Produto Cartesiano. Exemplo: Dados os conjuntos A = {5,6} e B = {2,3,4}, vamos determinar o produto cartesiano AXB;

Tamanho: px
Começar a partir da página:

Download "Produto Cartesiano. Exemplo: Dados os conjuntos A = {5,6} e B = {2,3,4}, vamos determinar o produto cartesiano AXB;"

Transcrição

1 Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não vazios, chamamos de produto cartesiano de A por B o conjunto indicado por A X B, formado por todos os pares ordenados, nos quais o primeiro elemento pertence ao conjunto A e o segundo elemento pertence ao conjunto B: AXB = {( x, y) x A e y B} Obs.: Para saber quantos elementos existem neste conjunto, basta multiplicar a quantidade de elementos do conjunto A pela quantidade de elementos do conjunto B. Exemplo: Dados os conjuntos A = {5,6} e B = {,3,4}, vamos determinar o produto cartesiano AXB; a) forma tabular: AXB = {(5,), (5,3), (5,4), (6,), (6,3), (6,4)} b) forma gráfica: Exercícios: 1. Dados os conjuntos M = {1,3,5} e N = {,4}, determinar o produto cartesiano M X N e N X M nas formas tabular e gráfica. Considerando os conjuntos A= { x x 1} e B = {3,4}, determinar A X B nas formas tabular e gráfica. 3. Determinar o produto cartesiano dos conjuntos abaixo, na forma gráfica. a. [,5] X {1} b. {3,4} X [-1,3] c. [1,3] X [,5] d. ]-,1] X [3,5[ 4. Dados os conjuntos E = { x x }, F = {4,5} e G = {-1,0}, determine a forma tabular dos produtos: a. E X F c. F X G b. F X E d. E X G 5. Sendo C = { x x 4} e D= { x 1 x< 3}, determine a forma gráfica dos produtos: a. C X D b. D X C 1

2 Relação Binária Dados dois conjuntos, A e B, não vazios, chamamos de relação binária (R) de A em B qualquer subconjunto do produto cartesiano A X B, ou seja, R AXB. O conjunto A é chamado de domínio, isto é, origem ou conjunto de partida de R. O conjunto B é chamado de contradomínio, isto é, destino ou conjunto de chegada de R. Os elementos de A são chamados de x e os elementos de B são chamados de y. O conjunto formado por todos os y pertencentes à relação chamamos de imagem. Exemplo: Dados os conjuntos A = {1,,3} e B = {4,5,6}, efetuando o produto cartesiano A X B, temos: A X B = {(1,4), (1,5), (1,6), (,4), (,5), (,6), (3,4), (3,5), (3,6)} Vamos considerar uma relação binária do produto cartesiano A X B, em que, o y é o dobro de x. Na linguagem simbólica: xry R = {( x, y) AXB y = x}. Ou seja, a relação pedida é: R = {(,4), (3,6)} Esta relação pode ser representada por um diagrama de flechas e também por um gráfico cartesiano: Neste exemplo temos: Domínio: D = {1,,3} Contradomínio: CD = (4,5,6} Imagem: Im = {4,6} Exercícios: 1. Dados os conjuntos A = {-1,0,1,} e B = {0,1,,3,4,5} e a relação R = {( x, y) AXB y = x + 1}, determinar: a. os pares ordenados da relação R; b. o conjunto domínio e o conjunto imagem; c. o diagrama de flechas; d. o gráfico cartesiano.. Dados os conjuntos M = {-3,-,-1,0,1} e N = {1,,3,5,6} e a relação R = {( x, y) MXN y = x + 1}, determinar: a. os pares ordenados da relação R;

3 b. o conjunto domínio e o conjunto imagem; c. o diagrama de flechas; d. o gráfico cartesiano. 3. Para cada relação abaixo faça o diagrama de flechas: a. A = {, 1, 0,1, }, B = { 1, 0,1,,3, 4,5} e R = {( x, y) AXB y = x + } b. c. M = N = R = x y MXN y = x {, 1, 0,1,,3}, { 1, 0,,3,5} e {(, ) 1} I = J = R = x y IXJ y = x {, 1,0,1,,3}, { 1,0,1,, 4,6} e {(, ) } x 1 4. Considerando a relação R = ( x, y) EXF y = e os conjuntos { 3, 1,1, 3, 5} E = e F = {, 1, 0,1,3,5}, determine os pares ordenados da relação. 5. Dados os conjuntos O = {0,,4,6,8} e P = {1,5,9,13,15,18} e a relação R = {( x, y) OXP y = x + 1}, determine o conjunto domínio e o conjunto imagem da relação. 6. Se A= {1, } { x < x< 3} e B= { x 1 x } desenhe o gráfico de A X B. Relação Inversa Seja R uma relação de A em B. A relação inversa de R, denotada por R -1, é definida de B em A 1 por: R = {( y, x) BXA ( x, y) R}. Exemplo: Sejam A = {a,b,c} e B = {d,e,f} e R uma relação em AXB, definida por: R = {(a,d), (a,e),(a,f), (b,d),(b,e),(b,f),(c,d),(c,e),(c,f)} Então: R -1 = {(d,a),(e,a),(f,a),(d,b),(e,b),(f,b),(d,c),(e,c),(f,c)} Exercícios: 1. Dados os conjuntos A = {a,b,c} e B = {1,,3,4} e a relação R em AXB, qual é a relação inversa R -1?. Sejam os conjuntos A = {a,b,c,d,e} e B = {,4,6,8,10} e a relação R, dado no diagrama abaixo. Descreva a relação R e a sua inversa R -1. a b c d e Seja a relação R= {( xy, ) X x+ y= 8}. Descreva o conjunto dos elementos da relação inversa R -1. 3

4 Matriz de uma relação Sejam A e B dois conjuntos finitos. A representação R: A Bcomo matriz é: a) o número de linhas é n (número de elementos do domínio) b) o número de colunas é m (número de elementos da imagem) c) a matriz resultante possui m x n células d) cada uma da m x n células possuem valor lógico associado e) se (x,y) R, então a posição determinada pela linha i e pela coluna j da matriz contém valor verdadeiro (1); caso contrário, seu valor será falso (0). Exemplo: Dado os conjuntos A = {a}, B = {a,b} e C = {0,1,}, temos que: a) R= {( xy, ) B B x= y} b) R= {( xy, ) C C x< y} = a b a 1 0 b 0 1 c) R = A X B < AXB a b a 1 1 Exercícios: 1. Sejam A = {1,,3} e B = {a,b,c} e R a seguinte relação de A em B: R = {(1,a),(1,b),(,a),(,c),(3,c)} a) Determine a matriz da relação b) Desenhe o diagrama de flechas de R c) Ache a relação inversa de R.. São dados A = {1,3,5,7} e B = {w,x,y,z}. Seja R a seguinte relação de A em B: R = {(1,x), (1,z), (7,w), (3,w)}. a) Determine a matriz da relação. b) Desenhe o diagrama de flechas de R. c) Ache a relação inversa de R. d) Determine o domínio e a imagem de R. 3. Sejam A = {1,,3,4}, B = {0,,4,6,8} e a relação R = {( x, y) AXB y = x}, determine a matriz desta relação. 4

5 Propriedades das Relações No estudo das relações sobre um conjunto A, com A finito e tendo poucos elementos, é útil a representação através do esquema de flechas. Representamos o conjunto A com seus elementos e indicamos cada par (x,y) da relação através de uma flecha com origem x e extremidade y. Se (x,x) está na relação, usa-se um laço envolvendo a, conforme o exemplo: Exemplo: O esquema abaixo representa a relação: R = {(a,a),(b,b),(a,b),(b,c),(c,b)} sobre A = {a,b,c} Propriedade Reflexiva Uma relação R é reflexiva se todo elemento de A está relacionado consigo mesmo, ou seja, para todo x A:( xx, ) R, isto é, para todo x A : xrx. Exemplo: Uma relação reflexiva em A = {a,b,c}, é dada por: R = {(a,a), (b,b), (c,c), (a,c)} Contra-exemplo: A relação R = {(a,a),(b,b),(a,b),(a,c)} sobre A = {a,b,c} não é reflexiva pois c não se relaciona com c. Propriedade Simétrica Uma relação R é simétrica se o fato que x está relacionado com y, implicar necessariamente que y está relacionado com x, ou seja: quaisquer que sejam x A e y A tal que ( xy, ) R, segue que ( yx, ) R Exemplo: Uma relação simétrica em A = {a,b,c}, é dada por: R = {(a,a), (a,b), (c,c), (b,a)} Contra-exemplo: A relação R = {(a,a),(b,b),(a,c)} sobre A = {a,b,c} não é simétrica pois a se relaciona com c mas c não se relaciona com a. Propriedade Transitiva Uma relação R é transitiva, se x está relacionado com y e y está relacionado com z, implicar que x deve estar relacionado com z, ou seja: quaisquer que sejam x A, y A e z A, se ( xy, ) Re ( yz, ) Rentão ( xz, ) R. Exemplo: Uma relação transitiva em A = {a,b,c}, é dada por: R = {(a,a), (a,c), (c,b), (a,b)} Contra-exemplo: A relação R = {(a,a),(b,b),(a,b),(b,c)} sobre A = {a,b,c} não é transitiva pois arb e brc mas a não se relaciona com c. Propriedade Anti-simétrica 5

6 Uma relação R é anti-simétrica se x e y são elementos distintos do conjunto A então x não tem relação com y ou (exclusivo) y não tem relação com x, o que significa que o par de elementos distintos (x,y) do conjunto A poderá estar na relação desde que o par (y,x) não esteja. Exemplo: Uma relação anti-simétrica em A = {a,b,c}, é dada por: R = {(a,a), (b,b), (c,b), (a,b)} Contra-exemplo: A relação R = {(a,a),(b,b),(a,b),(b,a)} sobre A = {a,b,c} não é anti-simétrica pois sendo a b, arb e bra. Importante: Se A é finito, com poucos elementos, é possível visualizar se as propriedades definidas se verificam ou não para uma relação R, através de um esquema de flechas, do seguinte modo: Reflexiva em cada ponto do diagrama deve haver um laço. Simétrica toda flecha deve ter duas pontas. Transitiva para todo par de flechas consecutivas existe uma flecha cuja origem está na origem da primeira e a extremidade esta na extremidade da segunda. 6

7 Anti-simétrica não há flechas de duas pontas. Exercícios 1. Seja R a relação em A = {1,,3,4,5} tal que: xry { x y é múltiplo de }. Enumerar os elementos de R. Que propriedades R apresenta?. Enumerar os elementos das seguintes relações em A = {a,b,c,d}. Que propriedades R 1 e R apresentam? R 1 R 3. Seja A = {1,,3}. Considerem-se as seguintes relações em A: R 1 = {(1,);(1,1);(,);(,1);(3,3)} R = {(1,1);(,);(3,3);(1,);(,3)} R 3 = {(1,1);(,);(1,);(,3);(3,1)} R 4 = A X A Quais são reflexivas? Simétricas? Transitivas? Anti-simétricas? 4. Construir sobre o conjunto E = {a,b,c,d} relações R 1, R, R 3 e R 4 tais que R 1 tem a propriedade reflexiva, R só a simétrica, R 3 só a transitiva e R 4 só a anti-simétrica. 7

8 Relação de Equivalência Uma relação R sobre um conjunto A não vazio é chamada relação de equivalência sobre A se, e somente se, R é reflexiva, simétrica e transitiva. Ordem Parcial Uma relação binária em um conjunto A que seja reflexiva, anti-simétrica e transitiva é chamada de uma ordem parcial em A. Ordem Total Uma ordem parcial onde todo elemento do conjunto está relacionado a todos os outros elementos é chamada de ordem total ou cadeia. Diagrama de Hasse Se A for finito, podemos representar visualmente um conjunto parcialmente ordenado por um diagrama de Hasse. Cada elemento de A é representado por um ponto, denominado nó ou vértice do diagrama. Se x é um predecessor imediato de y, o nó que representa y é colocado acima do nó que representa x e os dois nós são conectados por um segmento de reta. Exemplo: Considere a relação x divide y em {1,,3,6,1,18} R = {(1,1),(1,),(1,3),(1,6),(1,1),(1,18),(,),(,6),(,1),(,18),(3,3),(3,6),(3,1),(3,18),(6,6), (6,1), (6,18),(1,1),(18,18)} Podemos verificar que R é reflexiva, pois todo elemento se relaciona com ele mesmo. É antisimétrica, pois para todo (x,y) não existe (y,x) e é transitiva pois temos por exemplo, (3,6), (6,1) e (3,1). Portanto podemos construir o seguinte diagrama de Hasse:

9 Exercícios 1. Dados os conjuntos A = {-,-1,0,1,}, B = {0,1,,3,4}, determine cada uma das relações seguintes, mostrando os pares que a satisfazem, monte a matriz relação, e identifique as propriedades em cada relação. a. A X B b. R1 = {( x, y) AXB y = x } c. R = {( x, y) AXB y = x + 1} d. R3 = {( x, y) AXB y > x + 1}. Dados os conjuntos A = {-4, -3,3,4}, B = {-4, -3,3,4,5}, determine cada uma das relações seguintes, mostrando os pares que a satisfazem, monte a matriz relação, e identifique as propriedades em cada relação. a. A X B b. R1 = {( x, y) AXB x + y = 5} c. R = {( x, y) AXB x = y} d. R3 = {( x, y) AXB y < x} 3. Classifique as relações a seguir segundo suas propriedades: a. R 1 = {(a,a),(a,b),(c,c),(b,b),(b,c),(c,b),(e,e),(d,d)} em A = {a,b,c,d,e} b. R = {(1,1),(1,),(,),(,3),(3,1)} em B = {1,,3} c. R 3 = {(1,1),(7,7),(7,1),(1,7)} em C = {1,7} 4. Construa o diagrama de Hasse dada as relações: a. Todos os divisores naturais de 36 b. S = {1,,3,5,6,10,15,30} onde a relação xry x divide y 5. Construa o diagrama de Hasse dos subconjuntos abaixo, cuja relação é xry x divide y e classifique em ordem total ou parcial a. {4,,6} b. {1,3,15,5} c. {15,30,5} 9

AXB = {(x, y) x A e y B}

AXB = {(x, y) x A e y B} CENTRO UNIVERSITÁRIO DO NORTE PAULISTA LÓGICA E MATEMÁTICA DISCRETA 2010 1 Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não

Leia mais

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há 1 Produto Cartesiano Par Ordenado A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há casos entretanto em que a ordem é importante. Daí a necessidade de se introduzir

Leia mais

Matemática Discreta Parte 11

Matemática Discreta Parte 11 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta Parte 11 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br - www.univasf.edu.br/~jorge.cavalcanti

Leia mais

Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES. Prof.: Marcelo Maraschin de Souza

Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES. Prof.: Marcelo Maraschin de Souza Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES Prof.: Marcelo Maraschin de Souza marcelo.maraschin@ifsc.edu.br Considere o conjunto S={1,2,3}, descreva o conjunto dos pares ordenados

Leia mais

n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS

n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS Uma relação é um conjunto de pares ordenados, ou seja, um subconjunto de A B. Utilizando pares ordenados podemos definir relações por meio da linguagem de conjuntos.

Leia mais

Par ordenado [ordered pair]. É uma estrutura do tipo x, y. Se x y x,y y,x.

Par ordenado [ordered pair]. É uma estrutura do tipo x, y. Se x y x,y y,x. Matemática Discreta ESTiG\IPB Cap2. Relações. Funções pg 4 Par ordenado [ordered pair]. É uma estrutura do tipo x, y. Se x y x,y y,x. então Produto cartesiano do conjunto A pelo conjunto B [cartesian product].

Leia mais

( r, s) S r s r s sendo S plano euclidiano. RELAÇÕES

( r, s) S r s r s sendo S plano euclidiano. RELAÇÕES RELAÇÕES 1. Produto cartesiano Sejam A e B conjuntos não vazios. Chama-se produto cartesiano de A por B o conjunto de todo os pares ordenados ( xy, ) com x A e y B. Notação: A B ( x, y) x A e y B. Relação

Leia mais

Sejam A e B conjuntos não vazios. Chama-se produto cartesiano de A por B o conjunto

Sejam A e B conjuntos não vazios. Chama-se produto cartesiano de A por B o conjunto RELAÇÕES 1. PRODUTO CARTESIANO Sejam A e conjuntos não vazios. Chama-se produto cartesiano de A por o conjunto xy com x A e y. Notação: de todo os pares ordenados (, ) A ( x, y) x A e y Exemplo 1: Sejam

Leia mais

É um sistema formado por dois eixos, x e y, perpendiculares entre si. Origem. Continua

É um sistema formado por dois eixos, x e y, perpendiculares entre si. Origem. Continua RELAÇÕES É um sistema formado por dois eixos, x e y, perpendiculares entre si. Origem Continua Continuação O eixo x é denominado eixo das abscissas e o eixo y é o eixo das ordenadas. Esses eixos dividem

Leia mais

Relações Binárias, Aplicações e Operações

Relações Binárias, Aplicações e Operações Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 6 de dezembro de 2018 Pouya Mehdipour 6 de dezembro de 2018 1 / 24 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 131 - Introdução à Álgebra 2015/I Tópico: Produto Cartesiano 1. Dados os conjuntos M = {1, 3, 5} e N = {2, 4},

Leia mais

CONJUNTO DOS NÚMEROS INTEIROS

CONJUNTO DOS NÚMEROS INTEIROS Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTO DOS NÚMEROS INTEIROS Os números inteiros formam um conjunto, que notaremos por, no qual estão definidas duas operações, que chamaremos de adição

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundamentos de Matemática Discreta para a Computação 5) Relações 5.1) Relações e Dígrafos 5.2) Propriedades de Relações 5.3) Relações de Equivalência 5.4) Manipulação de Relações 5.5) Fecho de

Leia mais

MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS. Conjunto é um conceito primitivo, e portanto, não tem definição.

MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS. Conjunto é um conceito primitivo, e portanto, não tem definição. 1 - Conceito de Conjunto MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS Conjunto é um conceito primitivo, e portanto, não tem definição. Representação O conjunto pode ser representado de três maneiras diferentes:

Leia mais

Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições)

Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Exemplos Definições Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Matemática Elementar - EAD Departamento de Matemática Universidade Federal da Paraíba 4 de setembro de 2014

Leia mais

Relações binárias. Relações binárias. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006.

Relações binárias. Relações binárias. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006. Relações binárias Relações binárias. Referência: Capítulo: 2 Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006 1 RELAÇÕES BINÁRIAS Conjuntos-2 Combinar conjuntos C

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE543 - Fundamentos de Matemática Discreta para a Computação 5) Relações 5.) Relações e Dígrafos 5.2) Propriedades de Relações 5.3) Relações de Equivalência 5.4) Manipulação de Relações 5.5) Fecho de

Leia mais

Relações. George Darmiton da Cunha Cavalcanti CIn - UFPE

Relações. George Darmiton da Cunha Cavalcanti CIn - UFPE Relações George Darmiton da Cunha Cavalcanti CIn - UFPE Relações Binárias Sejam X e Y dois conjuntos. Uma relação entre X e Y é um subconjunto de produto cartesiano X Y. No caso de X = Y, a uma relação

Leia mais

FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal

FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Plano Cartesiano Fixando em um plano dois eixos reais Ox e Oy, perpendiculares entre si no ponto O, podemos determinar

Leia mais

Em Matemática existem situações em que há necessidade de distinguir dois pares pela ordem dos elementos. Por exemplo, no sistema de equações

Em Matemática existem situações em que há necessidade de distinguir dois pares pela ordem dos elementos. Por exemplo, no sistema de equações UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Relações Prof.: Rogério Dias

Leia mais

FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES

FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES 1- PRODUTO CARTESIANO 1.1- Par Ordenado - Ao par de números reais a e b, dispostos em uma certa ordem, denominamos par ordenado e indicamos por: (a,

Leia mais

Notas de aulas. álgebra abstrata

Notas de aulas. álgebra abstrata 1 Notas de aulas de álgebra abstrata UEMA LICENCIATURA EM MATEMATICA Elaborada por : Raimundo Merval Morais Gonçalves Licenciado em Matemática/UFMA Professor Assistente/UEMA Especialista em Ensino de Ciências/UEMA

Leia mais

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn 4 Relações 4.1 Preliminares Definição 4.1. Sejam A e B conjuntos. Uma relação binária, R, de A em B é um subconjunto de A B. (R A B) Dizemos que a A está relacionado com b B sss (a, b) R. Notação: arb.

Leia mais

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante PLANO CARTESIANO eixo das ordenadas y 2º quadrante 1º quadrante eixo das abscissas O (0, 0) x Origem 3º quadrante 4º quadrante y ordenado do ponto P 4 P P(3, 4) O 3 x abscissa do ponto P No caso, 3 e 4

Leia mais

Relações Binárias, Aplicações e Operações

Relações Binárias, Aplicações e Operações Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 19 de outubro de 2018 Pouya Mehdipour 19 de outubro de 2018 1 / 7 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,

Leia mais

Lista de Exercícios 8: Soluções Relações

Lista de Exercícios 8: Soluções Relações UFMG/ICEx/DCC DCC111 Matemática Discreta Lista de Exercícios 8: Soluções Relações Ciências Exatas & Engenharias 2 o Semestre de 2016 Definição 1 [Composição de relações]. Seja R uma relação do conjunto

Leia mais

Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010 1. Funções : Definição Considere dois sub-conjuntos A e B do conjunto dos números reais. Uma função f: A B é uma regra que define uma relação entre os elementos de A e B, de tal forma que a cada elemento

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Fecho transitivo Teorema: o fecho transitivo de uma relação R é igual a relação de

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES e FUNÇÕES

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES e FUNÇÕES PAR ORDENADO... 2 PRODUTO CARTESIANO... 3 REPRESENTAÇÃO GRÁFICA... 4 RELAÇÃO... 8 DOMÍNIO E IMAGEM... 12 CONTRA-DOMÍNIO... 13 RELAÇÃO INVERSA... 17 PROPRIEDADES DA RELAÇÃO INVERSA... 18 FUNÇÕES... 22 IMAGEM

Leia mais

INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/3 6 - RELAÇÕES DE ORDENAMENTO 6.1) Conjuntos parcialmente

Leia mais

complemento para a disciplina de Matemática Discreta versão 1 - Jerônimo C. Pellegrini Relações de Equivalência e de Ordem

complemento para a disciplina de Matemática Discreta versão 1 - Jerônimo C. Pellegrini Relações de Equivalência e de Ordem Relações de Equivalência e de Ordem complemento para a disciplina de Matemática Discreta versão 1 Jerônimo C. Pellegrini 5 de agosto de 2013 ii Sumário Sumário Nomenclatura 1 Conjuntos e Relações 1 1.1

Leia mais

Observamos então que as aplicações de plano cartesiano, produto cartesiano, relações e funções estão presentes no nosso cotidiano.

Observamos então que as aplicações de plano cartesiano, produto cartesiano, relações e funções estão presentes no nosso cotidiano. Relações e Funções Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados nos meios de comunicação. Um texto com ilustrações,

Leia mais

Lógica e Matemática Discreta

Lógica e Matemática Discreta Lógica e Matemática Discreta Teoria Elementar dos Conjuntos Prof Clezio 19 de Agosto de 2018 Curso de Ciência da Computação Relações Binárias Sejam A e B dois conjuntos. Definição: Chama-se relação binária

Leia mais

Funções. Funções. Cardinalidade de conjuntos. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006.

Funções. Funções. Cardinalidade de conjuntos. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006. Funções Funções. Cardinalidade de conjuntos. Referência: Capítulo: 3 Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006 1 FUNÇÕES Funções-2 Definição de função Uma função

Leia mais

Circuitos Digitais Segunda Lista de Exercícios

Circuitos Digitais Segunda Lista de Exercícios Circuitos Digitais Segunda Lista de Exercícios Observação: o início da lista é composto dos problemas recomendados do livro-texto. exercícios nas últimas duas páginas da lista são novos (não estão no livro-texto).

Leia mais

Matemática Discreta Bacharelado em Sistemas de Informação Resolução - 3ª Lista de Exercícios RESOLUÇÃO

Matemática Discreta Bacharelado em Sistemas de Informação Resolução - 3ª Lista de Exercícios RESOLUÇÃO Nome Nota RESOLUÇÃO 1) Para cada uma das relações a seguir, em R, desenhe uma figura para mostrar a região do plano que a descreve. a) x R 2 b) S = {(x,) Rx R 2x + 3-0} x 0 2 3 0 2) São dados A={,,7,8}

Leia mais

Criptografia e Segurança das Comunicações. das Comunicações Bases Matemáticas - Relações e Ordens

Criptografia e Segurança das Comunicações. das Comunicações Bases Matemáticas - Relações e Ordens 9 Criptografia e Segurança das Comunicações Bases Matemáticas - Relações e Ordens Teoria Ordem: /22 Relações binárias () 9 Teoria da ordem é o ramo da matemática, dedicada a vária relações binárias, que

Leia mais

ENFOQUE USANDO CORTES DE DEDEKIND

ENFOQUE USANDO CORTES DE DEDEKIND Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit CONSTRUÇÃO DOS REAIS: UM ENFOQUE

Leia mais

Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 2. Conceitos Básicos da Teoria da Computação

Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 2. Conceitos Básicos da Teoria da Computação Curso: Ciência da Computação Turma: 6ª Série Aula 2 Conceitos Básicos da Computação pode ser definida como a solução de um problema ou, formalmente, o cálculo de uma função, através de um algoritmo. A

Leia mais

O ESTUDO DAS FUNÇÕES INTRODUÇÃO

O ESTUDO DAS FUNÇÕES INTRODUÇÃO O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente

Leia mais

Relações. Ester Maria Klippel

Relações. Ester Maria Klippel Relações Relações Ligações entre elementos de conjuntos são representados usando uma estrutura chamada relação. No nosso dia-a-dia estamos freqüentemente utilizando o conceito de relações: Comparar objetos

Leia mais

Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos

Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos 1 Conjuntos Um conjunto está bem caracterizado quando podemos estabelecer com certeza se um elemento pertence ou não

Leia mais

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano 1 Conjunto R 1.1 Definição VETORES NO PLANO Representamos por R o conjunto de todos os pares ordenados de números reais, ou seja: R = {(x, y) x R y R} 1. Coordenadas Cartesianas no Plano Em um plano α,

Leia mais

A2. Cada operação é distributiva sobre a outra, isto é, para todo x, y e z em A, x (y + z) = (x y) + (x z) e x + (y z) = (x + y) (x + z)

A2. Cada operação é distributiva sobre a outra, isto é, para todo x, y e z em A, x (y + z) = (x y) + (x z) e x + (y z) = (x + y) (x + z) Álgebra Booleana Nesta parte veremos uma definição formal de álgebra booleana, que é baseada em um conjunto de axiomas (ou postulados). Veremos também algumas leis ou propriedades de álgebras booleanas.

Leia mais

FUNÇÕES. Prof.ª Adriana Massucci

FUNÇÕES. Prof.ª Adriana Massucci FUNÇÕES Prof.ª Adriana Massucci Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo:

Leia mais

Matemática tica Discreta Módulo Extra (2)

Matemática tica Discreta Módulo Extra (2) Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática tica Discreta Módulo Extra (2) Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br - www.univasf.edu.br/~jorge.cavalcanti

Leia mais

Notas sobre Relações

Notas sobre Relações 1 / 1 Notas sobre Relações Fonte: livro de Kenneth Rosen (ref. completa na página) Centro de Informática Universidade Federal de Pernambuco CIn-UFPE 2 / 1 Seja S um conjunto de pessoas. Digamos que queremos

Leia mais

Relações. Antonio Alfredo Ferreira Loureiro. loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro. UFMG/ICEx/DCC MD Relações 1

Relações. Antonio Alfredo Ferreira Loureiro. loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro. UFMG/ICEx/DCC MD Relações 1 Relações Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Relações 1 Introdução O mundo está povoado por relações: família, emprego, governo, negócios, etc. Entidades

Leia mais

Capítulo 1. Conjuntos, Relações, Funções

Capítulo 1. Conjuntos, Relações, Funções i Sumário 1 Conjuntos, Relações, Funções 1 1.1 Axiomas e Definições.................................. 2 1.2 Operações com Conjuntos............................... 4 1.3 Relações.........................................

Leia mais

Números Reais. Jairo Menezes e Souza 19/09/2013 UFG/CAC

Números Reais. Jairo Menezes e Souza 19/09/2013 UFG/CAC UFG/CAC 19/09/2013 Iniciamos com o conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,...} Iniciamos com o conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,...} Chamamos de Z o conjunto dos números

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO. Prova Parcial 1 Matemática Discreta para Computação

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO. Prova Parcial 1 Matemática Discreta para Computação Prova Parcial 1 2011-2 Aluno(a): Data: 08/09/2011 1. (3p) Usando regras de inferência, prove que os argumentos são válidos. Use os símbolos proposicionais indicados: a. A Rússia era uma potência superior,

Leia mais

Histórico e motivação

Histórico e motivação Expressões regulares 1. Histórico e motivação 2. Definição a) Sintaxe b) Semântica c) Precedência dos operadores 3. Exemplos 4. Leis algébricas 5. Dialetos 6. Aplicações 7. Exercícios Pré-requisito: básico

Leia mais

5. (UFJF-MG) Os pontos A(2, 6) e B(3, 7) são

5. (UFJF-MG) Os pontos A(2, 6) e B(3, 7) são p: João Alvaro w: www.matemaniacos.com.br e: joao.baptista@iff.edu.br ( ) 4t 1. Para que valores 5 + 1, 2t 4 pertence ao eixo das ordenadas? A linguagem das funções Sistema de coordenadas Conceito de função

Leia mais

Aula 3 Vetores no espaço

Aula 3 Vetores no espaço MÓDULO 1 - AULA 3 Aula 3 Vetores no espaço Objetivos Ampliar a noção de vetor para o espaço. Rever as operações com vetores e sua representação em relação a um sistema ortogonal de coordenadas cartesianas.

Leia mais

FUNÇÃO. 4.1 Relação Binária. Definição 4.1

FUNÇÃO. 4.1 Relação Binária. Definição 4.1 FUNÇÃO Apesar da formalização de função ter se efetivado com as reformas curriculares do século IX, seu uso já era freqüente desde a antiguidade, pelos babilônios. O conceito de função está presente em

Leia mais

O próximo passo é aprender a medir o comprimento de um segmento. Para este fim emprega-se diversos instrumentos de medição, dos quais a régua

O próximo passo é aprender a medir o comprimento de um segmento. Para este fim emprega-se diversos instrumentos de medição, dos quais a régua Axiomas de Medição O próximo passo é aprender a medir o comprimento de um segmento. Para este fim emprega-se diversos instrumentos de medição, dos quais a régua graduada é um dos mais conhecidos. Aprendemos

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Última revisão em 27 de fevereiro de 2009 Este texto é uma breve revisão sobre teoria elementar dos conjuntos. Em particular, importam-nos os aspectos algébricos no estudo

Leia mais

Tópicos de Matemática. Teoria elementar de conjuntos

Tópicos de Matemática. Teoria elementar de conjuntos Tópicos de Matemática Lic. em Ciências da Computação Teoria elementar de conjuntos Carla Mendes Dep. Matemática e Aplicações Universidade do Minho 2010/2011 Tóp. de Matemática - LCC - 2010/2011 Dep. Matemática

Leia mais

Matemática Discreta - Departamento de Matemática - EST-IPV / III

Matemática Discreta - Departamento de Matemática - EST-IPV / III Matemática Discreta - Departamento de Matemática - EST-IPV - 2003/2004 III - 1 Matemática Discreta - Departamento de Matemática - EST-IPV - 2003/2004 - III 1. Conjuntos Conjuntos, relações e funções Axioma

Leia mais

Fundamentos de Matemática Curso: Informática Biomédica

Fundamentos de Matemática Curso: Informática Biomédica Fundamentos de Matemática Curso: Informática Biomédica Profa. Vanessa Rolnik Artioli Assunto: sequências e matrizes 05 e 06/06/14 Sequências Def.: chama-se sequência finita ou n-upla toda aplicação f do

Leia mais

CONSTRUÇÃO INTUITIVA DOS NÚMEROS INTEIROS. Resumo

CONSTRUÇÃO INTUITIVA DOS NÚMEROS INTEIROS. Resumo CONSTRUÇÃO INTUITIVA DOS NÚMEROS INTEIROS Rosivaldo Antonio Gonçalves 1 Luiz Carlos Gabriel Filho 2 Resumo Neste trabalho vamos estudar de forma intuitiva o conjunto dos números naturais, que denotamos

Leia mais

Matemática Elementar. Matemática Elementar por Inaldo Barbosa de Albuquerque

Matemática Elementar. Matemática Elementar por Inaldo Barbosa de Albuquerque Matemática Elementar i Matemática Elementar por Inaldo Barbosa de Albuquerque Matemática Elementar ii COLLABORATORS TITLE : Matemática Elementar ACTION NAME DATE SIGNATURE WRITTEN BY Inaldo Barbosa de

Leia mais

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte I - Matrizes

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte I - Matrizes Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte I - Matrizes Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 Importante Material desenvolvido a partir dos livros

Leia mais

Matemática Básica Relações / Funções

Matemática Básica Relações / Funções Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1.

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. CONCEITO DE FUNÇÃO... 2 IMAGEM DE UMA FUNÇÃO... 8 IMAGEM A PARTIR DE UM GRÁFICO... 12 DOMÍNIO DE UMA FUNÇÃO... 15 DETERMIAÇÃO DO DOMÍNIO... 15 DOMÍNIO A PARTIR DE UM GRÁFICO... 17 GRÁFICO DE UMA FUNÇÃO...

Leia mais

Introdução às Funções

Introdução às Funções UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Introdução às Funções Prof.:

Leia mais

Função Inversa. 1.Função sobrejetora 2.Função injetora 3.Função bijetora 4.Função inversa

Função Inversa. 1.Função sobrejetora 2.Função injetora 3.Função bijetora 4.Função inversa UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Inversa Prof.: Rogério

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANÁLITICA

CÁLCULO VETORIAL E GEOMETRIA ANÁLITICA CÁLCULO VETORIAL E GEOMETRIA ANÁLITICA Consideremos uma reta r e sejam A e B dois pontos de r Ao segmento de reta AB, podemos associar 2 sentidos : de A para B e de B para A Escrevemos AB para representar

Leia mais

Revisão de conceitos Matemáticos. Matemática e Fundamentos de Informática

Revisão de conceitos Matemáticos. Matemática e Fundamentos de Informática Revisão de conceitos Matemáticos Matemática e Fundamentos de Informática 1 1 Conjuntos Teoria dos conjuntos Em Matemática, conjunto é uma coleção de objetos (chamados elementos). Os elementos podem representar

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Este capítulo visa oferecer uma breve revisão sobre teoria elementar dos conjuntos. Além de conceitos básicos importantes em matemática, a sua imprtância reside no fato da

Leia mais

Sumário Algumas Demonstrações CONCLUSÃO RESUMO ATIVIDADES... 34

Sumário Algumas Demonstrações CONCLUSÃO RESUMO ATIVIDADES... 34 Sumário Aula 11: Relações Binárias 9 11.1 Introdução... 10 11.2 Relações Binárias... 10 11.2.1 Propriedades das Relações Binárias... 13 11.3 Algumas Demonstrações... 16 11.4 CONCLUSÃO... 18 11.5 RESUMO....

Leia mais

Equação de 1º Grau. ax = -b

Equação de 1º Grau. ax = -b Introdução Equação é toda sentença matemática aberta que exprime uma relação de igualdade. A palavra equação tem o prefixo equa, que em latim quer dizer "igual". Exemplos: 2x + 8 = 0 5x - 4 = 6x + 8 3a

Leia mais

GRAFOS: UMA INTRODUÇÃO

GRAFOS: UMA INTRODUÇÃO GRAFOS: UMA INTRODUÇÃO Vilmar Trevisan -Instituto de Matemática - UFRGS Junho de 2006 Grafos: uma introdução Informalmente, um grafo é um conjunto de pontos no plano ligados entre por flechas ou por segmentos

Leia mais

Relações. Relações. {1, 2} = {2, 1}, {3, -1} = {-1, 3}, {a, b} = {b, a}.

Relações. Relações. {1, 2} = {2, 1}, {3, -1} = {-1, 3}, {a, b} = {b, a}. UNIVERSIDDE DO ESTDO DE MTO GROSSO CMPUS UNIVERSITÁRIO DE SINOP FCULDDE DE CIÊNCIS EXTS E TECNOLÓGICS CURSO DE ENGENHRI CIVIL DISCIPLIN: FUNDMENTOS DE MTEMÁTIC Relações. Par ordenado Em Matemática eistem

Leia mais

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin Matemática Complementos de Funções Professor Marcelo Gonsalez Badin Paridade Função PAR f (x) é chamada FUNÇÃO PAR se f ( x) = f (x) Exemplo: f (x) = x 4 f ( x) = ( x) 4 = x 4 = f (x) O gráfico de uma

Leia mais

Curso de Álgebra Linear

Curso de Álgebra Linear Curso de Álgebra Linear Fundamentos e Aplicações Terceira Edição 25 de Outubro de 2012 Marco Cabral PhD Indiana University, EUA Paulo Goldfeld PhD Courant Institute, EUA Departamento de Matemática Aplicada

Leia mais

Plano Cartesiano. Relação Binária

Plano Cartesiano. Relação Binária Plano Cartesiano O plano cartesiano ortogonal é constituído por dois eixos x e y perpendiculares entre si que se cruzam na origem. O eixo horizontal é o eixo das abscissas (eixo OX) e o eixo vertical é

Leia mais

Teoria dos Conjuntos MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES. Fundamentos de Lógica Técnicas Elementares de Prova A NOÇÃO DE CONJUNTO

Teoria dos Conjuntos MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES. Fundamentos de Lógica Técnicas Elementares de Prova A NOÇÃO DE CONJUNTO SUMÁRIO MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova Newton José Vieira 21 de agosto de 2007 1 A NOÇÃO DE CONJUNTO

Leia mais

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 EMENTA Funções Reais de uma Variável Real Principais Funções Elementares e suas Aplicações Matrizes Livro Teto: Leithold, Louis.

Leia mais

ANÁLISE COMBINATÓRIA

ANÁLISE COMBINATÓRIA Nome Nota ANÁLISE COMBINATÓRIA 1) De quantas maneiras diferentes 11 homens e 8 mulheres podem se sentar em uma fila se os homens sentam juntos e as mulheres também? 2!*11!*8! 2) O controle de qualidade

Leia mais

10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1.

10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1. Geometria Analítica. 1. Determine as posições relativas e as interseções entre os conjuntos em R abaixo. Em cada item também faça um esboço dos dois conjuntos dados no mesmo sistema de eixos. (a) C : (x

Leia mais

MAT TEORIA DOS CONJUNTOS 1 o SEMESTRE 2014 BACHARELADO - IME

MAT TEORIA DOS CONJUNTOS 1 o SEMESTRE 2014 BACHARELADO - IME MAT 330 - TEORIA DOS CONJUNTOS 1 o SEMESTRE 2014 BACHARELADO - IME LISTA 2 1. Prove que (a, b) ( ({a, b, })) e a, b (a, b). Mais geralmente, se a A e b A, então (a, b) ( (A)). 2. Prove que (a, b), (a,

Leia mais

GEOMETRIA ANALÍTICA 2017

GEOMETRIA ANALÍTICA 2017 GEOMETRIA ANALÍTICA 2017 Tópicos a serem estudados 1) O ponto (Noções iniciais - Reta orientada ou eixo Razão de segmentos Noções Simetria Plano Cartesiano Abcissas e Ordenadas Ponto Médio Baricentro -

Leia mais

ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011

ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011 Uma Resolução ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011 1. Seleccione e transcreva para a sua folha de exame a única opção correcta: A fórmula proposicional (p q) (p q) é a) logicamente

Leia mais

Lista 2 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os.

Lista 2 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os. GAN00140 Álgebra Linear 018.1 Prof a. Ana Maria Luz F. do Amaral Lista - Resolução 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os. 1 a) b) 1 3 0 0 1 /. 1 1/ 1

Leia mais

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas.

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Teoria dos Conjuntos Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Porém, não é nosso objetivo ver uma teoria axiomática dos conjuntos.

Leia mais

Bacharelado em Ciência da Computação Matemática Discreta

Bacharelado em Ciência da Computação Matemática Discreta Bacharelado em Ciência da Computação Matemática Discreta Prof. Diego Mello da Silva Instituto Federal de Minas Gerais - Campus Formiga 19 de fevereiro de 2013 diego.silva@ifmg.edu.br (IFMG) Matemática

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Relações Definição: Uma relação binária de um conjunto A num conjunto B é um subconjunto

Leia mais

Algebra Sandro Marcos Guzzo Cascavel 1 de abril de 2019

Algebra Sandro Marcos Guzzo Cascavel 1 de abril de 2019 Álgebra Sandro Marcos Guzzo Cascavel 1 de abril de 2019 Sumário Introdução 4 1 Relações, aplicações e operações 5 1.1 Terminologia básica dos conjuntos.......................... 5 1.2 Números inteiros....................................

Leia mais

Álgebra Linear - Prof. a Cecilia Chirenti. Lista 3 - Matrizes

Álgebra Linear - Prof. a Cecilia Chirenti. Lista 3 - Matrizes Álgebra Linear - Prof. a Cecilia Chirenti Lista 3 - Matrizes. Sejam A = C = 0 3 4 3 0 5 4 0 0 3 4 0 3, B = 3, D = 3,. Encontre: a A+B, A+C, 3A 4B. b AB, AC, AD, BC, BD, CD c A t, A t C, D t A t, B t A,

Leia mais

Aula 1 Conjuntos. Meta. Introduzir as noções básicas de conjunto e produto cartesiano de. conjuntos. Objetivos

Aula 1 Conjuntos. Meta. Introduzir as noções básicas de conjunto e produto cartesiano de. conjuntos. Objetivos Conjuntos AULA 1 Aula 1 Conjuntos Meta conjuntos. Introduzir as noções básicas de conjunto e produto cartesiano de Objetivos Ao final desta aula, você deve ser capaz de: Definir as noções básicas de conjunto

Leia mais

2. Determine A B, quando :

2. Determine A B, quando : COLÉGIO MODELO LUIZ EDUARDO MAGALHÃES CAMAÇARI BA ENSINO MÉDIO ANO: 2017 NOME 1ª SÉRIE Turno: PROPESSOR: HENRIQUE LISTA 2 Intervalos e Funções I UNIDADE Se você esperar pelas condições perfeitas, nunca

Leia mais

3.4 Álgebra booleana, ordens parciais e reticulados

3.4 Álgebra booleana, ordens parciais e reticulados Notas de aula de MAC0329 (2003) 23 3.4 Álgebra booleana, ordens parciais e reticulados Seja A um conjunto não vazio. Uma relação binária R sobre A é um subconjunto de A A, isto é, R A A. Se (x, y) R, denotamos

Leia mais

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c Números Reais Víctor Arturo Martínez León (victor.leon@unila.edu.br) 1 Os números racionais Os números racionais são os números da forma a, sendo a e b inteiros e b 0; o conjunto b dos números racionais

Leia mais

CÁLCULO I Aula 01: Funções.

CÁLCULO I Aula 01: Funções. Inversa CÁLCULO I Aula 01: Funções. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Inversa 1 Funções e seus 2 Inversa 3 Funções Funções e seus Inversa Consideremos A e B dois

Leia mais

Universidade Federal de Uberlândia Faculdade de Matemática

Universidade Federal de Uberlândia Faculdade de Matemática Universidade Federal de Uberlândia Faculdade de Matemática Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica e Álgebra Linear - GCI004 Assunto: Espaços vetoriais

Leia mais