado para λ. Definição 6.13 (Estimador consistente). Um estimador pontual ˆΘ, centrado para θ, diz-se consistente se lim V ( ˆΘ) = 0. n Exemplo 6.14 (Consistência da Média amostral). Seja (X 1, X 2,..., X n ) uma amostra aleatória de uma população com valor médio µ e variância σ 2. Sabemos que X é estimador centrado do valor médio da população, µ e V (X) = σ2 n. Como, lim V ( ˆΘ) = σ2 n n = 0, concluímos que X é consistente para µ. 6.3 Método dos Momentos Definição 6.15 (Método dos Momentos). Seja (X 1, X 2,..., X n ) uma amostra aleatória, retirada de uma população cuja distribuição depende de k parâmetros desconhecidos, θ 1, θ 2,..., θ k. O método dos momentos consiste em utilizar os momentos da amostra para estimar os respectivos momentos da população, e consequentemente os parâmetros desconhecidos. Os estimadores de momentos, ˆθ 1, ˆθ 2,..., ˆθ k, são os que resultam da resolução do sistema de k equações a k incógnitas, m 1 = M 1 m 2 = M 2 m 3 = M 3. m k = M k onde m j = E(X j ) (m 1 = E(X)) M j = 1 n n X j i (M 1 = X) Observação: Caso alguma das k equações não contenha qualquer informação sobre os parâmetros, essa equação deve ser substituída pela equação µ j = M j, com j > k.

51 6.3. MÉTODO DOS MOMENTOS 45 Inconvenientes: 1. Por vezes não existe uma escolha unívoca; 2. Por vezes a solução é inadmissível; Exemplo 6.16 (Estimador dos momentos do parâmetro λ, do modelo Poisson). Considere uma população com distribuição P (λ). O estimador dos momentos de λ é a solução da equação: E(X) = X λ = X. O estimador dos momentos de λ é, ˆλ = X. Exemplo 6.17 (Estimador dos momentos de σ 2 do modelo N(0, σ 2 )). Seja (X 1, X 2,..., X n ) uma amostra aleatória, retirada de uma população com distribuição Normal de valor médio 0 (conhecido) e variância σ 2 (desconhecida). A solução da primeira equação é: E(X) = X 0 = X. Contudo, como esta primeira equação não contém o parâmetro que interessa estimar, devemos considerar a segunda equação: E(X 2 ) = M 2 E(X 2 ) = V (X) + E 2 (X) = M 2 σ 2 = M 2. O estimador dos momentos de σ 2 é, ˆσ 2 = n X 2 i n. Exemplo 6.18 (Estimadores dos momentos dos parâmetro a e b, do modelo Uniforme). Considere uma população com distribuição U(a, b). Os estimadores dos momentos de a e b são os que resultam da resolução do sistema de equações: { E(X) = X m 2 = M 2 (b a) ( a+b 2 a+b 2 = X ) 2 = M2 ou seja os estimadores dos momentos de a e b são, â = X 3(M 2 X 2 ) e ˆb = X + 3(M 2 X 2 ); a = X 3(M 2 X 2 ) b = X + 3(M 2 X 2 ),

52 46 CAPÍTULO 6. ESTIMAÇÃO PONTUAL 6.4 Método da máxima verosimilhança Este método é um pouco mais complicado que o anterior. Contudo, os estimadores obtidos por este método têm melhores propriedades teóricas. O método é apresentado apenas para populações cuja distribuição tem apenas um parâmetro desconhecido. Seja (X 1, X 2,..., X n ) uma amostra aleatória, isto é, um conjunto de n v.a. s i.i.d. com função densidade comum f(x θ) onde θ é um parâmetro desconhecido. A função densidade conjunta da amostra aleatória é n f(x 1, x 2,..., x n θ) = f(x i θ). Observação: Caso a população tenha distribuição discreta, devemos substituir a função densidade pela função de probabilidade. Definição 6.19 (Função de verosimilhança e log-verosimilhança). Depois da amostra ser observada, os valores x 1, x 2,..., x n são conhecidos e podemos considerar que a função anterior depende apenas de θ. Esta função é designada função de verosimilhança e costuma representar-se por: n L(θ) = L(θ x 1, x 2,..., x n ) = f(x i θ). É geralmente mais fácil trabalhar com a função log-verosimilhança, isto é, com o logaritmo da função verosimilhança: n l(θ) = ln L(θ) = ln f(x i θ). Exemplo 6.20 (Função log-verosimilhança do modelo de Poisson(λ)). Considere uma população com distribuição Poisson com parâmetro desconhecido λ. Então, observada a amostra (x 1, x 2,..., x n ), e admitindo que x i N 0, i = 1, 2..., n, a função log-verosimilhança é: ( n l(λ) = ln L(λ) = ln (e λ λx i ) n ) n = nλ + x i ln λ ln(x i!). x i! Definição 6.21 (Método da máxima verosimilhança:). O estimador de máxima verosimilhança de θ é obtido por maximização da função verosimilhança, ou equivalentemente da função logverosimilhança, com respeito a θ. O estimador de máxima verosimilhança é denotado por ˆθ MLE, mas para simplificação da notação representa-se apenas por ˆθ. Então: max θ l(θ) = l(ˆθ)

53 6.5. DISTRIBUIÇÕES POR AMOSTRAGEM 47 Se L(θ), ou equivalentemente l(θ), é regular (duas vezes diferenciável e com suporte independente de θ) o máximo é obtido por derivação, isto é, é obtido através da resolução de: l(θ) θ = 0, e 2 l(θ) θ 2 < 0. Exemplo 6.22 (Estimador de máxima verosimilhança do parâmetro do modelo de Poisson). Considere a função log-verosimilhança do exemplo Como l(λ) é regular, o estimador de máxima verosimilhança é a solução da equação l(λ) λ = 0 n + 1 λ n x i = 0 n λ = x i /n, isto é, o estimador de máxima verosimilhança de λ é ˆλ = X. Propriedades dos estimadores de máxima verosimilhança 1. Os estimadores de máxima verosimilhança são assintoticamente centrados, isto é, lim n E(ˆθ) = θ; 2. Os estimadores de máxima verosimilhança são consistentes; 3. Em condições gerais de regularidade, o estimador de máxima verosimilhança de θ tem distribuição assintoticamente normal de valor médio θ e variância 1 ni(θ) ; 4. A propriedade da invariância é válida para qualquer estimador de máxima verosimilhança, isto é, se ˆθ é um estimador de máxima verosimilhança de θ e se β = g(θ) é uma função biunívoca de θ, então o estimador de máxima verosimilhança de β é ˆβ = g(ˆθ); 6.5 Distribuições por Amostragem Nesta secção vamos estudar a distribuição por amostragem dos estimadores pontuais da Tabela Distribuição por amostragem da média amostral, X Suponhamos que foi seleccionada uma amostra aleatória de dimensão n, (X 1, X 2,..., X n ), de uma população de média µ e variância σ 2. A distribuição por amostragem de X pode ser obtida sob diversas condições:

54 48 CAPÍTULO 6. ESTIMAÇÃO PONTUAL 1. Suponhamos a população tem distribuição Normal e que o valor da variância da população é conhecido. Consequentemente, tendo em conta as propriedades da distribuição normal, X N(µ, σ 2 /n), ou seja, Z = X µ σ/ n N(0, 1). (6.1) 2. Suponhamos a população tem distribuição Normal e que o valor da variância da população é desconhecido. Vamos aqui usar S 2 para estimar σ 2. Nestas condições, Z = X µ σ/ n N(0, 1) e (n 1)S 2 σ 2 χ 2 n 1. Como a população tem distribuição Normal, podemos assegurar que Z e S 2 são v.a. independentes (demonstração fora do âmbito desta disciplina). Pelo Teorema 4.44, T = X µ S/ n = X µ σ/ n (n 1)S 2 /σ 2 (n 1) t n 1. (6.2) 3. Suponhamos que a população tem distribuição não-normal e que o valor da variância da população é conhecida, mas a dimensão da amostra, n, é superior ou igual a 30. Neste caso, a distribuição por amostragem da média amostral pode ser aproximada pela distribuição Normal reduzida, justificado através do Teorema Limite Central: Z = X µ σ/ n a N(0, 1). (6.3) 4. Finalmente, consideremos que seleccionámos uma amostra aleatória de uma população com distribuição não-normal, com variância da população desconhecida e que temos um tamanho de amostra n superior ou igual a 30. Tal como no caso anterior, Z = X µ σ/ n a N(0, 1). Como σ 2 não é conhecido, mas a dimensão da amostra é grande então S σ, e podemos substituir, na expressão anterior, σ por S (desvio padrão), isto é, Z = X µ S/ n a N(0, 1). (6.4) Observação: Os resultados das equações (6.3) e (6.4) são válidos para qualquer população. Contudo, o modelo Normal é excluído porque conhecemos a distribuição exacta da média amostral: equações (6.1) e (6.2).

55 6.5. DISTRIBUIÇÕES POR AMOSTRAGEM Distribuição por amostragem da diferença de médias amostrais, X 1 X 2 Aqui consideramos apenas um de muitos casos possíveis. Supondo que foram seleccionadas, de forma independente, duas amostras aleatórias de dimensões n 1 e n 2, respectivamente, de duas populações Normais independentes com variâncias conhecidas dadas, respectivamente, por σ 2 1 e σ 2 2. Sejam X 1 e X 2 as médias das duas amostras aleatórias. Neste contexto, a distribuição por amostragem de X 1 X 2 é ainda Normal, por ser a combinação linear de variáveis aleatórias normais independentes: Z = (X 1 X 2 ) (µ 1 µ 2 ) N(0, 1). σ1 2 n 1 + σ2 2 n Distribuição por amostragem da variância amostral, S 2 Suponhamos que foi seleccionada uma amostra aleatória de dimensão n, (X 1, X 2,..., X n ), de uma população Normal de média µ, desconhecida, e variância σ 2. Neste contexto, a distribuição por amostragem de S 2 = 1 ( 2 n n 1 X i X) é dada por: X 2 = (n 1)S2 σ 2 χ 2 n Distribuição por amostragem da proporção, ˆP Admita que os elementos de determinada população possuem uma dada característica, com uma certa probabilidade p desconhecida, independentemente uns dos outros. selecciona uma amostra aleatória de n elementos desta população. Suponhamos que se Se X denotar o número de elementos da amostra aleatória que possuem a referida característica, sabemos que X Bin(n, p). justifica que: Z = Se o tamanho da amostra for suficientemente grande, o Teorema Limite Central X np np(1 p) a N(0, 1). Como p pode ser estimado pontualmente pela proporção de elementos da amostra possuem a referida característica, ˆP = X n, a distribuição por amostragem aproximada de ˆP é Z = ˆP p p(1 p)/n a N(0, 1).

56 50 CAPÍTULO 6. ESTIMAÇÃO PONTUAL Tabela 6.2: Distribuições por amostragem Estimador População Distribuição X Normal de média µ σ 2 conhecida σ 2 desconhecida Pop. não-normal σ 2 conhecida Z = X µ σ/ n Z = X µ σ/ N(0, 1) n T = X µ S/ n t n 1 a N(0, 1) de média µ e n 30 σ 2 desconhecida Z = X µ S/ n a N(0, 1) X 1 X 2 2 Populações independentes, N(µ1, σ 2 1 ) e N(µ 2, σ 2 2 ), Z = (X 1 X 2 ) (µ 1 µ 2 ) σ σ2 2 n 1 n 2 com σ 2 1 e σ2 2 conhecidas N(0, 1) a ˆP Qualquer população e n grande Z = N(0, 1) p(1 p)/n ˆP p S 2 Normal de média µ desconhecida X 2 = (n 1)S2 σ 2 χ 2 n 1

57 Capítulo 7 Estimação por Intervalo de Confiança A indicação de um único valor como estimativa, de um parâmetro θ, não nos dá informação sobre a precisão desse valor. Por isso, em muitas situações, interessa-nos dar uma medida desse erro. Assim, em vez de se indicar a sua estimativa pontual, é preferível indicar que o parâmetro a estimar estará provavelmente no intervalo ]t 1, t 2 [, onde os extremos t 1 e t 2 dependem do valor da estimativa pontual desse parâmetro. Definição 7.1 (Intervalo Aleatório). Seja (X 1, X 2,..., X n ) uma amostra aleatória de uma população com função de distribuição F. Considere as estatísticas T 1 (X 1, X 2,..., X n ) e T 2 = (X 1, X 2,..., X n ), tais que P (T 1 < θ < T 2 ) = 1 α, onde α ]0, 1[ não depende de θ. Então ]T 1, T 2 [ é um intervalo aleatório para θ. Definição 7.2 (Intervalo de Confiança). Seja (x 1, x 2,..., x n ) uma realização da amostra aleatória e sejam t 1 = T 1 (x 1, x 2,..., x n ) e t 2 = T 2 (x 1, x 2,..., x n ), os valores das estatísticas T 1 e T 2 (introduzidas na Definição 7.1). Ao intervalo ]t 1, t 2 [ chamamos intervalo de confiança (1 α) 100% para θ. O valor (1 α) representa o nível (ou coeficiente) de confiança do intervalo e α o nível de significância. Normalmente são usados níveis de confiança superiores a 90%. Observações: Diferentes amostras produzirão eventuais valores distintos ˆθ e consequentemente diferentes extremos t 1 e t 2. Os valores t 1 e t 2 são denominados limites de confiança inferior e superior, respectivamente. 51

58 52 CAPÍTULO 7. ESTIMAÇÃO POR INTERVALO DE CONFIANÇA A amplitude de um intervalo de confiança, t 2 t 1, é uma importante medida da qualidade da informação fornecida através da amostra. Definição 7.3 (Variável Pivot ou Fulcral). Seja (X 1, X 2,..., X n ) uma amostra aleatória, retirada de uma população com função de distribuição F de parâmetro θ. A função T (X 1, X 2,..., X n ) é uma variável pivot, ou fulcral, se a sua distribuição for independente de θ. Observação: As variáveis aleatórias Z, T e X 2, apresentadas na Tabela 6.2, são variáveis Pivot. Definição 7.4 (Método de determinação de um Intervalo de Confiança a partir de uma variável Pivot). Seja (X 1, X 2,..., X n ) uma amostra aleatória, retirada de uma população com função de distribuição F, com parâmetro θ, e seja T uma variável Pivot. Dado o nível de confiança (1 α), é necessário determinar os valores c 1 e c 2 tais que P (c 1 < T < c 2 ) = 1 α. Caso se verifique, c 1 < T < c 2 T 1 (X 1, X 2,..., X n ) < θ < T 2 (X 1, X 2,..., X n ), então também se pode garantir que P (T 1 (X 1, X 2,..., X n ) < θ < T 2 (X 1, X 2,..., X n )) = 1 α. Logo, o intervalo aleatório para θ é ]T 1 (X 1, X 2,..., X n ), T 2 (X 1, X 2,..., X n )[ = ]T 1, T 2 [. Observada a amostra (x 1, x 2,..., x n ), o intervalo de confiança para θ é dado por ]t 1, t 2 [, onde t 1 = T 1 (x 1, x 2,..., x n ) e t 2 = T 2 (x 1, x 2,..., x n ). 7.1 Intervalo de Confiança para a média da população, µ População Normal com variância conhecida Suponhamos que seleccionámos uma amostra aleatória (X 1, X 2,..., X n ) de uma população Normal, de variância σ 2 conhecida, com a qual pretendemos construir um intervalo de confiança (1 α) 100% para µ. Escolha da estatística pivot: Z = X µ σ/ n N(0, 1);

59 7.1. INTERVALO DE CONFIANÇA PARA A MÉDIA DA POPULAÇÃO, µ 53 Determinação de c 1 e c 2 : Seja z a um valor tal que P (Z > z a ) = a. Escolhemos c 1 = z 1 α/2 = z α/2 e c 2 = z α/2, como indicado na Figura 7.1. Esta escolha não é casual. Quando c 1 = c 2 obtemos o intervalo de menor amplitude. O valor z α/2 é obtido através da resolução da equação: ) P ( z α/2 < Z < z α/2 = 1 α P (Z < z α/2 ) P (Z z α/2 ) = 1 α (7.1) Φ(z α/2 ) Φ( z α/2 ) = 1 α Φ(z α/2 ) = 1 α/2 z α/2 = Φ 1 (1 α/2) α z α 2 0 z α 2 Figura 7.1: Intervalo aleatório da variável pivot Z. Determinação dos extremos do intervalo aleatório: Logo, z α/2 < X µ σ/ n < z α/2 z α/2 σ n < X µ < z α/2 σ n z α/2 σ n X < µ < z α/2 σ n X X z α/2 σ n < µ < X + z α/2 σ n P ( z α/2 < Z < z α/2 ) = P ( X z α/2 σ n < µ < X + z α/2 σ n ) = 1 α. Assim, tendo uma amostra concreta (x 1, x 2,..., x n ), o intervalo de confiança (1 α) 100 para µ é: IC (1 α) 100% (µ) ]x z α/2 σ n ; x + z α/2 σ n [. Exemplo 7.5. Considere a população do peso das formigas Solenopsis, medido em décimas de grama, que sabemos ter distribuição Normal com média µ e variância σ 2 = 2 2, X N(µ, 2 2 ). Desta população observámos a amostra de 4 pesos, (8, 13, 9, 8.5), a qual usámos para obter uma

60 54 CAPÍTULO 7. ESTIMAÇÃO POR INTERVALO DE CONFIANÇA estimativa de µ, x = 9.625dg. intervalo de confiança a 95% para µ. Queremos agora determinar limites inferior e superior de um Resolução: Seja X a média amostral da amostra de dimensão 4, (X 1, X 2, X 3, X 4 ). Como a população tem distribuição Normal, e a variância é conhecida, vamos considerar a estatística pivot Z = X µ σ/, cuja distribuição por amostragem foi obtida no capítulo anterior: n Z = X µ σ/ n = X µ 2/ N(0, 1). 4 Seja z um valor tal que P ( z < Z < z ) = 0.95, conforme a Figura 7.2 ilustra. Para z z Figura 7.2: Intervalo aleatório da variável pivot Z. determinar o valor de z 0.025, é necessário efectuar os seguintes cálculos: P ( z < Z < z ) = 0.95 P (Z < z ) P (Z z ) = 0.95 Φ(z ) Φ( z ) = 0.95 Φ(z ) = z = Φ 1 (0.975) 1.96 Assim, ( P ( 1.96 < Z < 1.96) = 0.95 P 1.96 < X µ ) 2/ 4 < 1.96 = 0.95 ( ) P < X µ < = 0.95 ( ) P X 1.96 < µ < X = 0.95 ( ) P X 1.96 < µ < X = 0.95 Logo, o intervalo aleatório, para µ, com 95% de confiança é ] [ X 1.96; X Concretizando este intervalo para a amostra observada, (x 1, x 2, x 3, x 4 ) = (8, 13, 9, 8.5), obtemos o intervalo de confiança a 95% para µ: IC 95% (µ) = ]x 1.96 ; x [ = ] ; [ =]7.665 ; [.

61 7.1. INTERVALO DE CONFIANÇA PARA A MÉDIA DA POPULAÇÃO, µ 55 Observação: Vejamos agora o que sucede aumentando a confiança do intervalo para 99%. Como Z , ( ) P ( Z < Z < Z ) = 0.99 P 2.58 < X µ 2/ < 2.58 = ( P X / 4 < µ < X / ) 4 = 0.99 Assim, IC 99% (µ) = ]x 2.58; x [=] ; =]7.045; [. Concluímos que quando aumentamos o nível de confiança, também aumentamos a sua amplitude! População Normal com variância desconhecida Seja (X 1, X 2,..., X n ) uma amostra aleatória de uma população Normal(µ, σ 2 ), de variância σ 2 desconhecida, com a qual pretendemos construir um intervalo de confiança (1 α) 100% para µ: Escolha da estatística pivot: T = X µ S/ n t n 1. Para um nível de confiança de (1 α) 100%, escolhemos de c 1 = t n 1,α/2 e c 2 = t n 1,α/2, como indicado na Figura α 0.0 t n 1:α 2 0 t n 1:α 2 Figura 7.3: Intervalo aleatório da variável pivot T.

62 56 CAPÍTULO 7. ESTIMAÇÃO POR INTERVALO DE CONFIANÇA Determinação dos extremos do intervalo aleatório: t n 1,α/2 < X µ S/ n < t n 1,α/2 t n 1,α/2 S n < X µ < t n 1,α/2 S n t n 1,α/2 S n X < µ < t n 1,α/2 S n X X t n 1,α/2 S n < µ < X + t n 1,α/2 S n Assim, obtemos o seguinte intervalo de confiança (1 α) 100% para µ: s s IC (1 α) 100% (µ) ]x t n 1,α/2 ; x + t n n 1,α/2 [. n População não-normal com variância conhecida e n > 30 Supondo que seleccionámos uma amostra aleatória de dimensão n > 30, (X 1, X 2,..., X n ), de uma população não-normal com média µ e variância conhecida σ 2, e com a qual pretendemos construir um intervalo de confiança (1 α) 100% para µ: Escolha da estatística pivot: Z = X µ σ/ n a N(0, 1). Determinação de c 1 e c 2 : De modo análogo, ao efectuado na página 53, escolhemos: c 1 = z α/2 e c 2 = z α/2, com z α/2 = Φ 1 (1 α/2). Repetido as contas efectuadas na sub-secção 7.1.1, obtemos: P ( z α/2 < Z < z α/2 ) = P ( X z α/2 σ n < µ < X + z α/2 σ n ) = 1 α. Assim, observada a amostra (x 1, x 2,..., x n ), obtemos o seguinte intervalo de confiança (1 α) 100% para µ: IC (1 α) 100% (µ) ]x z α/2 σ n ; x + z α/2 σ n [ População não-normal com variância desconhecida e n > 30 Admitindo que seleccionámos uma amostra aleatória de dimensão n > 30, (X 1, X 2,..., X n ), de uma população com distribuição não-normal, com média µ e variância σ 2, ambos desconhecidos. Pretendemos um intervalo de confiança (1 α) 100% para µ. Como usamos a estatística pivot: Z = X µ S/ n a N(0, 1),

63 7.1. INTERVALO DE CONFIANÇA PARA A MÉDIA DA POPULAÇÃO, µ 57 a determinação do intervalo de confiança para µ é feita de forma análoga ao caso anterior (substituindo σ por S). Obtemos assim, o seguinte intervalo de confiança (aproximado) (1 α) 100% para µ: IC (1 α) 100% (µ) ]x z α/2 s n ; x + z α/2 s n [. Exemplo 7.6 (Exame de P.E. D /06). Queremos estudar há quanto tempo residem nas suas moradas actuais as pessoas de certa cidade na província. Uma amostra aleatória de 41 famílias revelou uma média de 35 meses de residência e um desvio padrão de 6.3 meses. a) Qual a sua melhor estimativa do tempo médio de residência da população desta cidade? b) Deduza um intervalo de confiança a 98% para o verdadeiro tempo médio de residência. Justifique o seu procedimento. Resolução: a) Para estimar a média da população vamos usar o estimador média da amostra, X. Trata-se do estimador da média que possui duas propriedades importantes: é centrado para µ e consistente. Neste exercício, a estimativa do tempo médio de residência da população é x = 35 meses. b) Para deduzir o intervalo de confiança, vamos admitir que (X 1, X 2..., X n ) é uma amostra aleatória com n > 30. Vamos considerar a estatística pivot Z = X µ S/, cuja distribuição foi n deduzida no capítulo anterior, isto é, Z = X µ S/ n a N(0, 1) Figura 7.4: Intervalo aleatório da variável pivot Z.

64 58 CAPÍTULO 7. ESTIMAÇÃO POR INTERVALO DE CONFIANÇA Como P ( z 0.01 < Z < z 0.01 ) = 0.98, onde z , como indicado na Figura 7.4, e z 0.01 < Z < z < X µ S/ n < S n < X µ < 2.32 S n X 2.32 S n < µ < X S n, resulta que P (X 2.32 S < µ < X S ) = n n Logo o intervalo com 98% de confiança para o valor médio da população é IC 98% (µ) ]x 2.32 s n ; x s n [. Como da amostra recolhida resultou x = 35 e s = 6.3, o intervalo com 98% de confiança para o valor médio da população é IC 98% (µ) ] ; [ = ]32.72, 37.28[. 7.2 Intervalo de Confiança para a variância populacional, σ 2, e para o desvio padrão populacional, σ Nesta secção, vamos deduzir um intervalo de confiança (1 α) 100% para a variância da população. Consideramos o caso em que temos uma amostra aleatória (X 1, X 2,..., X n ) de uma população com distribuição Normal(µ, σ 2 ), com valor médio µ desconhecido. Vamos usar a estatística pivot cuja distribuição por amostragem foi apresentada no capítulo anterior, isto é, a estatística pivot: X 2 = (n 1)S2 σ 2 χ 2 n 1 ; Para um nível de confiança de (1 α) 100%, escolha de c 1 e c 2 : A escolha dos extremos do intervalo aleatório, c 1 = χ 2 n 1,1 α/2 e c 2 = χ 2 n 1,α/2, é feita de acordo com a Figura 7.5. Para determinar estes valores é necessário efectuar as operações: P (X 2 < c 1 ) = α 2 α ) c 1 = F, χn 1( 2 2 P (X 2 > c 2 ) = α 2 P (X2 c 2 ) = 1 α 2 c 2 = F 1 χ 2 n 1 ( 1 α ), 2 onde F 1 χ 2 n 1 ( α 2 ) e F 1 χ 2 n 1 ( 1 α 2 ) podem ser obtidos numa tabela de quantis da distribuição Qui Quadrado.

65 7.2. INTERVALO DE CONFIANÇA PARA A VARIÂNCIA POPULACIONAL, σ 2, E PARA O DESVIO PADRÃO POPULACIONAL, σ 59 α 2 1 α α χ n 1:1 α 2 2 χ n 1:α 2 Figura 7.5: Intervalo aleatório da variável pivot X 2. Determinação dos extremos do intervalo de confiança: Como, χ 2 n 1,1 α/2 < X2 < χ 2 n 1,α/2 χ2 n 1,1 α/2 (n 1)S 2 < 1 σ 2 < χ2 n 1,α/2 (n 1)S 2 (n 1)S 2 χ 2 n 1,α/2 concluímos que < σ 2 < (n 1)S2 χ 2, n 1,1 α/2 ( ) ( (n 1)S P χ 2 n 1,1 α/2 < X2 < χ 2 2 n 1,α/2 = P χ 2 n 1,α/2 < σ 2 < (n 1)S2 ) χ 2 = 1 α. n 1,1 α/2 Assim, observada a amostra (x 1, x 2,..., x n ), e calculada a respectiva variância amostral, s 2, o intervalo de confiança para σ 2 é: ] (n 1)s IC (1 α) 100% (σ 2 2 ) = ; χ 2 n 1,α/2 (n 1)s 2 [ χ 2. n 1,1 α/2 Observação: Como ( (n 1)S 2 P χ 2 n 1,α/2 < σ 2 < (n 1)S2 ) ( (n 1)S χ 2 = P 2 n 1,1 α/2 χ 2 n 1,α/2 podemos assim apresentar o seguinte intervalo de confiança para σ: (n 1)S2 ) < σ < = 1 α. χ 2 n 1,1 α/2 (n 1)s2 IC (1 α) 100% (σ) χ 2 n 1,α/2 ; (n 1)s2 χ 2. n 1,1 α/2

66 60 CAPÍTULO 7. ESTIMAÇÃO POR INTERVALO DE CONFIANÇA 7.3 Intervalo de Confiança para proporção populacional, p Vamos deduzir nesta secção um intervalo de confiança (1 α) 100% para a proporção populacional p. Consideramos a situação em que estamos interessados em estimar a proporção dos elementos que, na população, possuem determinada característica, através da correspondente proporção amostral ˆP, referente a uma amostra de dimensão suficientemente grande. Podemos assim usar a seguinte estatística pivot, cuja distribuição por amostragem foi considerada no capítulo anterior: Escolha da estatística pivot: Z = ˆP p p(1 p)/n a N(0, 1); Para um nível de confiança de (1 α) 100%, escolhemos c 1 = z α/2 e c 2 = z α/2 tais que P ( z α/2 < Z < z α/2 ) = 1 α. De acordo com os cálculos apresentados na página 53, z 1 α/2 = Φ 1 (1 α/2). Determinação dos extremos do intervalo aleatório: z α/2 < Z < z α/2 z α/2 < ˆP p p(1 p)/n < z α/2 (7.2) A resolução das inequações anteriores, em ordem a p, torna-se muito mais simples se substituirmos p(1 p)/n, pela sua estimativa, ˆP (1 ˆP )/n. Se a dimensão da amostra for elevada esta substituição não deverá afectar muito a precisão do intervalo. efectuando a substituição, Assim, z α/2 < ˆP p ˆP (1 ˆP )/n < z α/2 z α/2 ˆP (1 ˆP )/n < ˆP p < zα/2 ˆP (1 ˆP )/n z α/2 ˆP (1 ˆP )/n ˆP < p < zα/2 ˆP (1 ˆP )/n ˆP ˆP z α/2 ˆP (1 ˆP )/n < p < ˆP + zα/2 ˆP (1 ˆP )/n Então, P ( z α/2 < ˆP p p(1 p)/n < z α/2 ) ( ) P ˆP z α/2 ˆP (1 ˆP )/n < p < ˆP + zα/2 ˆP (1 ˆP )/n 1 α Assim, observada a amostra e calculada a respectiva proporção ˆp, obtemos o seguinte intervalo de confiança aproximado: [ IC (1 α) 100% (p) = ]ˆp z α/2 ˆp(1 ˆp)/n ; ˆp + z α/2 ˆp(1 ˆp)/n.

67 7.3. INTERVALO DE CONFIANÇA PARA PROPORÇÃO POPULACIONAL, P 61 Exemplo 7.7. Num inquérito destinado a estimar a proporção p da população que tem TV por cabo, foram inquiridas 200 pessoas, das quais 78 afirmaram ter este serviço. Temos a estimativa pontual da proporção da população com TV por cabo ˆp = Como n = 200 > 30 e z 0.05 = 1.96, o intervalo de 95% de confiança para a proporção p é: ] [ (1 0.39)/200 ; (1 0.39)/200 =]0.322, 0.458[. Observação: Tal como já foi referido, também é possível resolver as inequações em (7.2) em ordem a p sem a substituição de p(1 p)/n, pela sua estimativa, ˆP (1 ˆP )/n. Esta resolução, embora tenha muito mais cálculos, conduz-nos à inequação: ( 1 + z2 α/2 n ) ( p 2 2 ˆP + z2 α/2 n ) p + ˆP 2 < 0, Os extremos Inferior e superior do intervalo de confiança são, respectivamente: ˆP + z 2 α/2 /n z α/2 ˆP (1 ˆP )/n + z 2 α/2 /(4n2 ) 1 + z 2 α/2 /n, ˆP + z 2 α/2 /n + z α/2 ˆP (1 ˆP )/n + z 2 α/2 /(4n2 ) 1 + z 2 α/2 /n. Como ilustração, apresentamos o intervalo de confiança a 95% para a a proporção p, do Exemplo 7.7: IC 95% (p) =]0.325, 0.459[.

68 62 CAPÍTULO 7. ESTIMAÇÃO POR INTERVALO DE CONFIANÇA

69 Capítulo 8 Teste de Hipóteses 8.1 Introdução Vamos começar por introduzir alguns conceitos importantes e alguma notação. Definição 8.1 (Hipótese Estatística). Uma hipótese estatística é uma conjectura acerca da distribuição de uma ou mais variáveis aleatórias. Para cada hipótese que se faça, designada por hipótese nula e denotada por H 0, há sempre outra hipótese, designada por hipótese alternativa e denotada por H 1. Se a hipótese estatística H 0 especifica completamente a distribuição é chamada de hipótese simples. Caso contrário é chamada de hipótese composta. Uma hipótese estatística pode ser, ou não ser, verdadeira. A verdade ou falsidade nunca pode ser confirmada, a menos que observássemos toda a população, o que nalguns casos é impraticável (quando a população é muito grande) ou até mesmo impossível (no caso de populações infinitas, ou quando característica em estudo leva à destruição dos elementos observados). Exemplo 8.2 (Hipótese Estatística). Seja (X 1, X 2,..., X n ) uma amostra aleatória da população dos pesos das formigas Solenopsis anteriormente considerada. A hipótese estatística de que o peso médio desta população toma o valor 8dg denota-se por: H 0 : µ = 8 versus H 1 : µ 8 (Hipótese simples) É usual abreviar a palavra versus para vs : H 0 : µ = 8 vs H 1 : µ 8 A hipótese estatística de que o peso médio desta população é menor ou igual a 8dg denota-se por: H 0 : µ 8 vs H 1 : µ > 8 (Hipótese composta). 63

70 64 CAPÍTULO 8. TESTE DE HIPÓTESES Ao testarmos uma hipótese nula contra uma hipótese alternativa, a nossa atitude deverá ser admitir H 0 como verdadeira até que os dados fornecidos pela amostra testemunhem fortemente contra ela; nesse caso, H 0 deverá ser rejeitada a favor de H 1. Definição 8.3 (Teste de Hipóteses). Um teste de hipóteses é uma regra que nos permite decidir se devemos, ou não, rejeitar H 0. Esta regra é baseada no valor que a estatística de teste W assume. Assim se, W (x 1, x 2,..., x n ) R, rejeita-se H 0 (e aceita-se H 1 como verdadeira); W (x 1, x 2,..., x n ) / R, não se rejeita H 0. O conjunto R representa a região crítica ou região de rejeição. Definição 8.4 (Erros de tipo I e de tipo II). Quando realizamos um Teste de Hipóteses podemos cometer um dos seguintes erros: A rejeição de H 0 quando ela é verdadeira (erro de tipo I); A não rejeição de H 0 quando esta é falsa (erro de tipo II). Representamos por α e β, respectivamente, a probabilidade de ocorrer um erro de tipo I ou II, isto é, α = P (erro de tipo I) = P (rejeitar H 0 H 0 é verdadeira); β = P (erro de tipo II) = P (não rejeitar H 0 H 0 é falsa). Chamamos ainda nível de significância a α e potência do teste a 1 β. Os níveis de significância mais usuais são α = 0.01, α = 0.05 ou α = 0.1. Observação: O teste ideal é aquele em que estas as probabilidades α e β têm valor mínimo. Contudo, é impossível minimizá-las simultaneamente. De facto, quando α diminui, β aumenta e vice-versa. O procedimento usual consiste em fixar o nível de significância α e escolher a região de rejeição que minimiza β, isto é, que maximize a potência do teste. Exemplo 8.5. Seja (X 1, X 2,..., X n ) uma amostra aleatória da população dos pesos das formigas Solenopsis, isto é, da população X N(µ, 2 2 ). Um teste possível para testar: H 0 : µ 8 vs H 1 : µ > 8, é rejeitar H 0 se X 8 2/ n > 1.64.

71 8.2. TESTE DE HIPÓTESES PARA A MÉDIA DA POPULAÇÃO 65 Definição 8.6 (Valor-p ou p-value ). De um modo informal, podemos definir o valor-p ou p-value como o mais pequeno nível de significância que leva à rejeição de H 0. Assim, um valor-p pequeno é desfavorável a H 0. um valor-p elevado indica que as observações são consistentes com H 0. Nota: Geralmente o software estatístico apenas apresenta o valor-p do teste. Cabe ao utilizador tomar a decisão ao nível de significância α. Quanto menor for o valor-p, menor é a consistência entre os dados e H 0. Assim, se valor-p < α, devemos rejeitar H 0, ao nível de significância α. Regra de cálculo do valor-p: Seja (x 1, x 2,..., x n ) a concretização da amostra aleatória e w obs = W (x 1, x 2,..., x n ), o valor observado da estatística de teste W. O valor-p corresponde à probabilidade de se observar um valor igual ou mais extremo do que o observado, w obs, se a hipótese nula é verdadeira. O cálculo desta probabilidade depende do tipo de região de rejeição da hipótese H 0, conforme indicado na seguinte tabela: Região de rejeição valor-p ], c [ ] c, + [ ou 2 min { P (W < w obs H 0 ), P (W > w obs H 0 ) } ] 0, b [ ] c, + [ ], c [ ou P (W < w obs H 0 ) ] 0, c [ ] c, + [ P (W > w obs H 0 ) 8.2 Teste de Hipóteses para a média da população De modo análogo, ao efectuado no capítulo anterior, a dedução do teste de hipóteses para o valor médio da população será feito admitindo um dos seguintes pressupostos: 1. População Normal e Variância conhecida; 2. População Normal e Variância desconhecida; 3. População não-normal e Variância conhecida; 4. População não-normal e Variância desconhecida.

72 66 CAPÍTULO 8. TESTE DE HIPÓTESES Teste bilateral Vamos admitir que (X 1, X 2,..., X n ) representa uma amostra aleatória de uma população Normal com variância conhecida e que pretendemos testar H 0 : µ = µ 0 vs H 1 : µ µ 0 (teste bilateral) Já sabemos que X é um estimador centrado de µ. Também já se verificou que n X µ σ N(0, 1), embora o valor médio, µ, seja desconhecido. Assim, vamos considerar a seguinte estatística de teste: Z = X µ 0 σ/ n N(0, 1). sob H 0 Considere o nível de significância α. Estamos interessados em rejeitar H 0 quando os valores observados não estiverem de acordo com esta hipótese, isto é, quando a diferença entre X e µ 0 for grande. Assim, vamos considerar a região de rejeição R α = ], z α/2 [ ]z α/2, + [, indicada na Figura 8.1. R α R α 1 α 0.0 z α 2 0 z α 2 Figura 8.1: Região de rejeição para o teste bilateral para o valor médio. A regra de decisão do teste consiste em rejeitar H 0 se z obs = x µ 0 σ/ n R α, ou seja, se z obs > z α/2. Exemplo 8.7. Considere novamente o exemplo da população dos pesos das formigas Solenopsis, isto é, a população X N(µ, 2 2 ), da qual observámos a amostra aleatória de 4 pesos (8, 13, 9, 8.5). Com base nesta amostra vamos testar, a um nível de significância 5%, a hipótese de que o peso médio populacional µ é igual a 9dg, ou seja vamos testar: H 0 : µ = 9 vs H 1 : µ 9. Como a população é normal com variância conhecida, a estatística de teste é: Z = X 9 2/ 4 N(0, 1). sob H 0

73 8.2. TESTE DE HIPÓTESES PARA A MÉDIA DA POPULAÇÃO 67 Região de rejeição para α = 0.05: R α =], 1.96[ ]1.96, + [. Regra de decisão do teste: Rejeitar H 0 ao nível de significância 5% se z obs = x 9 2/ 4 R Decisão: Como z obs = / = / R , não rejeitamos H 0 ao nível de significância 5%, significando que os dados não vão contra o pressuposto de que o peso médio das formigas é 9dg.. Exemplo 8.8 (Cálculo do valor-p do teste do Exemplo 8.7). Como Z obs 0.63, valor-p = 2 min ( P (Z < 0.63 H 0 ), P (Z > 0.63 H 0 ) ) = 2P (Z > 0.63 H 0 ) = = 2(1 P (Z 0.63 H 0 )) = 2(1 Φ(0.63)) = Outros testes de hipóteses bilaterais para o valor médio O teste de hipóteses bilateral, apresentado nesta secção, baseou-se no pressuposto da população ter distribuição Normal e da variância ser conhecida. Noutras condições o teste faz-se de forma análoga, podendo ser necessário alterar a estatística de teste e respectiva região de rejeição, conforme indicado na seguinte tabela: População Variância Rejeitar H 0 se σ 2 conhecida X µ 0 σ/ Pop. Normal de média µ > z n α/2 σ 2 desconhecida X µ 0 S/ > t n n 1,α/2 σ 2 conhecida X µ 0 σ/ Pop. não-normal de média µ > z n α/2 (n 30) σ 2 desconhecida X µ 0 > z α/2 S/ n Teste unilateral direito Vamos admitir que (X 1, X 2,..., X n ) representa uma amostra aleatória de uma população Normal com variância conhecida e pretendemos testar H 0 : µ µ 0 vs H 1 : µ > µ 0 (teste unilateral direito) De modo análogo, ao apresentado no teste bilateral, vamos considerar a seguinte estatística de teste: Z = X µ 0 σ/ n N(0, 1). sob H 0 Vamos considerar a região de rejeição R α =]z α, + [, indicada na Figura 8.2. Regra de decisão: Rejeitar H 0, ao nível de significância α se z obs R α.

74 68 CAPÍTULO 8. TESTE DE HIPÓTESES R α 1 α z α α Figura 8.2: Região de rejeição para o teste unilateral direito para o valor médio. Outros testes de hipóteses unilaterais direitos para o valor médio A estatística de teste e a região de rejeição podem mudar ligeiramente, consoante a população tem, ou não, distribuição Normal e a variância é, ou não é, conhecida. A próxima tabela apresenta, de forma resumida, as alterações que se devem fazer no teste de hipóteses anteriormente deduzido: População Variância Rejeitar H 0 se Pop. Normal de média µ σ 2 conhecida σ 2 desconhecida Pop. não-normal de média µ σ 2 conhecida (n 30) σ 2 desconhecida X µ 0 σ/ n > z α X µ 0 S/ n > t n 1,α X µ 0 σ/ n > z α X µ 0 S/ n > z α Teste unilateral esquerdo O procedimento que deduz o teste unilateral esquerdo, para o valor médio, H 0 : µ µ 0 vs H 1 : µ < µ 0 (teste unilateral esquerdo), é análogo ao do teste unilateral direito. Por esta razão apenas se apresentamos a seguinte tabela resumo: População Variância Rejeitar H 0 se Pop. Normal de média µ σ 2 conhecida σ 2 desconhecida Pop. não-normal de média µ σ 2 conhecida (n 30) σ 2 desconhecida X µ 0 σ/ n < z α X µ 0 S/ n < t n 1,α X µ 0 σ/ n < z α X µ 0 S/ n < z α

75 8.3. TESTE DE HIPÓTESES PARA A VARIÂNCIA, σ 2, DE UMA POPULAÇÃO NORMAL Teste de Hipóteses para a variância, σ 2, de uma população Normal Suponha que observamos uma amostra aleatória (X 1, X 2,..., X n ) de uma população X N(µ, σ 2 ), em que µ é desconhecido. de hipóteses, relativos ao valor da variância da população, σ 2. Vamos nesta secção considerar apresentar alguns testes Testamos uma das três seguintes hipóteses (nula e alternativa): 1. H 0 : σ 2 = σ 2 0 vs H 1 : σ 2 σ 2 0 (teste bilateral); 2. H 0 : σ 2 σ 2 0 vs H 1 : σ 2 > σ 2 0 (teste unilateral direito); 3. H 0 : σ 2 σ 2 0 vs H 1 : σ 2 < σ 2 0 (teste unilateral esquerdo). Vamos escolher a estatística de teste com base no estimador de σ 2, S 2, variância amostral: X 2 = (n 1)S2 σ 2 0 sob H 0 χ 2 n 1. Definamos a região de rejeição do teste: Para um nível de significância α, pré-especificado, as regiões de rejeição dos três tipos de hipóteses são, respectivamente, indicadas nas seguintes figuras: R α R α R α R α α 2 1 α 1 α α 1 α α 2 α χ n 1:1 α 2 2 χ n 1:α χ n 1:α χ n 1:1 α Figura 8.3: Esquerda: Região de rejeição para o teste bilateral. Centro: Região de rejeição para o teste unilateral direito. Direita: Região de rejeição para o teste unilateral esquerdo. Ou seja, a região de rejeição do teste, para um nível de significância α pré-especificado é, respectivamente: 1. R α = ]0, χ 2 n 1,1 α/2 [ ]χ2 n 1,α/2, + [ (teste bilateral); 2. R α = ]χ 2 n 1,α, + [ (teste unilateral direito); 3. R α = ]0, χ 2 n 1,1 α [ (teste unilateral esquerdo); Rejeitamos H 0 se X 2 obs R α.

76 70 CAPÍTULO 8. TESTE DE HIPÓTESES 8.4 Teste de Hipóteses para a proporção p de uma população Admita que temos uma amostra aleatória de dimensão n de uma população, em que determinada proporção desconhecida p dos seus elementos possui certa característica. Admita que pretendemos testar uma das seguintes hipóteses (nula e alternativa): 1. H 0 : p = p 0 vs H 1 : p p 0 (teste bilateral); 2. H 0 : p p 0 vs H 1 : p > p 0 (teste unilateral direito); 3. H 0 : p p 0 vs H 1 : p < p 0 (teste unilateral esquerdo); Estatística de teste: Z = ˆP p 0 p0 (1 p 0 )/n a sob H 0 N(0, 1) Definamos a região de rejeição do teste: Para um nível de significância α, pré-especificado, as regiões de rejeição dos três tipos de hipóteses são, respectivamente, indicadas nas seguintes figuras: R α R α R α R α 1 α 1 α 1 α 0.0 z α 2 0 z α α 0.0 z α z α 0 α Figura 8.4: Esquerda: Região de rejeição para o teste bilateral. Centro: Região de rejeição para o teste unilateral direito. Direita: Região de rejeição para o teste unilateral esquerdo. Região de rejeição do teste, para um nível de significância α pré-especificado: 1. R α = ], z α/2 [ ]z α/2, + [ (teste bilateral); 2. R α = ]z α, + [ (teste unilateral direito); 3. R α = ], z α [ (teste unilateral esquerdo); Regra de decisão do teste: Rejeitar H 0 ao nível de significância α se z obs = ˆp obs p 0 p0 (1 p 0 )/n R α.

77 8.5. TESTE DAS SEQUÊNCIAS ASCENDENTES E DESCENDENTES Teste das sequências ascendentes e descendentes O teste a seguir apresentado permite-nos testar a hipótese de aleatoriedade, uma condição essencial nos diversos métodos estatísticos já estudados. Considere as hipóteses: H 0 : A amostra é aleatória vs. H 1 : A amostra não é aleatória Seja (X 1, X 2,..., X n ) uma amostra da população X. Vamos substituir pelo símbolo + cada observação precedida por uma de valor inferior, e pelo símbolo - cada observação que é precedida por outra de valor superior. As observações precedidas por outras de valor igual são desprezadas (e corrige-se a dimensão da amostra, n). A estatística de teste é: Z = V 2n n a sob H 0 N(0, 1). com V = número de sequências de sinais + e -. Na prática considera-se que a distribuição de Z é razoável se n 25. Região de rejeição para o nível de significância α. R α = ], z α/2 [ ]z α/2, + [ Rejeitamos H 0, ao nível de significância α, sempre que z obs R α. Nota: O teste também pode ser aplicado em amostras de pequena dimensão (n < 25). utiliza-se a estatística de teste V. Para mais detalhes consulte a bibliografia aconselhada. Nesse caso Exemplo 8.9 (Exame de P.E /09). Considere a seguinte amostra, de dimensão n = 30, do número de clientes atendidos por hora em certo posto de venda: Podemos considerar a amostra aleatória? (considere um nível de significância de 5%) Resposta: Pretendemos testar H 0 : A amostra é aleatória vs H 1 : A amostra não é aleatória A estatística de teste é Z = V 2n n N(0, 1). Sob H 0 Para a amostra indicada, v obs = 17 e z obs = A região de rejeição do teste é: R 0.05 =] ; 1.96[ ]1.96; + [ Como o valor observado da estatística de teste não pertence à região de rejeição, não rejeitamos a hipótese H 0 ao nível de significância 5%.

78 72 CAPÍTULO 8. TESTE DE HIPÓTESES 8.6 Teste de ajustamento do Qui Quadrado Em muitas situações a distribuição da população é desconhecida, e podemos estar interessados em testar se determinada v.a. ou população tem distribuição F, isto é, podemos estar interessados em testar: H 0 : X F vs H 1 : X F (8.1) Existem vários testes de hipóteses que nos permitem testar estas hipóteses. Nesta disciplina iremos apenas abordar um dos mais conhecidos: O teste de ajustamento do Qui-Quadrado. Trata-se de um teste que apresenta a vantagem de poder ser aplicado para qualquer distribuição, desde que a amostra recolhida não seja muito pequena. Existem outros testes de hipóteses que permitem testar as hipóteses em (8.1), como por exemplo: 1. Teste de Kolmogorov-Smirnov (válido para distribuições contínuas); 2. Teste de Shapiro-Wilk (válido para a distribuição Normal). Teste do Qui Quadrado: Os dados observados (a amostra) são divididos em k classes, A 1, A 2,..., A k. Em cada classe A i consideramos o número de observações que lhe correspondem (a frequência absoluta de cada classe), denotando esse número por O i. Consideramos ainda o número de observações que esperaríamos observar em cada uma das classes, se a hipótese nula fosse verdadeira, denotando-o por E i. Este número é determinado por E i = n p i, em que p i é a probabilidade de uma observação pertencer à classe i, caso a hipótese nula seja verdadeira, isto é, p i = P (X A i H 0 verdadeira), i = 1, 2,..., k. A estatística de teste usada é: k X 2 (O i E i ) 2 = E i a sob H0 χ 2 k p 1, onde k é o número de classes e p o número de parâmetros estimados (do modelo considerado na hipótese nula), pelo método da máxima verosimilhança. Região de rejeição do teste, para um nível de significância α, pré-especificado: R α =]χ 2 k p 1,α, + [ Rejeitamos H 0, ao nível de significância α, sempre que X 2 obs R α.

79 8.6. TESTE DE AJUSTAMENTO DO QUI QUADRADO 73 Observações: 1. Caso exista algum E i < 5, tipicamente correspondendo às classes dos extremos, essa(s) classe(s) deve(m) ser agrupada(s) até o correspondente novo número esperado E i (dado pelas somas dos correspondentes antigos E i s) ultrapassar 5. Os correspondentes O i s devem nesse caso ser também somados, diminuindo naturalmente o valor do número de classes k. 2. Como k O i = k E i = n, a estatística de teste X 2 é igual a: X 2 = k O 2 i E i n. Exemplo Geneticistas pensam que, em determinada população, a distribuição de probabilidade dos grupos sanguíneos é a seguinte: { MM MN NN Uma amostra de 200 indivíduos desta população, classificados de acordo com estes grupos sanguíneos, revelou 64 indivíduos do grupo MM, 96 do grupo MN e os restantes do grupo NN. (a) Estes dados fornecem evidência estatística para pôr em causa o pressuposto dos geneticistas? (b) Determine, um valor aproximado, do valor-p do teste. Resolução: (a) Usando o teste do Qui Quadrado, pretendemos testar: H 0 : P (MM) = 0.3, P (MN) = 0.5, P (NN) = 0.2 vs H 0 : P (MM) 0.3, ou P (MN) 0.5, ou P (NN) 0.2 Temos 3 classes e os seguintes valores: A 1 = MM O 1 = 64 E 1 = 60 A 2 = MN O 2 = 96 E 2 = 100 A 3 = NN O 3 = 40 E 3 = 40 Usando a estatística de teste X 2 = k (O i E i ) 2 E i a sob H0 χ 2 k p 1, obtemos: Xobs 2 = = Considerando α = 0.05, a região de rejeição é R 0.05 =]χ 2 2,0.05, + [=]5.99, + [. Como Xobs 2 / R 0.05, não rejeitamos H 0, ao nível de significância 5%. (b) Valor-p = P (X 2 > 0.427) P (X 2 > 0.446) = 0.8.

80 74 CAPÍTULO 8. TESTE DE HIPÓTESES Exemplo 8.11 (Teste de ajustamento para o modelo Poisson). Pensa-se que o número de defeitos encontrados em circuitos eléctricos tem distribuição Poisson. Recolheu-se uma amostra aleatória de n = 60 circuitos e observaram-se os seguintes números de defeitos: número de defeitos número de circuitos Resolução: Como λ é desconhecido, terá de ser estimado. Assim, ˆλ = x = Pretende-se testar: H 0 : X P (0.75) vs H 0 : X P (0.75) A tabela anterior já inclui as observações agrupadas em classes. Assim, vamos considerar as classes: A 1 = {0}, A 2 = {1}, A 3 = {2}, A 4 = {3, 4,...}. Como E 4 < 5 é necessário juntar a classe A 4 à classe A 3 (ver as seguintes tabelas). n o de defeitos p i E i (ou mais) n o de defeitos O i p i E i (ou mais) O valor observado de estatística de teste é: χ 2 obs = ( ) ( ) ( ) = 2.94 Considerando α = 0.05, a região de rejeição é R 0.05 =]χ 2 1,0.05, + [=]3.84, + [. Como χ 2 obs = 2.94 < χ 2 1;0.05 = 3.84, não rejeitamos a hipótese H 0 de que a distribuição da população é P (0.75).

81 8.6. TESTE DE AJUSTAMENTO DO QUI QUADRADO 75 Exemplo 8.12 (Teste de ajustamento para o modelo Normal). Os artigos produzidos em determinada fábrica são sujeitos a um controle de qualidade, resultando num índice de qualidade, X. De forma a avaliar essa qualidade recolheu-se uma amostra aleatória de 46 artigos da produção, tendo-se medido os valores seguintes do referido índice: 100, 110, 122, 132, 99, 96, 88, 75, 45, 154, 153, 161, 142, 99, 111, 105, 133, 142, 150, 153, 121, 126, 117, 97, 105, 117, 125, 105, 94, 90, 80, 50, 55, 102, 122, 136, 75, 104, 109, 108, 134, 135, 111, 78, 89, 154 Vamos usar estes dados para testar, ao nível de significância 5%, H 0 : X N(µ, σ 2 ) vs H 1 : X N(µ, σ 2 ) Como não conhecemos os valores populacionais de µ e σ 2, vamos estimá-los a partir da amostra. Assim, ˆµ = x = x i = ; ˆσ 2 = s 2 = 1 ( 46 ) x 2 i 46 x 2 = Pela regra de Sturges, o número de classes a considerar é dado por: k 1+ log(n) log(2) = 1+ log(46) log(2) Consideramos k = 7. A amplitude de cada classe é aproximadamente L 7 = Vamos aproximar este valor a 20, ou seja, considerar as classes: ] ; 60] ]60; 80] ]80; 100] ]100; 120] ]120; 140] ]140; 160] ]160; + [ Devemos contar quantas observações caiem em cada um dos intervalos anteriores, para obter os valores de O i, e devemos determinar os valores de E i = n p i = 46 p i. i Classe O i p i E i 1 ] ; 60] ]60; 80] ]80; 100] ]100; 120] ]120; 140] ]140; 160] ]160; + [ i Classe O i p i E i 1 ] ; 80] ]80; 100] ]100; 120] ]120; 140] ]140; + [ Então, como k = 5 classes e foram estimados p = 2 parâmetros (µ e σ 2 ), k X 2 (O i E i ) 2 = E i sob H 0 χ 2 k p 1 χ χ 2 2

82 76 CAPÍTULO 8. TESTE DE HIPÓTESES Regra de decisão do teste: Rejeitar H 0 ao nível de significância 5% se x 2 obs R 0.05 ]5.99, + [. Como x 2 obs = não rejeitamos, ao nível de significância de 5% a hipótese nula de que a distribuição da população é Normal.

83 Capítulo 9 Regressão Linear 9.1 Introdução A regressão é uma técnica estatística que permite estudar a relação entre uma ou mais variáveis resposta (também designadas por variáveis dependentes) e uma ou mais variáveis explicativas (também designadas por variáveis independentes). Ao modelo matemático que relaciona as variáveis dá-se o nome de equação de regressão. Estamos apenas interessados no caso em que temos uma variável dependente Y, uma variável independente x e a equação de regressão é linear, isto é, Y = β 0 + β 1 x + ε, ε N(0, σ 2 ). O termo β 0 +β 1 x é a componente determinística do modelo e ε é o erro aleatório que se pressupõe ter distribuição normal de valor médio nulo e variância σ 2. Os parâmetros β 0 e β 1 terão de ser estimados a partir dos dados. A este modelo dá-se o nome de equação de regressão linear simples. Podemos também usar esta técnica considerando modelos mais complexos como a regressão linear múltipla ou a regressão não linear. Observações: 1. Y também é uma variável aleatória porque, Y = β 0 +β 1 x+ε e ε N(0, σ 2 ) é uma variável aleatória. Como E(Y x) = E(β 0 + β 1 x + ε x) = β 0 + β 1 x + 0 = β 0 + β 1 x, V (Y x) = V (β 0 + β 1 x + ε x) = V (ε) = σ 2, isto é, Y x N(β 0 + β 1 x, σ 2 ). 2. O modelo possui o parâmetro adicional, σ 2, que também terá de ser estimado. 77

84 78 CAPÍTULO 9. REGRESSÃO LINEAR 9.2 Estimadores dos Mínimos Quadrados de β 0 e β 1 Suponha que se observam um conjunto de n observações da variável independente e da variável resposta - (x 1, Y 1 ), (x 2, Y 2 )..., (x n, Y n ) - e que se pretendem usar estes valores para estimar os parâmetros de regressão de um modelo de regressão linear simples. Assumimos que os erros aleatórios ε i, para cada elemento amostral Y i, são independentes seguindo todos a mesma distribuição N(0, σ 2 ), isto é: Y i = β 0 + β 1 x i + ε i, com ε i N(0, σ 2 ) independentes. Assim deveremos encontrar estimadores ˆβ 0 e ˆβ 1, dos coeficientes da recta de regressão β 0 e β 1, respectivamente, para obtermos a recta estimada, Ŷ = ˆβ 0 + ˆβ 1 x. As estimativas pontuais da recta de regressão para as observações x 1, x 2,..., x n serão Ŷi = ˆβ 0 + ˆβ 1 x i, i = 1, 2,..., n. Definição 9.1 (Resíduo). Embora a variável residual ε não seja observável, é possível calcular os desvios das n observações da amostra. ε i = Y i Ŷi = Y i ˆβ 0 ˆβ 1 x i, i = 1, 2,..., n. A estes desvios damos o nome de resíduos. De entre diversos métodos que existem para a dedução dos estimadores, vamos aqui abordar o método dos mínimos quadrados. Neste método, os estimadores ˆβ 0 e ˆβ 1 devem ser obtidos de modo a minimizar a soma do quadrado dos resíduos, n n SQ R = (Y i Ŷi) 2 = (Y i ˆβ 0 ˆβ 1 x i ) 2. Esta minimização é conseguida resolvendo, em ordem a β 0 e β 1, o sistema de equações, SQ ˆβ = (Y i ˆβ 0 ˆβ 1 x i ) = 0 SQ ˆβ = 0 2 x i (Y i ˆβ 0 ˆβ 1 x i ) = 0 1 Yi = n ˆβ 0 + ˆβ 1 xi ˆβ 0 = Y ˆβ 1 x xi Y i = ˆβ 0 xi + ˆβ 1 x 2 xi Y i ˆβ 1 = i nxy x 2 i nx 2

85 9.3. ESTIMAÇÃO DE σ 2 E QUALIDADE DO AJUSTE 79 Observação 1: Para simplificar a notação, podemos escrever: com ˆβ 1 = S xy S xx ˆβ0 = Y ˆβ 1 x, n n S xx = (x i x) 2 = x 2 i nx 2 ; n n n S xy = (Y i Y )(x i x) = Y i (x i x) = x i Y i nxy. Observação 2: A soma dos quadrados dos desvios pode ainda ser escrita da seguinte forma com n SQ R = (Y i Ŷi) 2 = S Y Y S2 xy = S Y Y S ˆβ 1S 2 xx, xx n n S Y Y = (Y i Y ) 2 = Yi 2 ny Estimação de σ 2 e Qualidade do Ajuste Definição 9.2 (Estimador de σ 2 ). O estimador de σ 2 é: ˆσ 2 = SQ R n 2 Definição 9.3 (Coeficiente de Determinação). S xx R 2 SQ R = 1 n (Y i Y ) 2 = ˆβ 1 2 = S2 xy S Y Y S xx S Y Y Esta medida compara a soma de quadrados dos resíduos (SQ R ) do modelo de regressão linear simples com a SQ R do modelo de regressão linear simples com β 1 = 0. A quantidade R 2 varia entre 0 e 1. Na prática, consideramos que o ajustamento é razoável se R Propriedades dos estimadores dos mínimos quadrados Distribuição por amostragem de ˆσ 2 Proposição 9.4 (Propriedades de ˆσ 2 ). No modelo de regressão linear simples, (n 2) ˆσ2 σ 2 = SQ R σ 2 χ 2 n 2.

86 80 CAPÍTULO 9. REGRESSÃO LINEAR Distribuição por amostragem de ˆβ 0 e ˆβ 1 Proposição 9.5 (Distribuição por amostragem de ˆβ 0 e ˆβ 1 ). No modelo de regressão linear simples, ( ) ˆβ 1 N β 1, σ2, e ˆβ0 N S xx Demonstração. Note-se que ˆβ 1 = S n xy (x i x)y i =, S xx S xx ( β 0, σ 2 ns xx n x 2 i isto é, ˆβ 1 é uma combinação linear de v.a. s Y i independentes, com distribuição Normal. Logo ˆβ 1 também tem distribuição Normal. E ainda necessário conhecer os seus parâmetros. O seu valor médio é n E( ˆβ (x i x)e(y i ) n (x i x)(β 0 + β 1 x i ) 1 ) = = = S xx S xx = β n 0 (x i x) + β n 1 (x i x)x i = β 1S xx = β 1 S xx e a variância, S xx ( n ) V ( ˆβ (x i x)y i 1 ) = V S xx = S xx Sxx 2 σ 2 = σ2. S xx = Y i s indep. ). n (x i x) 2 V (Y i ) n (x i x) 2 σ 2 = Relativamente ˆβ 0, recordemos que ˆβ 0 = Y ˆβ 1 x. Como Y e ˆβ 1 têm distribuição Normal, S 2 xx então ˆβ 0 também tem distribuição normal. O valor médio é E( ˆβ 0 ) = E(Y ) E( ˆβ 1 )x = β 0 + β 1 x β 1 x = β 0, S 2 xx e a variância, V ( ˆβ 0 ) = V (Y ) + x 2 V ( ˆβ 1 ) 2x Cov(Y, ˆβ 1 ) = σ2 n ( = σ2 ( n ) S xx nx 2) = σ2. ns xx ns xx x 2 i ( ) σ2 + x2 0 = σ2 1 + nx2 S xx n S xx Nota: No cálculo de V ( ˆβ 0 ), usou-se o resultado: Cov(Y, ˆβ 1 ) = Cov(Y, S xy ) = 1 Cov 1 n n Y i, (x j x)y j S xx S xx n j=1 = 1 n (x i x)v (Y i ) = σ2 n (x i x) = 0 ns xx ns xx

87 9.5. INFERÊNCIA SOBRE OS PARÂMETROS DO MODELO DE REGRESSÃO 81 Observação: A partir do resultado anterior conclui-se que ˆβ 0 e ˆβ 1 são estimadores centrados de β 0 e β 1, respectivamente. Consequentemente, querendo fazer inferência sobre os parâmetros β 0 ou β 1, não podemos usar a distribuições de ˆβ 0 e ˆβ 1, já que elas dependem de σ 2 (geralmente é desconhecido). ˆσ 2 = SQ R n 2. teremos de usar os seguintes resultados: Como T = ˆβ 1 β 1 ˆβ1 β 1 = Sxx ˆσ 2 ˆσ S xx ˆβ 0 β 0 T = ˆσ 2 ns xx n x 2 i = nsxx n x 2 i t n 2, ˆβ 0 β 0 ˆσ t n Inferência sobre os parâmetros do Modelo de Regressão Intervalo de Confiança e Teste de Hipóteses para β 1 O parâmetro β 1 é o declive da recta de regressão e, como tal mede o grau de crescimento de Y relativamente a x. Intervalo de confiança a (1 α)100% para β 1 Vamos utilizar a seguinte variável pivot: T = ˆβ 1 β 1 ˆσ 2 t n 2 S xx Para um nível de confiança de (1 α) 100%, escolha de c 1 e c 2 - escolhemos c 1 = c e c 2 = c, tal que P ( c < T < c) = 1 α. É fácil de verificar que c = t n 2,α/2. Determinação dos extremos do intervalo: ˆσ c < T < c t α/2 < T < t α/2 c 2 S xx c ˆσ 2 S xx ˆβ 1 < β 1 < c ˆβ 1 t n 2,α/2 ˆσ 2 S xx ˆσ 2 S xx ˆβ 1 < β 1 < ˆβ 1 + t n 2,α/2 Assim, obtemos o seguinte intervalo de confiança: ˆσ 2 S xx < ˆβ ˆσ 1 β 1 < c 2 S xx ] ˆσ IC (1 α) 100% (β 1 ) = ˆβ1 t 2 n 2;α/2 S xx, ˆβ ˆσ 1 + t 2 n 2;α/2 S xx [.

88 82 CAPÍTULO 9. REGRESSÃO LINEAR Teste de Hipóteses para β 1 Podemos também realizar um teste de hipóteses sobre o valor do parâmetro β 1. Embora o teste tanto possa ser bilateral, como unilateral, a primeira opção é a mais frequente. Por isso apenas apresentamos o teste bilateral, embora este possa ser adaptado para o caso unilateral. Hipóteses: H 0 : β 1 = a vs H 1 : β 1 a Estatística de teste: T = S xx ˆβ1 a ˆσ Região de rejeição do teste: Sob H 0 t n 2 R α =] ; t n 2,α/2 [ ]t n 2,α/2 ; + [ Regra de decisão do teste: Rejeitar H 0 ao nível de significância α se t obs R α, ou seja, se t obs > t n 2;α/ Intervalo de Confiança e Teste de Hipóteses para β 0 O parâmetro β 0 corresponde ao ponto de intersecção da recta com o eixo das abcissas. A inferência sobre este parâmetro não tem a mesma importância que tem a inferência sobre o declive β 1 da recta de regressão. Intervalo de Confiança a (1 α) 100% para β 0 De modo análogo, ao que foi feito para β 1, mas agora utilizando a variável pivot, ˆβ 0 β 0 nsxx T = ˆσ 2 = n n ns xx x 2 x 2 i i ˆβ 0 β 0 ˆσ t n 2, obtemos o intervalo de confiança (1 α) 100% para β 0 : ] n IC (1 α) 100% (β 0 ) ˆβ0 t n 2;α/2 ˆσ 2 x2 i ns xx ; ˆβ 0 + t n 2;α/2 ˆσ 2 n x2 i ns xx [. Testes de hipóteses para β 0 Os testes de hipóteses sobre o parâmetro β 0 podem ser tanto bilaterais como unilaterais, sendo

89 9.5. INFERÊNCIA SOBRE OS PARÂMETROS DO MODELO DE REGRESSÃO 83 sempre baseados na distribuição por amostragem anteriormente apresentada para ˆβ 0. considerar apenas o teste bilateral para β 0, ou seja, as hipóteses: Vamos H 0 : β 0 = a vs H 1 : β 0 a O teste realiza-se de modo análogo ao apresentado para β 1, mudando apenas a estatística de teste que é dada por T = ˆβ 0 a ˆσ 2 n ns xx x 2 i Sob H 0 t n Intervalo de Confiança e Teste de Hipóteses para σ 2 Como ˆσ 2 = SQ R n 2 é estimador centrado de σ2 e SQ R χ σ 2 2 n 2, podemos deduzir um intervalo de confiança (1 α) para a variância σ 2 e para o desvio padrão σ. Seguindo o procedimento adoptado, na secção 7.2, obtemos ] (n 2)ˆσ IC (1 α) 100% (σ 2 2 ) ; e χ 2 n 2;α/2 (n 2)ˆσ2 IC (1 α) 100% (σ) χ 2 n 2;α/2 (n 2)ˆσ 2 [ χ 2, n 2;1 α/2 (n 2)ˆσ2 ;. χ 2 n 2;1 α/2 De modo análogo ao apresentado na secção 8.3, podemos também realizar testes de hipótese (bilaterais e unilaterais) para σ 2 recorrendo à distribuição de ˆσ 2. Exemplo 9.6 (Exame de Probabilidades e Estatística C 2005/06). Pretende-se, se possível, modelar através de uma recta de regressão simples o consumo de combustível, Y, de um automóvel em função da sua velocidade de circulação, x. Para tal registaram-se os valores de consumo de combustível para um mesmo percurso de 100Km, percorrido a diferentes velocidades: x i y i x = 85, Y = 8.46, x 2 i = 62000, Y 2 i = , Yi x i = , SQ R = 1.15 (a) Ajuste um modelo de regressão linear simples aos dados. Que pode dizer sobre a qualidade do ajuste? (b) Diga por suas palavras como interpreta o valor estimado do declive da recta acima considerada. O sinal desta estimativa está de acordo com as suas expectativas? Porquê? (c) Determine um intervalo de confiança a 95% para o verdadeiro declive da recta de regressão. Comente o resultado face à qualidade do ajuste concluída na alínea (a).

90 84 CAPÍTULO 9. REGRESSÃO LINEAR 9.6 Estimação do valor esperado de Y para uma observação x 0 da variável controlada O valor esperado de Y para uma observação x 0 da variável controlada é µ Y x0 = E(Y x 0 ) = β 0 + β 1 x 0. que pode ser estimado por ˆµ Y x0 = ˆβ 0 + ˆβ 1 x 0. Caso a variância do erro, σ 2, não seja conhecida, a distribuição de amostragem de ˆµ Y x0 é T = ˆµ Y x0 µ Y x0 ( ) ˆσ t n 2, 2 1 n + (x 0 x) 2 S xx o que permite deduzir o intervalo de confiança (1 α) para µ Y x0, ]ˆµ Y x0 t n 2;α/2 ˆσ 2 ( 1 n + (x 0 x) 2 S xx ), ˆµ Y x0 + t n 2;α/2 ˆσ 2 ( 1 n + (x 0 x) 2 S xx )[. Nota: Só devemos fazer estimação de µ Y x0 para valores x 0 que estejam dentro do intervalo das observações obtidas para x. 9.7 Previsão do valor da variável resposta Y para um novo valor x 0 da variável controlada Dada um valor x 0 da variável controlada x, a variável resposta é Y 0 = Y (x 0 ) = β 0 + β 1 x 0 + ε, onde ε N(0, σ 2 ). O estimador de Y, para um valor x 0, é Ŷ0 = Ŷ (x 0) = ˆβ 0 + ˆβ 1 x 0 O erro de predição, ε p = Y 0 Ŷ0, é uma v.a. Normal de valor médio 0. Como Y 0 (observação futura) é independente de Ŷ0, a variância de ε p é de dada por ( V (ε p ) = V (Y 0 Ŷ0) = σ n + (x 0 x) 2 ). S xx Se σ 2 for estimado por ˆσ 2, então T = ˆσ 2 ( Y 0 Ŷ n + (x 0 x)2 Sxx ) t n 2. O intervalo de confiança (1 α) para Y 0 é, ]Ŷ0 t n 2;α/2 ˆσ 2 (1 + 1 n + (x 0 x) 2 S xx ) ; Ŷ0 + t n 2;α/2 ˆσ 2 ( n + (x 0 x) 2 S xx )[.

91 Capítulo 10 Exercícios 10.1 Introdução à Teoria da Probabilidade 1.1 Vinte e cinco membros de uma sociedade devem eleger um presidente, um secretário e um tesoureiro. Supondo que qualquer dos vinte e cinco membros é elegível para qualquer dos cargos, quantas são as hipóteses de um resultado final? 1.2 Considere o problema anterior. Suponha que não há diferenciação dos cargos. De quantas maneiras distintas se podia formar uma comissão, com três elementos escolhidos entre os vinte e cinco elementos? 1.3 Quantas palavras diferentes, com ou sem significado, se podem formar com as letras da palavra ROMA? 1.4 Quatro livros de Matemática, seis de Física e dois de Química, todos diferentes, devem ser arrumados numa prateleira. Quantas arrumações diferentes são possíveis se: (a) os livros de cada matéria ficarem todos juntos? (b) apenas os livros de matemática devem ficar juntos? 1.5 Numa sala de cinema, de quantas maneiras diferentes se podem sentar numa fila de 12 lugares, 7 amigos? 1.6 De quantas maneiras 10 pessoas podem sentar-se num banco, se houver apenas 4 lugares? 1.7 De quantas formas diferentes se podem sentar 12 pessoas numa mesa redonda? 1.8 Um homem tem 3 camisas e 2 gravatas. De quantas maneiras pode vestir-se (com uma camisa e uma gravata)? 1.9 Num conjunto de 10 lâmpadas para árvore de natal, 2 são defeituosas. Quantas amostras de 6 lâmpadas podem ser escolhidas, de entre aquelas 10, de modo que: (a) as 6 lâmpadas escolhidas sejam todas boas? (b) entre a 6 escolhidas haja uma, e uma só defeituosa? 1.10 Dados 12 pontos num plano, não havendo 3 deles sobre a mesma recta, (a) quantas rectas são determinadas pelos pontos? (b) quantas dessas rectas passam pelo ponto A? (c) quantos triângulos são determinados pelos pontos? (d) Quantos desses triângulos contêm o ponto A como vértice? 85

92 86 CAPÍTULO 10. EXERCÍCIOS (e) Quantos desses triângulos contêm o lado AB? 1.11 De um baralho de 52 cartas são retiradas 10 cartas. Em quantos casos aparecem: (a) exactamente um ás? (b) pelo menos um ás? (c) exactamente dois ases? (d) pelo menos dois ases? (e) Um ás ou um ouro? 1.12 Determine o valor n que seja solução de: (a) ( ) n 2 2 = 6 (b) ( ) ( n+1 2 n 1 ) ( 2 = n ) 2 1 (c) 5 ( ) ( n 3 = n+2 ) Os atletas A, B, e C vão participar numa corrida e todos estão preparados para a ganhar. O sistema de cronometragem é suficientemente preciso de modo que não se admitem empates. (a) Qual a probabilidade de A terminar a corrida à frente de C? (b) Qual a probabilidade de A ganhar a corrida? 1.14 Por engano misturaram-se quatro pilhas novas com três usadas. Escolhendo, ao acaso e sem reposição, duas dessas pilhas, determine a probabilidade de: (a) Ambas serem novas (b) Nenhuma ser nova (c) Pelo menos uma ser nova 1.15 Num grupo de 20 congressistas, 8 só falam inglês, 5 só falam francês e 7 falam os dois idiomas. Qual a probabilidade de dois congressistas, escolhidos ao acaso, poderem conversar sem auxílio de um intérprete? 1.16 Uma urna contém quatro bolas amarelas, cinco bolas verdes, três bolas brancas e cinco bolas pretas. Extraem-se sucessivamente, ao acaso e sem reposição, quatro bolas. Qual a probabilidade de: (a) Obter na primeira extracção uma bola amarela, na segunda uma verde, depois uma branca e finalmente uma preta? (b) Obter o mesmo conjunto de cores independentemente da sua ordem? 1.17 (Teste de P.E. 2006/07) Considere os acontecimentos A e B de um espaço de resultados tais que P (A B) = 0.8, e P (A B) = 0.3. Qual o valor da P (B)? 1.18 Sejam A, B e C acontecimentos tais que P (A) = P (B) = P (C) = 1 4, P (A B) = P (B C) = 0 e P (A C) = 1 8. Qual a probabilidade de se verificar pelo menos um dos 3 acontecimentos? 1.19 Sabendo que A e B são acontecimentos tais que P (A) = 2 3, P (B) = 1 2 e P (A B) = 1 3, determine P (A B), P (A B), P (Ā B), P (Ā B) e P (A B) De 100 agricultores, 50 produzem vinho, 30 produzem milho e 10 produzem vinho e milho. Escolhendo um deste agricultores ao acaso qual a probabilidade de: (a) Ele produza vinho ou milho? (b) Ele não produza vinho nem milho?

93 10.1. INTRODUÇÃO À TEORIA DA PROBABILIDADE A probabilidade de um homem estar vivo daqui a 25 anos é 3 5 e a probabilidade da sua mulher ainda viver na mesma ocasião é de 2 3. Determine a probabilidade de daqui a 25 anos: (a) Ambos estarem vivos. (b) Apenas o homem estar vivo. (c) Apenas a mulher estar viva. (d) Apenas um estar vivo Em determinada gelataria 40% dos clientes escolhem o sabor chocolate, 30% escolhem o sabor limão e 15% escolhem os dois. Seleccionou-se ao acaso um cliente dessa gelataria. (a) Se escolheu o sabor limão, qual a probabilidade de ter escolhido também o sabor chocolate? E vice-versa? (b) Qual a probabilidade de escolher limão ou chocolate? 1.23 Suponha que 10% da população de certo país sofre de problemas cardíacos e que, de entre estes, 70% são fumadores. De entre os que não sofrem de problemas cardíacos 45% fumam. Seleccionada ao acaso uma pessoa desta população: (a) Qual a probabilidade de ser fumadora? (b) Se for fumadora, qual a probabilidade de sofrer de problemas cardíacos? 1.24 Num clube de futebol treinam regularmente 30 jogadores, dos quais 8 são atacantes, 12 são médios e os restantes são defesas. Independentemente dos resultados dos restantes jogadores, cada atacante tem uma probabilidade de 3/4 de marcar golo de penalty, cada médio tem uma probabilidade de 1/2 de marcar golo por penalty e cada defesa consegue-o com probabilidade 1/5. (a) Qual a probabilidade de que um jogador, escolhido ao acaso, marque golo devido a penalty? (b) Dado que, num jogo, um qualquer jogador marcou um golo de penalty, qual a probabilidade de esse jogador ser médio? 1.25 Sejam A e B acontecimentos independentes. Mostre que A e B são também acontecimentos independentes Um aluno conhece bem 60% da matéria dada. Num exame com cinco perguntas, sorteadas ao acaso, sobre toda a matéria, qual a probabilidade de vir a responder correctamente a duas perguntas? 1.27 Numa certa rua existem duas caixas Multibanco - A e B. A probabilidade de as máquinas avariarem é, independentemente uma da outra, de 0.05 para a A e 0.01 para a B. Determine a probabilidade de, num dia qualquer: (a) Ambas as máquinas estarem avariadas. (b) Apenas a máquina A estar avariada. (c) Pelo menos uma das máquinas estar avariada (Teste de P.E. 2006/07) Uma urna tem oito moedas, seis honestas e duas viciadas. O resultado do lançamento de uma moeda viciada é sempre cara. (a) Escolhendo duas das oito moedas disponíveis, ao acaso e sem reposição, qual a probabilidade de seleccionar as duas moedas viciadas. (b) Escolhendo uma moeda ao acaso, qual a probabilidade de obter três caras em três lançamentos sucessivos dessa moeda? (c) Se em três lançamentos, da mesma moeda, o resultado foi sempre cara, qual a probabilidade de ter escolhido a moeda viciada?

94 88 CAPÍTULO 10. EXERCÍCIOS 1.29 (Exame de de P.E. D /09) Um laboratório farmacêutico produz um kit, que identifica rapidamente o tipo de sangue de uma pessoa, entre os 4 possíveis: A, B, O e AB. O ensaio clínico efectuado antes da comercialização do kit indica que 2%, 3%, 5% e 10% das pessoas com sangue de tipo A, B, O e AB, respectivamente, são incorrectamente classificadas. Sabendo que 40% da população tem sangue do tipo A, 10% tem sangue de tipo B, 45% tem sangue de tipo O e os restantes têm sangue de tipo AB, calcule: (a) A probabilidade de uma pessoa, que usou o kit, ser incorrectamente classificada. (b) A probabilidade de uma pessoa, que usou o kit e foi incorrectamente classificada, ter sangue de tipo AB.

95 10.2. VARIÁVEIS ALEATÓRIAS Variáveis aleatórias 2.1 A variável aleatória (v.a.) X representa o número de doentes com gripe que procuram, por dia, o Dr. Remédios. Em 50% dos dias, pelo menos 2 pacientes com gripe procuram o Dr. Remédios. A sua função de probabilidade é dada por: { X p 0.2 q 0.3 (a) Determine p e q. (b) Determine a função de distribuição da v.a. X e esboce o seu gráfico. Comente-o. (c) Determine a função de probabilidade das v.a. s Y = 40X e W = max(x, 1). 2.2 A v.a. X representa o número de pontos que saem no lançamento de um determinado dado. A sua função de distribuição segue-se: 0, x < 1 1/6, 1 x < 2 1/4, 2 x < 4 F (x) = 1/2, 4 x < 5 7/12, 5 x < 6 1, x 6 (a) Calcule as seguintes probabilidades, usando a função de distribuição: i) A probabilidade de o número de pontos saídos ser no máximo 3. ii) P (1 < X 2). iii) P (2 X < 6). iv) A probabilidade de o número de pontos saídos não distar de 2 pontos por mais de 1 ponto. (b) Determine a função de probabilidade de X e confirme os resultados acima obtidos. (c) Pode afirmar que o dado é equilibrado? Justifique. (d) Sabendo que o número de pontos saído é pelo menos 4, calcule a probabilidade de saírem 6 pontos. 2.3 O Sr. Matias possui um café nas vizinhanças de um estádio de futebol. Da sua experiência, o Sr. Matias sabe que, em dias de futebol, costuma vender ou 50, ou 100, ou 150 ou 200 sandes, com probabilidades 0.2, 0.4, 0.3 e 0.1, respectivamente. O Sr. Matias costuma fazer 100 sandes e quando estas se esgotam recorre a um fornecedor da terra que lhe garante o envio atempado de mais sandes. (a) Qual a probabilidade de as sandes preparadas pelo Sr. Matias serem insuficientes para satisfazer a procura? (b) Calcule a probabilidade de vender 200 sandes, num dia em que as sandes por ele feitas não satisfazem a procura. 2.4 Seja X uma v.a. com a seguinte função densidade probabilidade: k + x, 1 x < 0 f(x) = k x, 0 x < 1 0, c.c. (a) Determine o valor da constante k. (b) Determine a função de distribuição de X e esboce o seu gráfico. (c) Determine P (X > 0). (d) Determine P (X > 0.5 X > 0).

96 90 CAPÍTULO 10. EXERCÍCIOS 2.5 Considere funções densidade de probabilidade, representadas nos seguintes gráficos. (a) Determine o valor das constantes a e b. f(x) a x 2b f(x) b x (b) Qual a relação entre a e b? f(x) b a 0 a b x 2.6 Seja X uma v.a. com a seguinte função densidade probabilidade: { 4x, 0 < x < k f(x) = 0, c.c. (a) Esboce o gráfico da função densidade e determine o valor da constante k. (b) Determine a função de distribuição da v.a. X. (c) Calcule P (1/4 X 1/3), a mediana e o quantil de ordem (d) Identifique através da função de distribuição ou da função densidade, a distribuição das v.a. s Y = X 1 e T = X A quantidade de tempo, em horas, que um computador funciona até avariar é uma v.a. com a seguinte função densidade probabilidade: { k e x 100, x 0 f(x) = 0, x < 0 (a) Qual a probabilidade de o computador trabalhar entre 50 e 150 horas antes de avariar? (b) Qual a probabilidade de o computador funcionar menos de 100 horas até avariar? E exactamente 100 horas? (c) Qual a probabilidade de o computador avariar após 200 horas de funcionamento, sabendo que já funcionou mais de 100 horas? 2.8 (Exame de P.E. 2006/07) Seja X uma variável aleatória com função densidade c(1 + x), 1 < x 0; f(x) = c(1 x 2 ), 0 < x < 2; 0, outros valores de x; (a) Mostre que c = 2/3 e determine a função de distribuição. (b) Calcule P (X 0 X 1).

97 10.2. VARIÁVEIS ALEATÓRIAS Determine o valor médio e a variância da variável aleatória discreta X com função de probabilidade: P (X = 0) = 1 8 P (X = 1) = 3 8 f(2) = 3 8 P (X = 3) = 1 8. Calcule ainda: ( ) E(g(X)), com g(x) = X 3, E 1 1+X e E(X 2 ) Seja X uma v.a. tal que P (X = 0) = 1 4, P (X = 1) = p 2, P (X = 2) = 5 8 p 2 e P (X = 3) = 1 8, com 0 p 1 2. Determine p de forma a que V (X) seja mínima Numa lotaria foram emitidos bilhetes. Sorteia-se 1 prémio de unidades monetárias (u.m.) e 10 prémios de 2500 u.m.. Seja X a v.a. que representa o valor do prémio de um bilhete qualquer. (a) Determine a função de probabilidade de X. (b) Qual a probabilidade de um bilhete não ter qualquer prémio? (c) Qual a probabilidade de um bilhete ter pelo menos 2500 u.m.? (d) Determine o E(X), V (X) e CV (X) Uma comissão de alunos está a organizar uma festa da faculdade. Os alunos vão comprar 200 litros de cerveja. Um fornecedor deste líquido (A) cobra 1 unidade monetária (u.m.) por litro permitindo a devolução da cerveja que sobrar (e que não tem de ser paga) e um outro fornecedor (B) cobra 0.5 u.m. por litro, não admitindo devoluções. Os alunos, independentemente de quanto lhes custe a cerveja, cobram 1.5 u.m. por litro. Sabendo que, se estiver bom tempo - o que acontecerá com probabilidade os alunos conseguem vender os 200 litros de cerveja, mas se estiver mau tempo só vendem metade, a quem devem comprar? 2.13 Seja X uma v.a. com a seguinte função de distribuição: { 0, x < 0 F (x) = 1 (x + 1)e x, x 0 (a) Determine a função densidade probabilidade de X. (b) Determine E(X) e V (X) Determine E(X), E(X 1), V (X), E(X(X 1)), E(e X ), a mediana e o coeficiente de variação da v.a. X, que tem a seguinte função densidade probabilidade: x 2, 0 x f(x) =, 1 < x 2 3 x 2, 2 < x 3 0, x < 0 x > A v.a. X tem a seguinte função densidade probabilidade: { k sin(x), 0 x π f(x) = 0, c.c. (a) Determine o valor da constante k. (b) Determine E(X) e E(cos(X)). (c) Sabendo que V (X) = π2 4 2, determine E(X2 ). (d) Determine V (5X 4).

98 92 CAPÍTULO 10. EXERCÍCIOS 2.16 (Teste de P.E. D /09) Uma empresa de produtos químicos fabrica um composto que vende em doses unitárias de 1 litro. Suponha que a fracção de álcool numa dose unitária do composto é uma variável aleatória X, com função densidade de probabilidade dada por: { kx f(x) = 3 (1 x), 0 x 1; 0, outros valores de x; (a) Mostre que k = 20. (b) Determine a função de distribuição. (c) Sabendo que E(X 2 ) = 10/21, calcule V (5X 1). (d) Sabe-se que o custo de produção de uma dose de composto é sempre 0.8e/l, mas o seu preço de venda em e/l, V, depende do valor de X que lhe corresponde, sendo definido da seguinte forma: { 1.2, 1/3 X 2/3; V = 1.0, outros valores de X; Obtenha a função de probabilidade da variável aleatória, L = V 0.8, o lucro obtido por cada dose daquele composto.

99 10.3. VECTORES ALEATÓRIOS Vectores Aleatórios 3.1 (Teste de P.E. 2006/07) Numa empresa de construção, o número Y de novos trabalhadores por semana, é uma variável aleatória de valor médio O número de acidentes de trabalho que ocorrem por semana na mesma empresa, X, é também uma variável aleatória. O quadro que se segue tem a função de probabilidade conjunta de (X, Y ). X\Y 0 2 a 0 c 2c 3c 1 2c 3c 4c (a) Complete a função de probabilidade conjunta e calcule E(Y (Y 1)) e P (X + Y 3). (b) Qual a probabilidade de ocorrer um acidente de trabalho, numa semana onde foram admitidos dois novos trabalhadores? (c) Determine a covariância entre as variáveis X e Y. Comente o resultado. 3.2 Numa empresa de aluguer de aviões informam-nos de que a procura diária de aviões de passageiros, X, e a procura diária de aviões de transporte rápido de correio, Y, constituem um par aleatório (X, Y ), cuja função de probabilidade conjunta é dada por: X \ Y p p (a) Qual a probabilidade de, num dia, a procura de aviões de passageiros ser inferior à procura de aviões de transporte rápido de correio? (b) Determine a função de probabilidade de X Y = 1 e calcule E(X Y = 1). (c) Para um dia em que foi pedido um avião de transporte rápido de correio, qual a probabilidade de terem sido procurados 1 ou 2 aviões de passageiros? (d) Qual a procura diária média de aviões de passageiros? (e) Deduza a função de probabilidade da procura total diária de aviões de aluguer. (f) Determine a procura diária total média de aviões de aluguer. (g) Sabendo que V (X) = , determine Cov(X, Y ), V (X 2Y ) e ρ(x, Y ). 3.3 (Exame de P.E. 2006/07) Seja (X, Y ) um par aleatório, onde X representa o número diário de imóveis vendidos numa agência imobiliária e Y a v.a. definida por: { 0, se a agência imobiliária não fecha durante o horário de almoço; Y = 1, se a agência imobiliária fecha durante o horário de almoço; Sabe-se que: X tem distribuição B(2, 0.6) e os valores da v.a. Y ocorrem com a mesma probabilidade. Os acontecimentos {X = 1} e {Y = 0} são independentes. P (X = 2, Y = 1) = (a) Construa a tabela da função de probabilidade conjunta e marginais associada ao par aleatório (X, Y ).

100 94 CAPÍTULO 10. EXERCÍCIOS (b) As variáveis X e Y são independentes? Justifique. (c) Calcule V (Y 2X). (d) Qual a probabilidade de venderem 2 imóveis, nos dias em que a agência não fecha durante o período de almoço? 3.4 Numa fábrica produzem-se ratos de computador, que podem sofrer de dois tipos diferentes de defeitos - digamos A e B. Para cada rato produzido definem-se duas variáveis aleatórias, X e Y, representando, respectivamente, o número de defeitos do tipo A e do tipo B a si associados: X = { 0, rato sem defeito do tipo A 1, rato com defeito do tipo A Y = { 0, rato sem defeito do tipo B 1, rato com defeito do tipo B Sabendo que P (Y = 0) = 0.80, P (X = 1 Y = 1) = 0.7 e P (X = 1 Y = 0) = 0.1: (a) Determine a função de probabilidade conjunta do par aleatório (X, Y ). (b) Justifique se para cada rato o número de defeitos do tipo A é independente do número de defeitos do tipo B. (c) Calcule a P (X < Y ). (d) Qual a probabilidade de o número total de defeitos num qualquer rato da produção ser inferior a 2? 3.5 Suponhamos que M 1 e M 2 são duas máquinas que funcionam independentemente e sejam X e Y variáveis aleatórias que representam, respectivamente, n o diário de avarias de M 1 e o n o diário de avarias de M 2. Sabendo que: A máquina M 1 nunca avaria mais do que uma vez por dia e, que a máquina M 2 avaria, no máximo, duas vezes por dia; A probabilidade de M 1 não avariar é de 0.7; A probabilidade de M 2 não avariar é 0.5 e a de avariar duas vezes é 0.3, Construa a tabela da função de probabilidade conjunta e marginais associada ao par aleatório (X, Y ). 3.6 Sejam X e Y duas v.a. s tais que V (X) = σ 2 e V (Y ) = 2σ 2. Considere novas v.a. s, T = 2X + Y e W = X Y. Sabendo que V (W ) = σ 2, calcule: (a) O coeficiente de correlação entre X e Y. (b) V (T ). (c) Cov(W, T ). 3.7 Seja (X, Y ) um par aleatório para o qual V (X) = V (Y ) = σ 2 e coeficiente de correlação ρ. Sejam as novas v.a. s U = X + Y e W = X Y. Mostre que V (W ) = 2σ 2 (1 ρ) e Cov(U, W ) = Seja (X, Y ) um par aleatório com a seguinte função densidade probabilidade conjunta: f(x, y) = { k(x + 2y), 0 < x < 1, 0 < y < 1 0, c.c. (a) Determine k. (b) Determine as funções densidade marginais de X e Y. (c) As variáveis X e Y são independentes?

101 10.3. VECTORES ALEATÓRIOS 95 (d) Calcule P ( 1 5 < X < 2 5 ), e P (X < Y ). (e) Calcule P ( 1 5 < X < 2 5 Y > 1 2 ). 3.9 Seja (X, Y ) um par aleatório com a seguinte função densidade probabilidade conjunta: f(x, y) = (a) Determine k. { k, x > 0, y < 0, y > x 2 0, restantes valores de (x, y) (b) As variáveis X e Y são independentes?

102 96 CAPÍTULO 10. EXERCÍCIOS 10.4 Principais distribuições 4.1 Um consumidor queixou-se às autoridades que no supermercado do Sr. Manuel se vendiam latas de cogumelos com o prazo de validade ultrapassado. No seguimento desta denúncia um inspector das actividades económicas dirigiu-se ao referido supermercado e seleccionou, ao acaso e sem reposição, 6 latas - do total de 50 que o Sr. Manuel ainda tinha para vender. Como na realidade ainda restavam 7 latas com o prazo de validade ultrapassado, qual a probabilidade de o Sr. Manuel ser multado (isto é, de o inspector descobrir pelo menos uma lata com o prazo ultrapassado)? 4.2 De forma a proceder a uma classificação geral do estado das praias Portuguesas, uma comissão Europeia vai inspeccionar 10 praias, seleccionadas ao acaso de entre as 100 existentes. A comissão atribui a classificação de Bom se pelo menos 8 das 10 praias inspeccionadas estiverem em bom estado. Sabendo que, da totalidade das 100 praias, 15 não apresentam boas condições, qual a probabilidade de Portugal: (a) Obter uma classificação de Suficiente, pelo facto da comissão só ter encontrado 7 praias em bom estado? (b) Obter uma boa classificação? (c) Se a comissão só inspeccionasse 5 praias, qual a probabilidade de não encontrar nenhuma em mau estado? (d) Nas praias inspeccionadas quantas se esperam que estejam em bom estado? 4.3 O senhor Sousa tem uma empresa que compra e vende selos e outros artigos de coleccionismo. Ele guarda 20 selos dentro de uma bolsa preta, estando ainda cada um deles metido num envelope opaco. 6 destes selos valem 100 euros cada um e os restantes nada valem. O senhor Sousa, para promover a venda, cobra 20 euros por cada selo, mas não permitindo que o cliente veja o conteúdo do envelope. Suponha que um cliente compra 5 selos. (a) Qual a probabilidade dos cinco selos nada valerem? (b) Qual a probabilidade do cliente não perder nem ganhar dinheiro com a compra? 4.4 Num determinado percurso de avião, a probabilidade de uma pessoa qualquer que aí viaje pedir uma refeição vegetariana é de 0.2. Supondo que em determinado dia viajam 10 pessoas no avião, calcule a probabilidade de: (a) Ninguém pedir refeição vegetariana. (b) Todos pedirem refeição vegetariana. (c) Pelo menos uma pedir refeição vegetariana. 4.5 Determinado exame é constituído por 5 questões de escolha múltipla, em que cada questão tem 4 opções de resposta possíveis - apenas uma sendo a correcta. Supondo que um aluno que vai fazer o exame responde a tudo ao acaso, qual é a probabilidade de ele acertar a mais de metade das questões? Qual é o número médio de respostas correctas? E o seu desvio padrão? 4.6 Sabe-se que 5% dos copos produzidos em determinada fábrica apresentam pequenos defeitos. Seleccionando-se da produção da fábrica, ao acaso, 50 copos, qual a probabilidade de: (a) Nenhum ser defeituoso? (b) Um ser defeituoso? (c) No máximo 1 ser defeituoso? (d) Calcule o número médio de copos defeituosos nesta amostra e o seu desvio padrão.

103 10.4. PRINCIPAIS DISTRIBUIÇÕES Na sala de aula de uma escola, 2 meninos lançam ao ar moedas equilibradas. O João faz 10 lançamentos e o Pedro 15. Qual a probabilidade de, no total dos lançamentos, saírem exactamente 12 caras? 4.8 Verifica-se que, relativamente a um determinado dado, quando ele é lançado, a probabilidade de sair um número par é duas vezes superior à probabilidade de sair um número ímpar. (a) Se X representar a v.a. que conta o número de vezes que sai um número par em 4 lançamentos deste dado, determine a sua função de probabilidade. (b) Considere a v.a. Y = número de lançamentos necessários até obter um número ímpar. i. Qual o valor médio, coeficiente de variação e moda de Y? ii. Qual a probabilidade de ser necessário lançar 4 vezes o dado, para obter um número ímpar? iii. Qual a probabilidade de ser necessário lançar pelo menos 2 vezes o dado, para obter um número ímpar? 4.9 Numa prisão existem 1500 presos, dos quais 4% cometeram homicídio por envenenamento. Seleccionando-se aleatoriamente 8 presos para executarem os trabalhos na cozinha da prisão, qual a probabilidade de que 2 deles sejam deste tipo de homicidas? 4.10 Uma lista de clientes de uma empresa é constituída por 1000 endereços de clientes. Destes, 300 compraram nos últimos 3 meses, pelo menos um produto da empresa. Com o objectivo de avaliar da aceitação de um novo produto, 25 clientes daquela lista foram escolhidos ao acaso e sondados acerca do novo produto. Qual a probabilidade de no máximo 2 dos 25 clientes escolhidos, fazerem parte do grupo dos que realizaram alguma compra durante os últimos 3 meses? 4.11 O número de chamadas de emergência que um serviço de ambulâncias recebe por dia é uma v.a. de Poisson. Sabendo que a probabilidade de não haver nenhuma chamada num dia é de 0.15, calcule: (a) a probabilidade de haver apenas uma chamada num dia. (b) a probabilidade de haver 2 chamadas num dia. (c) a probabilidade de haver no máximo 3 chamadas num dia. (d) a probabilidade de haver pelo menos 4 chamadas num dia. (e) o número médio de chamadas por dia, o seu desvio padrão e coeficiente de variação Suponha que X é uma v.a. com distribuição de Poisson. Se P (X = 2) = 2 3P (X = 1), calcule P (X = 0) e P (X = 3) Suponha que, o número de pessoas que utilizam uma caixa multibanco é um processo de Poisson de taxa λ = 10/hora. Calcule; (a) a probabilidade de não ir ninguém à caixa multibanco durante 1 hora. (b) a probabilidade de irem 20 pessoas à referida caixa durante 4 horas. (c) O número médio de visitas à caixa multibanco durante 4 horas e o seu coeficiente de variação Na portagem da ponte 25 de Abril o número de veículos automóveis que passa em cada cabine de pagamento da portagem, por minuto, segue uma distribuição de Poisson com valor médio 1 veículo. Supondo que em determinado minuto estão abertas 10 cabines, qual a probabilidade de serem, no total, atendidos 11 condutores nesse minuto? 4.15 Suponha que num livro de 500 páginas existem 300 erros tipográficos, distribuídos aleatoriamente por todo o livro. Assumindo que o número de erros segue uma distribuição de Poisson, determine a probabilidade de uma dada página conter: (a) 2 erros tipográficos.

104 98 CAPÍTULO 10. EXERCÍCIOS (b) Pelo menos 2 erros tipográficos 4.16 Um grande armazém de venda de material de vidro de laboratório emprega 100 pessoas. Tem-se verificado que o número de peças quebradas, por empregado e por mês, segue uma distribuição de Poisson de valor médio 1.5. Cada peça partida representa um prejuízo de 40 cêntimos, pelo que o armazém só arca com a despesa de um máximo de 3 peças por mês e por empregado. A partir deste valor é no salário do empregado que se desconta a despesa. (a) Qual a probabilidade de um empregado escolhido ao acaso ter de pagar do seu bolso algum prejuízo num qualquer mês? (b) Considere agora a variável aleatória que representa o prejuízo do armazém, por mês e por empregado. Determine a sua função de probabilidade, qual é esse prejuízo médio e o seu desvio padrão Em determinada empresa 2% das chamadas telefónicas recebidas são enganos. Qual a probabilidade aproximada de, em 200 telefonemas, haver pelo menos 2 enganos? Qual o número médio de enganos? 4.18 Numa feira popular a probabilidade de uma pessoa contrair uma intoxicação alimentar é de Determine a probabilidade de, em 300 pessoas, 2 ficarem intoxicadas Determinado jogo consiste em acertar com um dardo num segmento de recta de comprimento 1 metro, colocado na posição horizontal. Admitindo que se acerta apenas sobre o segmento de recta (e não fora dele) e que se tem igual probabilidade de acertar em qualquer ponto: (a) Identifique a função densidade probabilidade da v.a. X que representa a distância, em metros, do ponto onde se acertou ao extremo esquerdo do segmento. (b) Calcule P (0.4 < X < 0.6). (c) Qual o valor médio do ponto onde se acerta? E o seu coeficiente de variação? (d) Calcule P (0.4 < X < 0.6 X > 0.5). (e) Seja A =]0.4, 0.6[, a região central do segmento de recta compreendida entre os 4cm e os 6cm. Qual a probabilidade de, em 5 lançamentos do dardo, acertar 3 vezes em A? 4.20 Num posto dos correios o tempo (minutos) que a D. Hermínia demora a atender cada um dos seus clientes é uma v.a. exponencial de valor médio 3 minutos. Determine: (a) A função de distribuição de X. (b) A probabilidade de um cliente demorar mais de 5 minutos a ser atendido. (c) A probabilidade de um cliente demorar mais de 3 minutos a ser atendido. (d) A probabilidade de um cliente demorar mais de 5 minutos a ser atendido, sabendo que já está a ser atendido há pelo menos 2 minutos. Compare com a probabilidade anterior e comente. (e) O coeficiente de variação do tempo de atendimento Admita que os clientes chegam a uma loja de acordo com um processo de Poisson de média λ = 2/minuto. Calcule a probabilidade: (a) do tempo entre chegadas consecutivas ser superior a um minuto. (b) do tempo entre chegadas consecutivas ser inferior a quatro minutos. (c) do tempo entre chegadas consecutivas estar entre um e dois minutos. (d) do tempo de espera pelo terceiro cliente ser superior a 5 minutos Demonstre o Teorema Seja X uma v.a. com distribuição N(100, 20 2 ). Calcule: (a) P (X < 125).

105 10.4. PRINCIPAIS DISTRIBUIÇÕES 99 (b) P (X > 115). (c) P (60 < X < 140) Seja X uma v.a. normal com média 12 e variância 2. Determine c tal que: (a) P (X < c) = 0.1. (b) P (X > c) = (c) P (12 c < X < 12 + c) = Admita que o Q.I. das pessoas de determinado país é uma v.a. X com distribuição normal de média 90 e desvio padrão 12. Determine: (a) A percentagem da população com Q.I. entre 85 e 95. (b) A percentagem da população com Q.I. entre 78 e 102. (c) O valor c > 0 tal que a percentagem da população com Q.I. entre 90 c e 90 + c seja de 95%. (d) pessoas desta população concorreram ao selecto clube SMART, que apenas admite indivíduos com Q.I. superior a 120. Quantas destas pessoas espera o clube vir a admitir? 4.26 A altura (metros) a que crescem os pinheiros é uma v.a. X normalmente distribuída com desvio padrão igual a 1 metro. Supondo que 90% dos pinheiros atingem uma altura de pelo menos 16 metros, qual a altura média dos pinheiros? 4.27 Numa fábrica de embalar arroz este trabalho é executado por uma máquina. A quantidade de arroz (Kg) que entra nos pacotes é uma v.a. X seguindo uma distribuição normal de valor médio µ e desvio padrão σ. (a) Determine σ sabendo que a quantidade embalada difere da sua média por menos de 100g, em 95 % dos casos. (b) Supondo que µ = 1Kg, determine a probabilidade de, em 10 pacotes de arroz embalados por esta máquina, 2 terem menos de 0.9Kg Considere X uma v.a. Normal de valor médio 2 e variância 9. Seja I um intervalo do tipo [4 a, a]. Determine o valor de a de modo a que P (X I) = A altura (metros) a que um atleta salta é uma v.a. Normal de média 1.8m e desvio padrão 20cm. Sabendo que 20% das vezes o atleta consegue saltar acima de h, determine h Num jardim zoológico existem um leão e um tigre que consomem, independentemente um do outro, o mesmo tipo de alimentação - carne de 2 a. A quantidade de carne (Kg) que cada um deles come por dia são variáveis aleatórias, representadas por X 1 para o leão e X 2 para o tigre, respectivamente, normalmente distribuídas com média 4Kg e desvio padrão 0.5Kg. Determine a probabilidade de, num determinado dia: (a) Ambos os animais comerem menos de 3Kg de carne cada. (b) O leão comer mais do que o tigre. (c) Metade do que o leão come juntamente com 3 4 do que o tigre come, exceder os 4Kg Um restaurante vende comida a peso e constatou que a quantidade de comida vendida (Kg) tem distribuição Normal, dependendo os seus parâmetros de o cliente ser homem ou mulher - caso seja mulher a média é de 0.4 Kg e o desvio padrão 0.1 Kg e caso seja homem a média é de 0.5 Kg e o desvio padrão é de 0.2 Kg. Sabendo que os clientes são 55% mulheres e 45% homens, e que a quantidade de comida consumida é independentes entre clientes: (a) Determine a probabilidade de um cliente qualquer consumir menos de 0.5 Kg de comida.

106 100 CAPÍTULO 10. EXERCÍCIOS (b) Sabendo que um cliente consumiu mais de 0.6 Kg de comida, qual a probabilidade de ser homem? (c) Num grupo de 4 mulheres e 6 homens qual a probabilidade de se consumir menos de 5 Kg de comida? 4.32 (Teste de PE 2006/07) Um elevador está preparado para suportar uma carga até 450 kg. Sempre que este valor é ultrapassado o elevador não funciona. Um estudo recente indica que o peso, das pessoas que utilizam esse elevador, é uma variável aleatória com distribuição Normal de valor médio 70 kg. (a) Sabendo que a probabilidade de uma pessoa (que utiliza o elevador) pesar menos de 60 kg é , determine o desvio padrão desta variável aleatória. (b) Se entrarem 6 pessoas no elevador, qual a probabilidade de o elevador não funcionar devido ao excesso de peso? 4.33 (Teste de P.E. D 2005/06) Um foguete espacial é constituído por 3 partes distintas, cápsula, corpo e depósitos. Representem as v.a. s X, Y e W o peso da cápsula, o peso do corpo do foguete e o peso dos depósitos, respectivamente, em toneladas. Sabe-se que X N(5, 1), Y N(10, 2 2 ) e W N(7, 2 2 ), sendo as três variáveis independentes entre si. (a) Qual a probabilidade de o peso da cápsula estar compreendido entre 3 e 7 toneladas? (b) Qual o peso h que o corpo do foguete ultrapassa em 2.5% das vezes? (c) Qual a probabilidade de o peso da cápsula mais o peso dos depósitos excederem o peso do corpo do foguete? 4.34 Admita que X é uma v.a. com distribuição t com 14 graus de liberdade, X t 14. Determine o valor de c, tal que: (a) P (X c) = 0.75; (b) P (X c) = 0.05; (c) P ( X > c) = Suponha que X é uma v.a. com distribuição χ 2 com 10 graus de liberdade, X χ Determine o valor de c, tal que: (a) P (X c) = 0.95; (b) P (X c) = 0.05.

107 10.5. TEOREMA LIMITE CENTRAL Teorema Limite Central 5.1 Numa loja de conveniência cada pessoa gasta, em média, 10e, com um desvio padrão de 3.75e. Qual a probabilidade de 100 clientes gastarem mais de 1100e, admitindo que os gastos são independentes de pessoa para pessoa? 5.2 O número de sismos no Japão, por mês, é uma v.a. com média 5 sismos e desvio padrão 2 sismos. Admitindo que os sismos são independentes entre si, determine a probabilidade de nos próximos 40 anos haver no máximo 2300 sismos. 5.3 Uma empresa vende caixas com biscoitos e, quando lhe é solicitado, envia-as pelo correio. Para evitar pesar estas caixas, cobra sempre o valor de portes de correio correspondente a admitir que qualquer caixa pesa 2508g. Cada caixa leva 100 biscoitos e o peso da embalagem plástica é desprezável. Se soubermos que o peso de cada biscoito é variável mas que em média pesa 25g com um desvio padrão de 8g, determine a probabilidade do valor pago em portes de correio com o envio de uma caixa ser inferior ao valor que pagaria, caso a caixa fosse pesada. 5.4 Ao adicionar números, um computador arredonda cada número para o inteiro mais próximo. Admita que os erros cometidos são v.a. s independentes e identicamente distribuídas (i.i.d.) com valor médio igual a 0 e variância igual a 1/12. Se 1200 números forem adicionados, qual a probabilidade aproximada de que o erro total cometido não ultrapasse 15.4? 5.5 Envelopes de avião são empacotados em grupos de 100, sendo depois pesados. Supondo que o peso de cada envelope é uma v.a. com valor médio igual a 1 grama e desvio padrão de 0.05 g, independentemente de envelope para envelope, determine: (a) a probabilidade de que um pacote, com exactamente 100 envelopes, pese mais de g. (b) a probabilidade de que a média dos pesos dos 100 envelopes de um pacote, diste do respectivo valor médio por uma quantidade superior a 0.01g. 5.6 Numa determinada estufa de produção de tulipas vão-se semear 240 bolbos desta flor. Sabe-se que em média cada bolbo produz 4 flores, com um desvio padrão de 2 flores. Qual a probabilidade aproximada de se conseguir obter uma produção final de mais de 1000 tulipas? Justifique. 5.7 Na população das mulheres cerca de 20% estão grávidas. Supondo que se selecciona ao acaso 250 mulheres, qual a probabilidade de que 50 estejam grávidas? E qual a probabilidade de que pelo menos 50 estejam grávidas? 5.8 Um aviário vende ovos em caixas de 1 dúzia, verificando-se que cerca de 1% dos ovos se partem no transporte para os seus locais de comercialização. Num contentor com 80 caixas qual a probabilidade de se encontrarem entre 5 e 15 ovos partidos? 5.9 O número de utentes diários de uma máquina de venda de selos tem uma distribuição de Poisson com valor médio 20. Determine a probabilidade de num mês de 30 dias: (a) Usarem a máquina entre 580 e 621 pessoas. (b) Usarem a máquina 580 pessoas Sabe-se que o número de automóveis que entram numa auto-estrada num período de 10 segundos é uma v.a. com distribuição de Poisson de valor médio 3. Qual a probabilidade aproximada de entrarem 20 ou mais automóveis durante 30 segundos?

108 102 CAPÍTULO 10. EXERCÍCIOS 10.6 Estimação Pontual 6.1 Considere a população formada pelo número de filhos por família (X) num determinado país, em que X = 0, 1, 2, 3, 4 (não há famílias com mais de 4 filhos). Suponha que se conhece a sua distribuição de probabilidade: { X (a) Quais os valores populacionais de µ e σ 2? (b) Desta população recolhe-se uma amostra aleatória constituída por 2 famílias - (X 1, X 2 ). Qual a distribuição de probabilidade de X 1 e X 2 e os respectivos parâmetros µ e σ 2? (c) Suponha que recolheu a seguinte amostra aleatória de 10 famílias: (1, 3, 0, 0, 2, 3, 0, 2, 4, 1). Com base nesta amostra estime pontualmente µ e σ 2. Estime ainda o erro padrão da estimativa de µ. Comente. 6.2 Considere que se seleccionou uma amostra aleatória (X 1, X 2,..., X n ) de uma população com valor médio µ e variância σ 2. n (a) Mostre que X = X i é estimador centrado e consistente da média populacional. n (b) Mostre que ˆθ 1 = X 1 + X n e 2 ˆθ 2 = 2X 1 + 3X 2 + 5X 3 também são estimadores centrados de 10 µ. Qual é melhor? São consistentes? (c) Mostre que (X) 2 não é estimador centrado de µ Suponha que seleccionou uma amostra aleatória (X 1, X 2,..., X n ) de uma população com distribuição U(0, θ), isto é, com função densidade: { 1 f(x) = θ, 0 x θ 0, c.c. (a) Mostre que 2X é o estimador dos momentos de θ. (b) Verifique se o estimador da alínea anterior é centrado e consistente. (c) Dada a amostra (1.215, 1.580, 0.726, 2.843, 3.394, 0.612, 2.621, 1.181, 2.930, 0.317), estime o valor de θ. Nota: x i = (Teste de P.E /07) Seja (X 1, X 2,..., X n ) uma amostra aleatória, extraída de uma população com distribuição Geométrica. (a) Determine o estimador de p usando o método dos momentos e o método da máxima verosimilhança. (b) Determine o estimador de máxima verosimilhança do valor médio de X. Verifique se o estimador é consistente para a estimação do valor médio. 6.5 Considere a experiência aleatória que consiste em contar o número de vezes que se lança um dado (eventualmente não equilibrado) até sair um número par. Em 15 realizações da experiência obtiveram-se os seguintes resultados: (a) Estime a probabilidade de sair um número par (num lançamento do dado). (b) Estime a probabilidade de ser necessário lançar mais de 2 vezes o dado para obter um número par.

109 10.6. ESTIMAÇÃO PONTUAL Considere a amostra aleatória (X 1, X 2,..., X n ) de uma população com distribuição Bin(r, p), com r conhecido. (a) Determine o estimador dos momentos de p. (b) Verifique que a função log-verosimilhança é: n ( ) r n l(p) = ln + ln(p) x i + ln(1 p)(nr x i n x i ), se x i {0, 1,..., r}. (c) Determine o estimador de máxima verosimilhança de p. (d) Verifique se os estimadores obtidos, nas alíneas anteriores, são centrados e consistentes. 6.7 Considere a amostra aleatória (X 1, X 2,..., X n ) de uma população com com função densidade, f(x) = θ, x > 1 (θ > 0). xθ+1 (a) Sabendo que E(X) = θ θ 1, θ > 1, determine o estimador dos momentos de θ. (b) Verifique que a função log-verosimilhança é dada por: n l(θ) = n ln(θ) (θ + 1) ln(x i ), se x i > 1, i = 1,..., n. (c) Determine o estimador de máxima verosimilhança de θ. (d) Determine o estimador de máxima verosimilhança de β = 1/θ. 6.8 Sabe-se que a idade de determinada camada do subsolo segue uma distribuição Normal com média de 0.5 milhões de anos e um desvio padrão de anos. Seleccionadas ao acaso 10 amostras de subsolo calcule a probabilidade de a média amostral das suas idades ser superior a anos. 6.9 Considere uma amostra aleatória de dimensão 25, extraída de uma população Normal de média 100 e desvio padrão 10. (a) Qual a probabilidade de a média amostral cair no intervalo de E(X) 1.96 SE(X) a E(X) SE(X)? (b) Quanto deverá ser o tamanho amostral tal que a amplitude do intervalo definido em (a) diminua para O tempo de espera em pista para a descolagem de cada avião no aeroporto de Lisboa é uma v.a. com valor médio 4 minutos e desvio padrão 2.5 minutos. Suponha que se selecciona ao acaso 50 aviões, para se registarem os seus correspondentes tempos de espera. Calcule a probabilidade de a média dos tempos de espera exceder os 5 minutos Assuma que o número de ovos que as tartarugas verdes depositam nas praias, em cada desova, é uma v.a. de P oisson, com valor médio 15 ovos. Seleccionando ao acaso uma amostra de 100 tartarugas verdes, qual a probabilidade de que a média do número de ovos destas esteja compreendido entre o seu valor médio e ± 3 vezes o seu erro padrão Suponha que o tempo de vida de determinada espécie de burros é uma v.a. com distribuição exponencial, de valor médio 25 anos. Seleccionando ao acaso uma amostra de 40 burros desta espécie, qual a probabilidade de que a média dos seus tempos de vida seja inferior a 20 anos? 6.13 No país das Maravilhas a proporção de loucos é de Suponha que se pretende seleccionar uma amostra aleatória de 500 habitantes deste país. Qual a probabilidade de a proporção de loucos que vão calhar na amostra exceder 0.5? 6.14 Numa população Normal de média desconhecida e desvio padrão 5 calcule a probabilidade de a variância de uma amostra aleatória de dimensão 20 dessa população estar compreendida entre 26 e 58.

110 104 CAPÍTULO 10. EXERCÍCIOS 10.7 Estimação por Intervalo de Confiança 7.1 Para avaliar o peso médio das maçãs produzidas por um determinado agricultor analisaram-se 20 maçãs seleccionadas ao acaso da produção. Estas resultaram num peso médio de x = 320g. Assuma que os pesos das maçãs têm distribuição Normal com desvio padrão σ = 20g. (a) Construa um intervalo de confiança a 90% para a média do peso. (b) Qual deve ser o tamanho da amostra de forma a que a amplitude do correspondente intervalo de confiança a 90% para a média seja de 1g? E 5g? Comente. 7.2 A quantidade de combustível dispendido num percurso de Lisboa a Faro (em litros) é uma variável aleatória normal. (a) Assuma que em 8 viagens Lisboa-Faro seleccionadas ao acaso se verificou um gasto médio de combustível de 36 litros e um desvio padrão de 10 litros. Construa intervalos de confiança para a média a 90% e a 95% e compare-os. (b) Assuma agora que foi em 50 viagens Lisboa-Faro, seleccionadas ao acaso, que se verificou um gasto médio de combustível de 36 litros e um desvio padrão de 10 litros. Construa intervalos de confiança para a média a 90% e a 95% e compare com os anteriores. Comente. 7.3 O nível de poluição do ar de determinada cidade (medido em concentração de monóxido de carbono no ar) distribui-se normalmente. Recolheram-se os seguintes valores da referida concentração em 10 dias diferentes (em ppm): 0.09, 0.33, 0.01, 0.25, 0.20, 0.05, 0.03, 0.18, 0.13, Com base nesta amostra determine um intervalo de confiança a 99% para a concentração média de monóxido de carbono na atmosfera. 7.4 A quantidade de gordura em 100g de carne de determinado tipo de vacas, medido em gramas, tem desvio padrão 8g. Qual deve ser o tamanho de uma amostra aleatória a seleccionar de forma a que a amplitude de um intervalo de confiança a 95% para a gordura média por 100g de carne seja inferior a 2.5g? Refira eventuais pressupostos que teve de fazer. 7.5 Construa um intervalo de confiança a 95% para a temperatura média de uma determinada sala de espera, com base numa amostra de temperaturas recolhidas em 35 dias diferentes que resultaram nos valores x = 22.1 o C e s = 3.2 o C. 7.6 A tensão (MegaPascal) suportada por uma determinada barra de aço é uma variável aleatória com desvio padrão igual a 30 MPa. Com base numa amostra aleatória de n tensões observadas, para as quais se verificou que x i = 10000MPa, construiu-se um intervalo de confiança a 95% para a tensão média suportada, cujo extremo superior era de 208.3MPa. Determine o extremo inferior do referido intervalo e diga quanto vale o n, assumindo que n > (Exame de P.E. D /09) A população das estaturas dos alunos da FCT, em metros, segue uma distribuição Normal. Recolheu-se a seguinte amostra aleatória de estaturas de 40 alunos desta faculdade: correspondendo a uma média amostral de 1.73 e a um desvio padrão amostral de (a) Indique uma estimativa pontual, com base nesta amostra, para a verdadeira estatura média populacional. (b) Deduza e calcule um intervalo de confiança a 92% para a estatura média populacional. 7.8 O tempo médio (segundos) de reacção de uma determinada raça de cães a um certo estímulo tem interesse para um determinado treinador. Assim ele resolveu testar 32 cães escolhidos aleatoriamente tendo observado x = 1.2s e (x i x) 2 = 15.5s 2.

111 10.7. ESTIMAÇÃO POR INTERVALO DE CONFIANÇA 105 (a) Construa um intervalo de confiança a 95% para o tempo médio de reacção dos cães. (b) Suponha que só se conseguiu obter uma amostra de 15 cães, tendo resultado em x = 1.1s e (x i x) 2 = 15.9s 2. Construa, para este caso, um intervalo de confiança a 95% para o tempo médio de reacção dos cães, referindo eventuais pressupostos que tenha tido de fazer. 7.9 Numa fábrica de embalagem de queijo em fatias seleccionaram-se aleatoriamente 100 embalagens, das quais se verificaram que 18 tinham peso inferior ao suposto - sendo por isso inadequadas. Construa um intervalo de confiança a 98%para a verdadeira proporção de pacotes inadequados na produção total De 200 casos de pessoas com cancro do cólon, aleatoriamente detectadas, 12 morreram após 5 anos da detecção. (a) Estime pontualmente a probabilidade de uma pessoa que contraia o cancro do cólon morrer após 5 anos da sua detecção. (b) Quanto deveria aumentar ao tamanho da sua amostra aleatória de forma a que a largura do intervalo de confiança a 90% para a probabilidade considerada na alínea anterior fosse inferior a 0.01? 7.11 O tempo (horas) que o Pedro dispende em filas de trânsito, por dia, é uma v.a. Normal. Seleccionando aleatoriamente 15 dias registaram-se os seguintes valores de espera: Determine um intervalo de confiança a 99% para a variância do tempo de espera Um profissional de bowling jogou 8 partidas num torneio, tendo obtido as seguintes pontuações: Admitindo a normalidade das pontuações, construa um intervalo de confiança a 95% para a variância e para o desvio padrão (este último fornece uma medida da consistência da prestação do jogador).

112 106 CAPÍTULO 10. EXERCÍCIOS 10.8 Teste de Hipóteses 8.1 Uma fábrica de gelados afirma que a procura do gelado de chocolate no verão, por dia e em euros, é uma v.a. Normalmente distribuída com valor médio e200 e desvio padrão e40. Numa amostra aleatória constituída por 10 dias seleccionados ao acaso do período de verão verificou-se que x = 216. (a) Teste, ao nível de significância 5%, se de facto o consumo médio de gelado de chocolate no verão é de e200 por dia. (b) Teste, ao ao nível de significância 5%, se de facto o consumo médio de gelado de chocolate no verão é menor do que e200 por dia. (c) Qual a potência do teste, da alínea anterior, se µ = 190. (d) Resolva as duas primeiras alíneas usando o valor-p. 8.2 Um produtor de azeite afirma que a acidez média do seu azeite é de 0.9 o. De forma a confirmar tal facto recolheu-se uma amostra aleatória da sua produção de azeite, tendo-se medido os seguintes valores de acidez: Admitindo a Normalidade da acidez do azeite: (a) Teste, ao nível de significância 1%, se o produtor tem razão. (b) Teste, ao ao nível de significância 1%, se a acidez média é superior a 0.9 o. 8.3 Um biólogo pretende demonstrar que o peso médio de uma determinada espécie de coelhos - coelhos anões - é superior a 250g. Para tal seleccionou aleatoriamente 40 coelhos, tendo obtido uma média dos pesos de 255.3g e um desvio padrão de 30g. Teste ao nível de significância 10% se o biólogo está certo, assumindo a Normalidade dos pesos dos coelhos. 8.4 A Inês recebe, para além do seu salário, vencimento correspondente a 2 horas extra que devia fazer todos os dias. Contudo ela está desconfiada que tem andado a trabalhar, em média, mais do que 2 horas extra. Como a empresa onde trabalha regista sempre a hora de entrada e de saída dos seus funcionários, ela seleccionou aleatoriamente 12 dias de trabalho passados e registou os seguintes valores relativos ao horário extra: x = 2.3h e s = 0.5h. Admitindo a Normalidade do tempo extra de trabalho, teste a um nível de significância de 5%, se as suas suspeitas se confirmam. 8.5 Uma companhia de seguros tem previsto no seu orçamento um total de 5000e/dia para pagar as indemnizações dos seus segurados. De forma a confirmar se o valor médio das indemnizações pagas por dia está bem previsto seleccionaram-se, de anos anteriores, 100 dias, tendo-se verificado x = 5625e e (x i x) 2 = e 2. Teste, ao nível de significância 5%, se a previsão se adequa. 8.6 Numa fábrica de massas embalam-se pacotes de esparguete que deveriam ter peso médio de 500g. O peso dos pacotes é uma v.a. Normal com variância σ 2 = 225g 2. De forma a confirmar o peso médio destes pacotes, seleccionaram-se ao acaso 40 embalagens que tinham um peso médio de 495g. Teste, ao nível de significância 1%, se o peso médio das embalagens é menor do que as 500g indicadas. 8.7 Seja X uma v.a. com distribuição Normal de valor médio µ e desvio padrão σ. A partir de uma amostra de dimensão 30, retirada da população, obtiveram-se os seguintes resultados: 30 x i = (x i x) 2 = 84.4 (a) Teste, ao nível de significância 1%, as hipóteses H 0 : µ = 2 vs H 1 : µ > 2. (b) Suponha que está a testar a hipótese H 0 : µ = 2 contra a hipótese H 1 : µ = 2.5 e que rejeita a hipótese nula se X 30 > 2.3. Calcule as probabilidades dos erros de 1 a e 2 a espécie do teste, se σ = Numa operação stop da brigada de trânsito, de 120 camiões TIR que foram parados, 42 iam com excesso de peso. Com base nesta amostra aleatória, teste a hipótese de que a proporção deste tipo de camiões, que circulam nas nossas estradas em situação ilegal, ultrapassa os 30%. Use um nível de significância de 10%.

113 10.8. TESTE DE HIPÓTESES (Exame de P.E. D /09) A população das estaturas dos alunos da FCT, em metros, segue uma distribuição Normal. Recolheu-se a seguinte amostra aleatória de estaturas de 40 alunos desta faculdade: correspondendo a uma média amostral de 1.73 e a um desvio padrão amostral de Teste a hipótese de que a verdadeira proporção de alunos com estatura superior ou igual a 1.82m nesta população é maior que 0.2. Use um nível de significância de 5% Determinada desordem genética no sangue pode ser prevista com base num teste de sangue muito simples. De forma a ter uma noção da proporção de pessoas que na população possam vir a ter esta desordem, testaram-se 100 pessoas, seleccionadas ao acaso, para as quais 14 testes deram positivo. Efectue um teste de hipóteses, usando um nível de significância 5%, sobre se percentagem de pessoas com tal desordem é inferior a 10% No fabrico de parafusos admite-se, relativamente aos seus comprimentos, uma variabilidade máxima de 0.5mm 2. Recolheu-se uma amostra aleatória de 20 parafusos que se verificou terem s 2 = 0.3. Admitindo a Normalidade do comprimento dos parafusos, teste, ao nível de significância de 5% se a especificação sobre a variabilidade do comprimento dos parafusos está a ser respeitada Com base na amostra aleatória seguinte, teste H 0 : σ = 1.3 vs H 1 : σ 1.3, a um nível de significância de 1%: A resistência de um determinado metal é dito ter uma variabilidade inferior a 0.01 ohm 2. Teste esta hipótese, a um nível de significância 10%, usando a seguinte amostra aleatória de resistências medidas para este metal: 0.14, 0.138, 0.143, 0.142, 0.144, Considere novamente a amostra do exercício 8.9. Podemos considerar a amostra aleatória? 8.15 Considere a seguinte tabela de frequências de uma v.a. X: Valores Frequência (a) É a distribuição Binomial com n = 5 e p = 0.25 um modelo apropriado? Teste esta hipótese ao nível de significância de 5%. (b) Determine um valor aproximado para o valor-p O gerente de uma loja pretende saber se os tempos entre chegadas de clientes à sua loja se comporta probabilisticamente segundo uma distribuição exponencial. Para tal, registou os tempos entre chegadas consecutivas de clientes numa manhã. Esses tempos (em minutos) foram: (a) Podemos considerar a amostra aleatória? (b) Teste a conjectura do gerente ao nível de significância 0.1. Nota: Numa distribuição exponencial, o estimador de máxima verosimilhança de λ é dado por ˆλ = 1 X.

114 108 CAPÍTULO 10. EXERCÍCIOS 8.17 Teste a um nível de significância 5% que a seguinte amostra aleatória provêm de uma distribuição Normal(3, 2 2 ): 1.14, 3.11, 3.55, 2.81, 6.28, 1.61, 4.36, 0.90, 0.81, 0.18, 2.08, 2.68, 2.12, 0.33, 2.57, 3.55, 1.81, 2.56, 5.56, 2.46, 4.20, 1.63, 4.21, 4.85, 4.24, 3.98, 1.40, 3.00, 2.01, Pensa-se que a altura a que os eucaliptos chegam aos 20 anos é uma v.a. Normal de média 2m. Para o confirmar seleccionou-se uma amostra aleatória de 30 eucaliptos, tendo observado as seguintes alturas: 0.2, 0.8, 3.6, 1.0, 0.2, 4.3, 3.1, 0.4, 3.3, 3.1, 3.2, 5.3, 1.7, 0.2, 2.8, 0.4, 0.5, 3.0, 1.2, 4.2, 4.8, 3.4, 2.1, 2.5, 2.4, 2.1, 0.8, 3.5, 1.7, 1.3 Teste, ao nível de significância 1%, a conjectura referida (Teste de P.E. D /09) Teste a um nível de significância 5% que a seguinte amostra aleatória provém de uma população com função de distribuição F, definida por: 0, x < 0 F (x) = 2x x 2, 0 x < 1 1, x , 0.33, 0.90, 0.43, 0.22, 0.42, 0.46, 0.68, 0.12, 0.51, 0.18, 0.03, 0.48, 0.24, , 0.52, 0.47, 0.32, 0.40, 0.01, 0.34, 0.32, 0.57, 0.51, 0.12, 0.06, 0.40, 0.07, 0.40 Para a realização do teste considere as classes ]0; 0.25], ]0.25; 0.5], ]0.5; 0.75] e ]0.75; 1[.

115 10.9. REGRESSÃO LINEAR Regressão Linear 9.1 Determinada empresa está interessada em contabilizar o tempo que o ar condicionado está ligado no verão, por dia, mediante a temperatura exterior ( o C). Assim, seleccionaram-se 14 dias ao acaso, para os quais se mediram as temperaturas (x) e se registarem o número de horas de utilização do ar condicionado (Y ): i x i Y i (a) Disponha os dados em gráfico. (b) Estime a recta de regressão linear simples. Refira quais os pressupostos efectuados. Desenhe-a no gráfico anterior. (c) Comente a qualidade da estimação efectuada, com base no coeficiente de determinação. (d) Teste a hipótese de o verdadeiro declive da recta de regressão ser nulo. Comente o resultado à luz da alínea anterior. (e) Para uma temperatura exterior de 30 o C qual o número de horas que estima que o ar condicionado esteja a trabalhar? E para uma temperatura de 40 o C? 9.2 Pretende-se modelar a velocidade do vento Y, medida em Km/h, com a altitude x a que se faz a medição (m). Para tal registaram-se, para 9 valores de altitude, os correspondentes valores da velocidade do vento: i x i Y i Y 2 i = Ȳ = x 2 i = x = Yi x i = (a) Ajuste um modelo de regressão linear simples aos dados. O que pode dizer sobre a qualidade do ajuste? (b) Determine um intervalo de confiança a 95% para o verdadeiro declive da recta de regressão. (c) Use o resultado da alínea anterior para testar a hipótese de que o verdadeiro declive da recta de regressão é nulo. 9.3 (Exame de P.E. D /06) Pretende-se averiguar se existe uma relação directa entre a proximidade com campos de futebol da residência de casais e a taxa de divórcio. Assim registaram-se, em 5 locais seleccionados ao acaso, o correspondente número de estádios de futebol num raio de 50Km (x) e a respectiva taxa de divórcio por 1000 habitantes registada nessas localidades (Y ): N o de campos de futebol, x i Taxa de divórcio (por 1000 habitantes), Y i x i = 14; 5 x 2 i = 66; 5 Y i = 17.1; 5 Y 2 i = 63.19; 5 Y i x i = 58.8; SQ R = (a) Ajuste uma recta de regressão linear a estes dados. Que pode dizer da qualidade do ajuste? (b) Diga por suas palavras como interpreta o valor de ˆβ 1 obtido. (c) Teste a hipótese do verdadeiro valor declive da recta de regressão, β 1, ser nulo, a um nível de significância 10%. O resultado está de acordo com a qualidade do ajuste discutida em (a)? (d) Numa localidade com 3 estádios de futebol na sua proximidade (menos de 50Km) quanto prevê que valha a correspondente taxa de divórcio?

116 110 CAPÍTULO 10. EXERCÍCIOS 9.4 (Exame de P.E /07) Com o objectivo de estudar a qualidade do ar na região de Lisboa, pretende-se modelar a quantidade Y de Ozono troposférico (O 3 ), com a quantidade x de partículas em suspensão com diâmetro aerodinâmico inferior a 10 µm (P M 10 ). Para tal, registaram-se os seguintes dados: x i y i xi = 724.8; x 2 i = ; S Y Y = ; xi y i = ; ˆσ 2 = ; (a) Ajuste um modelo de regressão linear simples aos dados. Refira quais os pressupostos do modelo. (b) Comente a qualidade do modelo. (c) Teste, ao nível de significância de 5%, a hipótese de o declive da recta de regressão ser nulo. (d) Prove que qualquer recta dos mínimos quadrados passa por (x, y).

117 Capítulo 11 Tabelas Função de distribuição Normal reduzida Φ(z) = P (Z z) = z ( 1 2π exp 1 2 t2) dt z Nota: Para z 4, Φ(z)

118 112 CAPÍTULO 11. TABELAS Quantis da distribuição t de Student Quantis da distribuição Qui Quadrado α g.l α g.l

BIOESTATÍSTICA. Parte 3 Variáveis Aleatórias

BIOESTATÍSTICA. Parte 3 Variáveis Aleatórias BIOESTATÍSTICA Parte 3 Variáveis Aleatórias Aulas Teóricas de 29/03/2011 a 26/04/2011 3.1. Conceito de Variável Aleatória. Função de Distribuição Variáveis aleatórias Uma variável aleatória pode ser entendida

Leia mais

Capítulo 2. Variáveis Aleatórias e Distribuições

Capítulo 2. Variáveis Aleatórias e Distribuições Capítulo 2 Variáveis Aleatórias e Distribuições Experimento Aleatório Não existe uma definição satisfatória de Experimento Aleatório. Os exemplos dados são de fenômenos para os quais modelos probabilísticos

Leia mais

Estatística Descritiva e Exploratória

Estatística Descritiva e Exploratória Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução

Leia mais

3 3. Variáveis Aleatórias

3 3. Variáveis Aleatórias ÍNDICE 3. VARIÁVEIS ALEATÓRIAS...49 3.. VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS...49 3.2. VARIÁVEIS DISCRETAS FUNÇÃO DE PROBABILIDADE E FUNÇÃO DISTRIBUIÇÃO DE PROBABILIDADE...50 3.2.. Função de probabilidade...50

Leia mais

Par de Variáveis Aleatórias

Par de Variáveis Aleatórias Par de Variáveis Aleatórias Luis Henrique Assumpção Lolis 7 de abril de 2014 Luis Henrique Assumpção Lolis Par de Variáveis Aleatórias 1 Conteúdo 1 Introdução 2 Par de Variáveis Aleatórias Discretas 3

Leia mais

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC, CF ou CC. No entanto, o nosso interesse

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08 Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

Apontamentos de Introdução às Probabilidades e à Estatística

Apontamentos de Introdução às Probabilidades e à Estatística i Índice 1. Introdução 1 1.1. Enquadramento e objectivos 2 1.2. Organização 5 1.3. Noções base da Estatística 7 1.3.1. Distinção entre população e amostra 8 1.3.2. Amostragem 10 1.3.3. Unidade estatística

Leia mais

Aula 11. Variáveis Aleatórias Contínuas Bidimensionais

Aula 11. Variáveis Aleatórias Contínuas Bidimensionais Aula. Variáveis Aleatórias Contínuas Bidimensionais Resumo de caso unidimensional Caso Discreto p p 2 p 3 Caso Contínuo f(x) x x 2 x 3 i p i + f x dx X x x 2 x 3 P p p 2 p 3 Caso bidimensional Caso Discreto

Leia mais

LEEC Probabilidades e Estatística 1 a Chamada 13/06/2005. Parte Prática C (C) M 1% 9% 10% (M) 4% 86% 90% 5% 95% 100%

LEEC Probabilidades e Estatística 1 a Chamada 13/06/2005. Parte Prática C (C) M 1% 9% 10% (M) 4% 86% 90% 5% 95% 100% . Definição dos acontecimentos: M T-shirt tem manchas C T-shirt tem costuras defeituosas D T-shirt é defeituosa A Preço da t-shirt é alterado a) PM) = % PC) = 5% PM C) = % LEEC Probabilidades e Estatística

Leia mais

Probabilidades e Estatística MEEC, LEIC-A, LEGM

Probabilidades e Estatística MEEC, LEIC-A, LEGM Departamento de Matemática Probabilidades e Estatística MEEC, LEIC-A, LEGM Exame a Época / o Teste (Grupos III e IV) o semestre 009/00 Duração: 80 / 90 minutos /06/00 9:00 horas Grupo I Exercício 5 valores

Leia mais

Departamento de Matemática Escola Superior de Tecnologia de Viseu. Engenharia e Gestão Industrial

Departamento de Matemática Escola Superior de Tecnologia de Viseu. Engenharia e Gestão Industrial Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Engenharia e Gestão Industrial 1 Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC,

Leia mais

Probabilidades- Teoria Elementar

Probabilidades- Teoria Elementar Probabilidades- Teoria Elementar Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados

Leia mais

Aula 1 - Revisão de Probabilidade e Estatística

Aula 1 - Revisão de Probabilidade e Estatística Aula 1 - Revisão de Probabilidade e Estatística Matheus Rosso e Camila Steffens 1 de Março de 2018 Conteúdos 1. Introdução à probabilidade 2. Probabilidade condicional e independência 3. Variáveis aleatórias

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

Avaliação e Desempenho Aula 5

Avaliação e Desempenho Aula 5 Avaliação e Desempenho Aula 5 Aula passada Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Aula de hoje Variáveis aleatórias discretas e contínuas PMF, CDF e função densidade

Leia mais

Resumo Elementos de Probabilidades e Estatística

Resumo Elementos de Probabilidades e Estatística Resumo Elementos de Probabilidades e Estatística Capítulo 1 Dados Estatísticos 1.2 Amostra, População Colecção de Dados : conjunto de observações de certo(s) atributo(s), qualquer que seja a forma como

Leia mais

Probabilidades e Estatística - LEIC + LERCI + LEE 2 o semestre 2004/05

Probabilidades e Estatística - LEIC + LERCI + LEE 2 o semestre 2004/05 Departamento de Matemática Secção de Estatística e Aplicações - IST Probabilidades e Estatística - LEIC + LERCI + LEE 2 o semestre 2004/05 3 o Teste 4/6/2005 9h O Teste que vai realizar tem a duração total

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Principais Distribuições Contínuas 1 1.1 Distribuição Uniforme................................. 1 1.2 A Distribuição Normal................................. 2 1.2.1 Padronização e Tabulação

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de

Leia mais

Distribuições por Amostragem

Distribuições por Amostragem Distribuições por Amostragem Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Distribuições por Amostragem 2007/2008 1 / 27 Introdução: População, amostra e inferência estatística

Leia mais

Modelos de Distribuição PARA COMPUTAÇÃO

Modelos de Distribuição PARA COMPUTAÇÃO Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas. Probabilidades. Cristian Villegas

Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Exatas. Probabilidades. Cristian Villegas Probabilidades Cristian Villegas clobos@usp.br Setembro de 2013 Apostila de Estatística (Cristian Villegas) 1 Introdução Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas

Leia mais

Grupo I. (a) A função de probabilidade marginal de X, P (X = x), é dada por

Grupo I. (a) A função de probabilidade marginal de X, P (X = x), é dada por Probabilidades e Estatística + Probabilidades e Estatística I Solução do Exame de 2 a chamada 3 de Fevereiro de 2003 LEFT + LMAC Grupo I (a) A função de probabilidade marginal de X, P (X = x), é dada por

Leia mais

Estatísticas Inferenciais Distribuições Amostrais. Estatística

Estatísticas Inferenciais Distribuições Amostrais. Estatística Estatística Na descrição dos conjuntos de dados x 1,..., x n, não foi feita menção ao conceito de população. Estatísticas inferenciais: preocupadas com a fonte dos dados e em tentar fazer generalizações

Leia mais

Teoria da Probabilidade

Teoria da Probabilidade Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos

Leia mais

Revisões de Matemática e Estatística

Revisões de Matemática e Estatística Revisões de Matemática e Estatística Joaquim J.S. Ramalho Contents 1 Operadores matemáticos 2 1.1 Somatório........................................ 2 1.2 Duplo somatório....................................

Leia mais

Distribuições Importantes. Distribuições Discretas

Distribuições Importantes. Distribuições Discretas Distribuições Importantes Distribuições Discretas Distribuição de Bernoulli Definição Prova ou experiência de Bernoulli é uma experiência aleatória que apenas tem dois resultados possíveis: A que se designa

Leia mais

Distribuições discretas

Distribuições discretas Distribuições discretas Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução Exemplo 1 Suponha que está a concorrer para 2 vagas de uma empresa com mais colegas seus: o João,aRosaeoInácio.

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

1 Distribuições Discretas de Probabilidade

1 Distribuições Discretas de Probabilidade 1 Distribuições Discretas de Probabilidade A distribuição discreta descreve quantidades aleatórias (dados de interesse) que podem assumir valores particulares e os valores são finitos. Por exemplo, uma

Leia mais

Estatística (MAD231) Turma: IGA. Período: 2018/2

Estatística (MAD231) Turma: IGA. Período: 2018/2 Estatística (MAD231) Turma: IGA Período: 2018/2 Aula #03 de Probabilidade: 19/10/2018 1 Variáveis Aleatórias Considere um experimento cujo espaço amostral é Ω. Ω contém todos os resultados possíveis: e

Leia mais

Revisão de Probabilidade

Revisão de Probabilidade 05 Mat074 Estatística Computacional Revisão de Probabilidade Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíveis resultados de um experimento. Evento é qualquer subconjunto do espaço amostral. Evento combinado: Possui duas

Leia mais

5 a Lista de PE Solução

5 a Lista de PE Solução Universidade de Brasília Departamento de Estatística 5 a Lista de PE Solução. Sejam X A e X B o números de jogos que o time ganha contra times da classe A e da classe B respectivamente. Claramente X A

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

3 a Lista de PE Solução

3 a Lista de PE Solução Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes

Leia mais

Nome: N. o : f(u) du para todo o x (V) d) Se F (x) tiver pontos de descontinuidade, então X é discreta (F)

Nome: N. o : f(u) du para todo o x (V) d) Se F (x) tiver pontos de descontinuidade, então X é discreta (F) ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época Normal Duração: 2 horas 1. a Parte Teórica N. o de Exame: RESOLUÇÃO 09.01.2015 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação:

Leia mais

Uma breve introdução a probabilidade

Uma breve introdução a probabilidade Uma breve introdução a probabilidade Modelo Probabilístico Espaço amostral (S): conjunto de todos os resultados que podem ocorrer a partir de um experimento aleatório Probabilidade de eventos (P): quantificação

Leia mais

Capítulo II-Teoria da Probabilidade

Capítulo II-Teoria da Probabilidade Capítulo II-Teoria da Probabilidade Os assuntos expostos nos slides 58 a 75 serão estudados apenas na aulas práticas, visto serem assuntos de revisão. Noções Preliminares Definição Fenómenos aleatórios

Leia mais

4.1. ESPERANÇA x =, x=1

4.1. ESPERANÇA x =, x=1 4.1. ESPERANÇA 139 4.1 Esperança Certamente um dos conceitos mais conhecidos na teoria das probabilidade é a esperança de uma variável aleatória, mas não com esse nome e sim com os nomes de média ou valor

Leia mais

PROGRAMA/BIBLIOGRAFIA e NORMAS DE AVALIAÇÃO

PROGRAMA/BIBLIOGRAFIA e NORMAS DE AVALIAÇÃO PROBABILIDADES E ESTATÍSTICA LEIC+LEE+LERCI (TagusPark) PROGRAMA/BIBLIOGRAFIA e NORMAS DE AVALIAÇÃO Secção de Estatística e Aplicações Departamento de Matemática Instituto Superior Técnico Fevereiro 2008

Leia mais

Distribuições Discretas

Distribuições Discretas META: Estudar o comportamento das Variáveis Aleatórias Discretas, bem como das Distribuições Binomial e Poisson e suas aplicações. Entender o comportamento de uma Variável aleatória Contínua. OBJETIVOS:

Leia mais

Cap. 8 - Variáveis Aleatórias

Cap. 8 - Variáveis Aleatórias Variáveis Aleatórias Discretas: A de Poisson e Outras ESQUEMA DO CAPÍTULO 8.1 A DISTRIBUIÇÃO DE POISSON 8.2 A DISTRIBUIÇÃO DE POISSON COMO APROXIMAÇÃO DA DISTRIBUIÇÃO BINOMIAL 8.3 O PROCESSO DE POISSON

Leia mais

Introdução à probabilidade e estatística I

Introdução à probabilidade e estatística I Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Carla Henriques, Nuno Bastos e Cristina Lucas Departamento de Matemática Escola Superior de Tecnologia de Viseu. Henriques, N. Bastos e C. Lucas (DepMAT) Distribuições de

Leia mais

Fundamentos de Estatística

Fundamentos de Estatística Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA mrborges@lncc.br Petrópolis, 9 de Fevereiro

Leia mais

PROGRAMA/BIBLIOGRAFIA e NORMAS DE AVALIAÇÃO

PROGRAMA/BIBLIOGRAFIA e NORMAS DE AVALIAÇÃO PROBABILIDADES E ESTATÍSTICA LEIC+LEE+LERCI (TagusPark) PROGRAMA/BIBLIOGRAFIA e NORMAS DE AVALIAÇÃO Secção de Estatística e Aplicações Departamento de Matemática Instituto Superior Técnico Fevereiro 2006

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

Capítulo4- Modelos de probabilidade.

Capítulo4- Modelos de probabilidade. Capítulo4- Modelos de probabilidade. 1- Modelos de probabilidade(110) 1.1) Introdução.(110) 1.) Fenómenos aleatórios(11) Experiência determinística-produz sempre o mesmo resultado desde que seja repetido

Leia mais

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20 SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ-13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e 16 Introdução à probabilidade (eventos,

Leia mais

Introdução à Probabilidade e à Estatística II

Introdução à Probabilidade e à Estatística II Introdução à Probabilidade e à Estatística II Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) Lígia Henriques-Rodrigues MAE0229 1º semestre 2018 1 / 36

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

Tema 4- Modelos de probabilidade.

Tema 4- Modelos de probabilidade. Tema 4- Modelos de probabilidade. 1- Modelos de probabilidade(136) 1.1) Introdução.(36) [Vídeo: 33] 1.) Fenómenos aleatórios(138) Experiência determinística-produz sempre o mesmo resultado desde que seja

Leia mais

Um conceito importante em Probabilidades e Estatística é o de

Um conceito importante em Probabilidades e Estatística é o de Variáveis Aleatórias Um conceito importante em Probabilidades e Estatística é o de Variável Aleatória. Variável Aleatória Seja (Ω, A) um espaço de acontecimentos. À função X : Ω IR chamamos variável aleatória.

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X 0 1 2 3 R x X(s) X(S) Uma função X que associa a cada elemento de S (s S) um número real

Leia mais

a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B.

a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B. Universidade de Brasília Departamento de Estatística 5 a Lista de PE. Um time de basquete irá jogar uma temporada de 44 jogos. desses jogos serão disputados contra times da classe A e os 8 restantes contra

Leia mais

Nome: N o : Espaço reservado a classificações

Nome: N o : Espaço reservado a classificações ESTATÍSTICA I 2 o Ano/Gestão 1 o Semestre Época Normal Duração: 2 horas 1 a Parte Teórica N o de Exame: abcde 03.Jan.11 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação: 8 valores).

Leia mais

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada Variável Aleatória Uma função X que associa a cada Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ elemento de S (s S) um número real x X(s) é denominada variável aleatória. O

Leia mais

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17)

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17) Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 016/17) 1- Modelos de probabilidade(136) 1.1) Introdução.(36) (Vídeo: 33) 1.) Fenómenos aleatórios(138) Experiência determinística-produz

Leia mais

AULA 5 - Independência, Combinatória e

AULA 5 - Independência, Combinatória e AULA 5 - Independência, Combinatória e permutações Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Independência Um importante caso particular da probabilidade condicional surge quando a ocorrˆncia

Leia mais

Inferência Estatistica

Inferência Estatistica Inferência Estatistica Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Modelos e Inferência Um modelo é uma simplificação da realidade (e alguns

Leia mais

1 Noções de Probabilidade

1 Noções de Probabilidade Noções de Probabilidade Já vimos que para se obter informações sobre alguma característica da população, podemos utilizar uma amostra. Estudaremos agora a probabilidade, que é uma ferramenta usada e necessária

Leia mais

Curso(s): Licenciaturas em Engenharia (1º ciclo) Aulas Teóricas 30h. Ano Curricular Semestre: 2º ano 1º semestre Aulas Teórico-Práticas 45h

Curso(s): Licenciaturas em Engenharia (1º ciclo) Aulas Teóricas 30h. Ano Curricular Semestre: 2º ano 1º semestre Aulas Teórico-Práticas 45h UNIVERSIDADE CATÓLICA PORTUGUESA F A C U L D A D E D E E NGE N H ARIA Disciplina de Estatística Contexto da Disciplina Horas de Trabalho do Aluno Curso(s): Licenciaturas em Engenharia (1º ciclo) Aulas

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Intervalo Amostragem e inferência estatística População: consiste na totalidade das observações em que estamos interessados. Nº de observações na população é denominado tamanho=n.

Leia mais

Primeira Parte. 0, caso contrário.

Primeira Parte. 0, caso contrário. ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA TÓPICOS DE RESOLUÇÃO - Exame de Época Normal 009/00 Primeira Parte [,0]. Considere a varável aleatória X

Leia mais

Análise de Dados e Simulação

Análise de Dados e Simulação Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco Simulação de Variáveis Aleatórias Contínuas. O método da Transformada Inversa Teorema Seja U U (0,1). Para qualquer

Leia mais

PE-MEEC 1S 09/ Capítulo 7 - Estimação por intervalos. 7.2 Intervalos de. confiança para. média de uma. normal 7.

PE-MEEC 1S 09/ Capítulo 7 - Estimação por intervalos. 7.2 Intervalos de. confiança para. média de uma. normal 7. Capítulo 7 - Estimação por intervalos 7.1 Noções básicas 7.2 Intervalos de confiança para a média de uma população normal 7.3 Intervalos de confiança para a diferença de duas médias de populações normais

Leia mais

CE085 - Estatística Inferencial

CE085 - Estatística Inferencial CE085 - Estatística Inferencial Revisão: Probabilidade Básica Prof. Wagner Hugo Bonat Laboratório de Estatística e Geoinformação - LEG Curso de Bacharelado em Estatatística Universidade Federal do Paraná

Leia mais

ESTATÍSTICA I Variáveis Aleatórias Variáveis Aleatórias Discretas. Helena Penalva 2006/2007

ESTATÍSTICA I Variáveis Aleatórias Variáveis Aleatórias Discretas. Helena Penalva 2006/2007 ESTATÍSTICA I Variáveis Aleatórias 1 Definição: A uma função X de domínio Ω com valores em Ñ X:Ω Ñ, ω X(ω)=x, chamamos variável aleatória (v.a.) em Ω. Ao contradomínio da função X, designaremos por V X

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Distribuições de Probabilidade 2007/2008 1 / 31 Introdução Introdução Já vimos como caracterizar

Leia mais

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47 CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................

Leia mais

Mais sobre Modelos Continuos

Mais sobre Modelos Continuos Mais sobre Modelos Continuos Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 41 Transformação Linear da Uniforme Seja X uma variável aleatória

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEAN, LEGM, LEIC-A, LEIC-T, MEAer, MEMec 2 o semestre 2010/2011 1 o Teste - Código A 16/4/2011 9 horas Duração: 1 hora e 30 minutos Grupo I Exercício

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório? Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

Módulo III: Processos de Poisson, Gaussiano e Wiener

Módulo III: Processos de Poisson, Gaussiano e Wiener Módulo III: Processos de Poisson, Gaussiano e Wiener Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo

Leia mais

Capítulo 4 - Variáveis aleatórias e distribuições contínuas

Capítulo 4 - Variáveis aleatórias e distribuições contínuas Capítulo 4 - Variáveis aleatórias e distribuições contínuas Conceição Amado e Ana M. Pires 4.1 - Variáveis aleatórias contínuas. Função densidade de probabilidade 3 4.2 - Valor esperado, variância e algumas

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LEIC-T, LEMat, LERC, LQ, MEAer, MEAmbi, MEBiol, MEEC, MEMec, MEQ 1 o Teste 1 o semestre 2010/2011 Duração: 1 hora e 30 minutos 20/11/2010

Leia mais

Estimação e Testes de Hipóteses

Estimação e Testes de Hipóteses Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas

Leia mais

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Lic. Eng. Biomédica e Bioengenharia-2009/2010 Variável aleatória É uma função, com propriedades especiais, que transforma eventos em números,

Leia mais

Probabilidade Lista 6 - Variáveis Aleatórias Contínuas e Vetores Aleatórios

Probabilidade Lista 6 - Variáveis Aleatórias Contínuas e Vetores Aleatórios Probabilidade Lista - Variáveis Aleatórias Contínuas e Vetores Aleatórios Exercício. Uma v.a. X tem distribuição triangular no intervalo [0, ] se sua densidade for dada por 0, x < 0 cx, 0 x /2 c( x), /2

Leia mais

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ 13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 3 4 5 6 7 8 9 10 11 1 13 14 15 e 16 Introdução à probabilidade (eventos,

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

Probabilidades. Departamento de Matemática Escola Superior de Tecnologia de Viseu. Gestão de Empresas Contabilidade e Administração

Probabilidades. Departamento de Matemática Escola Superior de Tecnologia de Viseu. Gestão de Empresas Contabilidade e Administração Probabilidades Departamento de Matemática Escola Superior de Tecnologia de Viseu Gestão de Empresas Contabilidade e Administração Introdução Ao comprar acções, um investidor sabe que o ganho que vai obter

Leia mais

Filho, não é um bicho: chama-se Estatística!

Filho, não é um bicho: chama-se Estatística! Paulo Jorge Silveira Ferreira Filho, não é um bicho: chama-se Estatística! Estatística aplicada uma abordagem prática FICHA TÉCNICA EDIÇÃO: Paulo Ferreira TÍTULO: Filho, não é um bicho: chama-se Estatística!

Leia mais

Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas

Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas Matheus Rosso e Camila Steffens 19 de Março de 2018 Independência de variáveis aleatórias Duas V.A. são independentes se, e somente

Leia mais

Probabilidade 2 - ME310 - Lista 0

Probabilidade 2 - ME310 - Lista 0 Probabilidade 2 - ME310 - Lista 0 17 de agosto de 2018 Lembrando: 1) Conjuntos disjuntos: A B = = P (A B) = 0 2) Conjuntos independentes: P (A B) = P (A) P (B) A = (A B). (A B c ) só uma forma de deixar

Leia mais

Neste capítulo, introduzimos as variáveis aleatórias e suas distribuições de probabilidade.

Neste capítulo, introduzimos as variáveis aleatórias e suas distribuições de probabilidade. Capítulo 4 Variáveis aleatórias Neste capítulo, introduzimos as variáveis aleatórias e suas distribuições de probabilidade. Definição 4.1 Dado um experimento aleatório, descrito pelo espaço de probabilidades

Leia mais

1 Probabilidade: Axiomas e Propriedades

1 Probabilidade: Axiomas e Propriedades 1 Probabilidade: Axiomas e Propriedades 1.1 Definição Frequentista Considere um experimento aleatório que consiste no lançamento de um dado honesto. O espaço amostral desse experimento é Ω = {1, 2, 3,

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 1 Leitura obrigatória: Devore, 3.1, 3.2 e 3.3 Chap 5-1 Objetivos Nesta parte, vamos aprender: Como representar a distribuição

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Uma variável aleatória X tem uma distribuição normal se sua fdp for do tipo: f(x) 1.e 1 2. x µ σ 2, x R 2π. σ com - < µ < e σ >

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LEGM, LEIC-A, LEIC-T, LEMat, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ 2 o semestre 2/22 o TESTE (Época

Leia mais