2014/1S EP33D Matemática Discreta

Tamanho: px
Começar a partir da página:

Download "2014/1S EP33D Matemática Discreta"

Transcrição

1 014/1S EP33D Matemática Discreta Avaliação Substitutiva 01 Data: 1/05/014 Início: 13h00min Duração:,5 horas (3 aulas) INFORMAÇÕES: (i) a prova é individual; (ii) qualquer forma de consulta ou auxílio à consulta não autorizada acarretará no recolhimento imediato da prova e anulação da mesma; (iii) questões incompletas serão desconsideradas; (iv) o respeito à notação matemática e ao rigor científico, a interpretação das questões e a claridade na exposição fazem parte da avaliação; (v) formulários não são permitidos; Nome: GABARITO Nota: (Valor: 10,0) Problema 1. [1,5] (a) Determine se (p q) r e (p r) (q r) são equivalentes, fundamentando sua resposta. (b) Justifique por que a demonstração por contraposição da proposição condicional Se P, então Q. é válida. (a) Duas proposições P e Q são ditas equivalentes se P Q é uma tautologia. Verificamos, pois, se P:(p q) r e Q:(p r) (q r) são equivalentes analisando a tabela-verdade abaixo: p q r p q P:(p q) r p r q r Q:(p r) (q r) P Q V V V V V V V V V V V F V F F F F V V F V F V V V V V V F F F V F V F F F V V F V V V V V F V F F V V F F F F F V F V V V V V F F F F V V V V V Vê-se, claramente, pela última coluna que P Q não é uma tautologia. Portanto, P:(p q) r e Q:(p r) (q r) não são equivalentes. (b) A demonstração por contraposição de P Q se dá pela demonstração direta de Q P. Esta é uma estratégia de demonstração válida pois (P Q) ( Q P) é uma tautologia. Isto é, P Q Q P, como pode ser verificado pela última coluna da tabela-verdade abaixo: P Q P Q Q P Q P (P Q) ( Q P) V V V F F V V V F F V F F V F V V F V V V F F V V V V V 1

2 Problema. [1,5] Considere S(x) como o predicado x é um estudante, F(x) o predicado x é um membro da faculdade e A(x,y) o predicado x fez uma pergunta a y, em que os domínios são todas as pessoas associadas a uma certa instituição de ensino. Expresse as seguintes proposições utilizando, quando necessário, quantificadores: a) Lois fez uma pergunta ao professor Michaels. b) Todo estudante fez uma pergunta ao professor Gross. c) Todo membro da faculdade ou fez uma pergunta ao professor Miller ou foi questionado pelo professor Miller. d) Algum estudante não fez nenhuma pergunta a qualquer membro da faculdade. e) Há um membro da faculdade que nunca recebeu uma pergunta de um estudante. f) Há um membro da faculdade que fez uma pergunta a outro membro da faculdade. a) A(Lois, professor Michaels). b) x[s(x) A(x, professor Gross)]. c) y{f(y) [A(y, professor Miller) A(professor Miller, y)]}. d) x{s(x) y[f(y) A(x,y)]} e) y{f(y) x[s(x) A(x,y)]} f) x{f(x) y{[f(y) (x y)] A(x,y)}}

3 Problema 3. [1,0] Suponha que o domínio da função proposicional P(x,y) são os pares x e y em que x é 1 ou e y é 1, ou 3. Desenvolva as proposições abaixo usando disjunções e/ou conjunções: a) x yp(x, y) b) x yp(x, y) c) x yp(x, y) d) y xp(x, y) (a) A proposição afirma que P(x,y) é verdadeira para todo x e todo y. Assim, x yp(x,y) P(1,1) P(1,) P(1,3) P(,1) P(,) P(,3). Note que o termo à direita é verdadeiro apenas se todos os termos são verdadeiros. (b) A proposição afirma que P(x,y) é verdadeira para pelo menos um par de x e y. Assim, x yp(x,y) P(1,1) P(1,) P(1,3) P(,1) P(,) P(,3). Note que o termo à direita é verdadeiro se algum dos termos é verdadeiro. (c) A proposição afirma que existe um x tal que P(x,y) é verdadeira para todos os y. Assim, x yp(x,y) [P(1,1) P(1,) P(1,3)] [P(,1) P(,) P(,3)]. Note que cada proposição entre colchetes é verdadeiro somente se todos seus termos forem verdadeiros e a proposição completa é verdadeira se ao menos um dos termos entre colchetes for verdadeiro. (d) A proposição afirma que para todo y existe um x tal que P(x,y) é verdadeira. Assim, y xp(x,y) [P(1,1) P(,1)] [P(1,) P(,)] [P(1,3) P(,3)]. Note que a proposição acima é verdadeira apenas se todas as proposições entre colchetes forem verdadeiras e, cada uma dessas, é verdadeira se ao menos um de seus termos for verdadeiro. 3

4 Problema 4. [,0] Demonstre, utilizando a indução matemática, a inequação de Bernoulli, dada por 1+nh (1+h) n, em queh> 1 é um número real enéqualquer número inteiro não negativo. Justifique seus argumentos (indicando os passos base e indutivo e a hipótese indutiva). A demonstração por indução da desigualdade apresentada consiste na verificação do passo base, isto é, na demonstração por verificação direta de sua validade para n=0 (menor inteiro para qual a proposição deve ser válida), e na verificação do passo indutivo. Essa última é feita a partir da hipótese indutiva que a inequação é válida para algum inteiro n 0 e demonstrando-se que Passo base: 1+nh (1+h) n 1+(n+1)h (1+h) n h=1 1=(1+h) 0 Como 1 1 é verdadeiro, o passo base está completado. Passo indutivo: Assumindo a hipótese indutiva e somando-se h em ambos os lados da inequação, temos 1+nh+h (1+h) n +h 1+(n+1)h (1+h) n +h. Notemos agora que, para qualquer n 0, temos que e h 0 (1+h) n 1 h(1+h) n h 1<h<0 (1+h) n 1 h(1+h) n h. (observe que no último caso, a multiplicação por h inverte a inequação pois h é negativo). Assim, em todos os casos, Portanto, vemos que Pela transitividade da desigualdade, Logo, h h(1+h) n. 1+(n+1)h (1+h) n +h (1+h) n +h(1+h) n. 1+(n+1)h (1+h) n +h(1+h) n =(1+h)(1+h) n. 1+(n+1)h (1+h) n+1, completando o passo indutivo e, consequentemente, a demonstração. 4

5 Problema 5. [4,0] Demonstre as proposições condicionais abaixo, explicando seus passos. Em cada item, indique explicitamente a(s) técnica(s) de demonstração utilizada(s). a) Se você pegar 3 meias de uma gaveta, que contém apenas meias azuis e meias pretas, então você deve pegar ou um par de meias azuis ou um par de meias pretas. b) Se a e b são números reais, então as afirmações a é menor que b, a média de a e b é maior que a e a média de a e b é menor que b são equivalentes. c) Se x e y são números reais, então x+y x + y. d) Se m, n e p são números inteiros tal que m+n é par e n+p é par, então m+p é par. (a) Demonstração por contradição. Assuma que 3 meias foram retiradas da gaveta e nenhum par foi formado. Assim, no máximo, uma meia de cada cor foi retirada. Portanto, no máximo, apenas duas mais foram retiradas (pois existem apenas duas cores), contradizendo a hipótese de que 3 meias foram retiradas. Logo, se 3 meias foram retiradas, um par deve ser formado. (b) Sejam p, q e r as proposições p:a<b, q: a+b >a, r: a+b <b. A equivalência entre p, q e r pode ser demonstrada verificando-se que p q r p. Assim: p q, demonstração direta: q r, demonstração direta: p:a<b a+a<b+a a<a+b a< a+b :q q: a+b >a a+b r p, demonstração direta: + b >a+ b a +b a >a+ b a b> a+b :r r: a+b Como p q, q r e r p, temos que p q r. <b a+b<b a+b b<b b a<b:p. (c) A demonstração da desigualdade triangular se dá por demonstrações diretas por casos, lembrando que { x se x 0 x = x se x<0. i. Caso x 0 e y 0 (x+y) 0 Assim, x =x, y =y e x+y =(x+y)=x+y. Portanto, x+y=x+y x + y = x+y. 5

6 ii. Caso x<0 e y<0 (x+y)<0 Assim, x = x, y = y e x+y = (x+y)= x y. Portanto, x+y=x+y x y= x y ( x)+( y)= (x+y) x + y = x+y. iii. Caso x<0 e y 0 com x y (x+y) 0 Assim, x = x, y =y e x+y =x+y. Portanto, x<0 x<0 x< x x+y< x+y x+y < x + y. iv. Caso x<0 e y 0 com x >y (x+y)<0 Assim, x = x, y =y e x+y = (x+y)= x y. Portanto, y 0 y 0 y y x+y x y x + y x+y. Como os casos (iii) e (iv) são simétricos pela troca x por y, temos que x + y x+y em todos os casos. Portanto, a desigualdade triangular é válida para quaisquer reais x e y. (d) Demonstração direta. Da hipótese que m+n e n+p são pares, temos que existem k,l Z tais que Somando ambas as equações, temos m+n=k e n+p=l. m+n+n+p=k+l m+p+n=(k+l) m+p=(k+l n) m+p=t em que k+l n=t Z. Portanto, m+n é par. 6

2013/1S EP33D Matemática Discreta Avaliação 01

2013/1S EP33D Matemática Discreta Avaliação 01 013/1S EP33D Matemática Discreta Avaliação 01 Data: 10/07/013 Início: 13h00min Duração: 03 aulas h30min) OBSERVAÇÕES: i) a prova é individual; ii) qualquer forma de consulta não autorizada acarretará no

Leia mais

Teoria dos Conjuntos MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES. Fundamentos de Lógica Técnicas Elementares de Prova A NOÇÃO DE CONJUNTO

Teoria dos Conjuntos MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES. Fundamentos de Lógica Técnicas Elementares de Prova A NOÇÃO DE CONJUNTO SUMÁRIO MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova Newton José Vieira 21 de agosto de 2007 1 A NOÇÃO DE CONJUNTO

Leia mais

Matemática discreta e Lógica Matemática

Matemática discreta e Lógica Matemática AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1 Lógica Sentenças, representação

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Correção Exercícios Quantificadores Agrupados; (Rosen 50) Traduzindo sentenças. Exercícios Quais as negações de: 1) Existe um político honesto 2) Todos os brasileiros comem

Leia mais

Os números inteiros. Capítulo 2

Os números inteiros. Capítulo 2 6 Capítulo 2 Os números inteiros Intuitivamente, o conjunto Z dos números inteiros é composto pelos números naturais e pelos "negativos". Como justificamos de uma forma simples qual a origem dos números

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Correção dos Exercícios (Rosen 47) Prioridade dos Quantificadores (Rosen 38) Ligando Variáveis (Rosen 38) Equivalências lógicas (Rosen 39) Negando expressões com quantificadores

Leia mais

MATEMÁTICA DISCRETA LISTA DE EXERCÍCIOS 3

MATEMÁTICA DISCRETA LISTA DE EXERCÍCIOS 3 MATEMÁTICA DISCRETA LISTA DE EXERCÍCIOS 3 1. Construa tabelas-verdade para as expressões abaixo. Note quaisquer tautologias ou contradições. a) A (B A) b) A B B' A' c) (A B') (A B)' d) [(A B) C'] A' C

Leia mais

SMA Elementos de Matemática Notas de Aulas

SMA Elementos de Matemática Notas de Aulas Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação SMA 341 - Elementos de Matemática Notas de Aulas Ires Dias Sandra Maria Semensato de Godoy São Carlos 2009 Sumário 1 Noções

Leia mais

Conteúdo. Correção Exercícios Revisão para Prova

Conteúdo. Correção Exercícios Revisão para Prova Conteúdo Correção Exercícios Revisão para Prova Rosen 58 1) Transcreva as proposições abaixo para o português, em que o domínio para cada variável consista nos números reais. a) x y (x

Leia mais

Lógica de Predicados. Correção dos Exercícios

Lógica de Predicados. Correção dos Exercícios Lógica de Predicados Correção dos Exercícios Conteúdo Correção Exercícios Tradução Lógica - Português (Rosen 55) Tradução Português Lógica(Rosen 56) Exercícios Rosen 58 1) Transcreva as proposições para

Leia mais

Área de Teoria DCC/UFMG Introdução à Lógica Computacional 2019/01. SOLUÇÃO DE LISTA DE EXERCÍCIOS Lista 04 (Predicados e Quantificadores)

Área de Teoria DCC/UFMG Introdução à Lógica Computacional 2019/01. SOLUÇÃO DE LISTA DE EXERCÍCIOS Lista 04 (Predicados e Quantificadores) Área de Teoria DCC/UFMG Introdução à Lógica Computacional 2019/01 SOLUÇÃO DE LISTA DE EXERCÍCIOS Lista 04 (Predicados e Quantificadores) Leitura necessária: Matemática Discreta e Suas Aplicações, 6 a Edição

Leia mais

Cálculo proposicional

Cálculo proposicional O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais

Leia mais

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados

Leia mais

Unidade II. A notação de que a proposição P (p, q, r,...) implica a proposição Q (p, q, r,...) por:

Unidade II. A notação de que a proposição P (p, q, r,...) implica a proposição Q (p, q, r,...) por: LÓGICA Objetivos Apresentar regras e estruturas adicionais sobre o uso de proposições. Conceituar implicação lógica, tautologias, e as propriedade sobre proposições. Apresentar os fundamentos da dedução,

Leia mais

n. 6 Equivalências Lógicas logicamente equivalente a uma proposição Q (p, q, r, ), se as tabelas-verdade destas duas proposições são idênticas.

n. 6 Equivalências Lógicas logicamente equivalente a uma proposição Q (p, q, r, ), se as tabelas-verdade destas duas proposições são idênticas. n. 6 Equivalências Lógicas A equivalência lógica trata de evidenciar que é possível expressar a mesma sentença de maneiras distintas, preservando, o significado lógico original. Def.: Diz-se que uma proposição

Leia mais

Este material se compõe de exercícios de Lógica relacionadas as disciplinas de Fundamentos de Matemática e Matemática Discreta..

Este material se compõe de exercícios de Lógica relacionadas as disciplinas de Fundamentos de Matemática e Matemática Discreta.. This is page i Printer: Opaque this 1 Lógica Este material se compõe de exercícios de Lógica relacionadas as disciplinas de Fundamentos de Matemática e Matemática Discreta.. 1.1 Tabela Verdade 1. (FM-2003)

Leia mais

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2 Números Reais. Simplifique as seguintes epressões (definidas nos respectivos domínios): a), b) + +, c) + + +, d), e) ( ), f) 4 4, g) ( ), h) 3 6, i) +, j) +, k) log ( ) + log ( ), l) log ( + ) + log (

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Rosen 47 6) Considere N(x) como o predicado x visitou Dakota do Norte, em que o domínio são os estudantes de sua escola. Expresse cada uma dessas quantificações em português. a) x

Leia mais

Fundamentos da Computação 1. Introdução a Argumentos

Fundamentos da Computação 1. Introdução a Argumentos Fundamentos da Computação 1 Introdução a s Se você tem um senha atualizada, então você pode entrar na rede Você tem uma senha atualizada Se você tem um senha atualizada, então você pode entrar na rede

Leia mais

1 Números Reais. 1. Simplifique as seguintes expressões (definidas nos respectivos domínios): b) x+1. d) x 2, f) 4 x 4 2 x, g) 2 x2 (2 x ) 2, h)

1 Números Reais. 1. Simplifique as seguintes expressões (definidas nos respectivos domínios): b) x+1. d) x 2, f) 4 x 4 2 x, g) 2 x2 (2 x ) 2, h) Números Reais. Simplifique as seguintes expressões (definidas nos respectivos domínios): x a), x b) x+ +, x c) +x + x +x, d) x, e) ( x ), f) 4 x 4 x, g) x ( x ), h) 3 x 6 x, i) x x +, j) x x+ x, k) log

Leia mais

Alfabeto da Lógica Proposicional

Alfabeto da Lógica Proposicional Ciência da Computação Alfabeto da Lógica Sintaxe e Semântica da Lógica Parte I Prof. Sergio Ribeiro Definição 1.1 (alfabeto) - O alfabeto da é constituído por: símbolos de pontuação: (, ;, ) símbolos de

Leia mais

Demonstrações. Terminologia Métodos

Demonstrações. Terminologia Métodos Demonstrações Terminologia Métodos Técnicas de Demonstração Uma demonstração é um argumento válido que estabelece a verdade de uma sentença matemática. Técnicas de Demonstração Demonstrações servem para:

Leia mais

Lógica Proposicional Métodos de Validação de Fórmulas. José Gustavo de Souza Paiva. Introdução

Lógica Proposicional Métodos de Validação de Fórmulas. José Gustavo de Souza Paiva. Introdução Lógica Proposicional Métodos de Validação de Fórmulas José Gustavo de Souza Paiva Introdução Análise dos mecanismos que produzem e verificam os argumentos válidos apresentados na linguagem da lógica Três

Leia mais

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Implicação As proposições podem ser combinadas na forma se proposição 1, então proposição 2 Essa proposição composta é denotada por Seja

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/53 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

Matemática Discreta - 04

Matemática Discreta - 04 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 04 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Predicados e Quantificadores

Predicados e Quantificadores Predicados e Quantificadores Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Predicados e Quantificadores junho - 2018 1 / 57 Este material é preparado usando

Leia mais

assim são válidas devido à sua estrutura e ao significado dos quantificadores universal e existencial

assim são válidas devido à sua estrutura e ao significado dos quantificadores universal e existencial LÓGICA DE PREDICADOS Na ló predicados uma wff verdadeira significa uma wff vá lida, isto é, uma wff que seja válida em qualquer interpretação possível. AXIOMAS E REGRAS DE INFERêNCIA: wffs predicativas

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Newton José Vieira 21 de agosto de 2007 SUMÁRIO Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova 1 CONJUNTOS A NOÇÃO

Leia mais

Cálculo de Predicados

Cálculo de Predicados Matemática Discreta - Departamento de Matemática - EST-IPV - 2003/2004 - II Cálculo de Predicados 1. Predicados e quantificadores Consideremos as afirmações seguintes: x é par (1) x é tão alto como y (2)

Leia mais

MDI0001 Matemática Discreta Aula 01

MDI0001 Matemática Discreta Aula 01 MDI0001 Matemática Discreta Aula 01 e Karina Girardi Roggia karina.roggia@udesc.br Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina 2016 Karina

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Correção Exercícios Negando quantificadores agrupados (Rosen 57) Tradução Lógica - Português (Rosen 55) Tradução Português Lógica(Rosen 56) Exercícios Rosen (59) 9) Considere

Leia mais

Cálculo de Predicados. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março

Cálculo de Predicados. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março Matemática Discreta Cálculo de Predicados Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Quantificadores Como expressar a proposição Para todo número inteiro x, o valor de x é positivo. usando

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos - Princípio de Indução; Algoritmo de Euclides 1. Seja ( n) k n! k!(n k)! o coeficiente binomial, para n k 0. Por convenção, assumimos que, para outros

Leia mais

Introdução ao Curso. Área de Teoria DCC/UFMG 2019/01. Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG /01 1 / 22

Introdução ao Curso. Área de Teoria DCC/UFMG 2019/01. Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG /01 1 / 22 Introdução ao Curso Área de Teoria DCC/UFMG Introdução à Lógica Computacional 2019/01 Introdução à Lógica Computacional Introdução ao Curso Área de Teoria DCC/UFMG - 2019/01 1 / 22 Introdução: O que é

Leia mais

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0 Capítulo 3 Módulo e Função Módular A função modular é uma função que apresenta o módulo na sua lei de formação. No entanto, antes de falarmos sobre funções modulares devemos definir o conceito de módulo,

Leia mais

Matemática Discreta para Computação: Prova 1 06/09/2017

Matemática Discreta para Computação: Prova 1 06/09/2017 Matemática Discreta para Computação: Prova 1 06/09/2017 Aluno(a): 1. Considere as premissas: Se o universo é finito, então a vida é curta., Se a vida vale a pena, então a vida é complexa., Se a vida é

Leia mais

1.1 Propriedades Básicas

1.1 Propriedades Básicas 1.1 Propriedades Básicas 1. Classi que as a rmações em verdadeiras ou falsas, justi cando cada resposta. (a) Se x < 2, então x 2 < 4: (b) Se x 2 < 4, então x < 2: (c) Se 0 x 2, então x 2 4: (d) Se x

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Prof. Lino Marcos da Silva Atividade 1 - Números Reais Objetivos De um modo geral, o objetivo dessa atividade é fomentar o estudo de conceitos relacionados aos números

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/26 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

Humberto José Bortolossi x 1 < 0 x2 x 12 < 0. x 1 x + 12 (x + 3)(x 4)

Humberto José Bortolossi   x 1 < 0 x2 x 12 < 0. x 1 x + 12 (x + 3)(x 4) SEGUNDA VERIFICAÇÃO DE APRENDIZAGEM Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [0] (2.0) Resolva a inequação x 2 < x + 2 no conjunto dos

Leia mais

Referências e materiais complementares desse tópico

Referências e materiais complementares desse tópico Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer Conceitos matemáticos e técnicas de prova (Última atualização:

Leia mais

Humberto José Bortolossi [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo

Humberto José Bortolossi   [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo PRIMEIRA VERIFICAÇÃO DE APRENDIZAGEM Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [0] (a) (.0) Escreva infinitos números racionais que pertençam

Leia mais

Cálculo de Predicados

Cálculo de Predicados Cálculo de Predicados (Lógica da Primeira Ordem) Prof. Tiago Semprebom, Dr. Eng. Instituto Federal de Educação, Ciência e Tecnologia Santa Catarina - Campus São José tisemp@ifsc.edu.br 18 de maio de 2013

Leia mais

Introdução à Lógica Matemática

Introdução à Lógica Matemática Introdução à Lógica Matemática Disciplina fundamental sobre a qual se fundamenta a Matemática Uma linguagem matemática Paradoxos 1) Paradoxo do mentiroso (A) Esta frase é falsa. A sentença (A) é verdadeira

Leia mais

Súmario APRESENTAÇÃO DA COLEÇÃO...13

Súmario APRESENTAÇÃO DA COLEÇÃO...13 Súmario APRESENTAÇÃO DA COLEÇÃO...13 CAPÍTULO I LÓGICA PROPOSICIONAL...15 1. Lógica Proposicional...15 2. Proposição...15 2.1. Negação da Proposição...18 2.2. Dupla Negação...19 2.3. Proposição Simples

Leia mais

DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: TURNO: NOTURNO

DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: TURNO: NOTURNO DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: 2018-2 TURNO: NOTURNO ALUNO a): 1ª Lista de Exercícios - Introdução à Lógica Matemática, Teoria

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016. Gabarito Questão 01 [ 1,00 ] A secretaria de educação de um município recebeu uma certa quantidade de livros para distribuir entre as escolas

Leia mais

Lógica Proposicional. p : Hoje não é sexta-feira. q : Todo homem é mortal. r : Existem pessoas inseguras.

Lógica Proposicional. p : Hoje não é sexta-feira. q : Todo homem é mortal. r : Existem pessoas inseguras. Tópicos Introdução à Lógica Edna A. Hoshino DCT - UFMS fevereiro de 2011 1 Tabela-Verdade Equivalências Proposicionais Formas Normais 2 Variáveis e Predicados Quantificadores 3 para predicados e quantificadores

Leia mais

Técnicas de Inteligência Artificial

Técnicas de Inteligência Artificial Universidade do Sul de Santa Catarina Ciência da Computação Técnicas de Inteligência Artificial Aula 04 Lógica Proposicional e Lógica dos Predicados Max Pereira Proposicional A lógica está relacionada

Leia mais

Unidade 1 - Elementos de Lógica e Linguagem Matemáticas. Exemplo. O significado das palavras. Matemática Básica linguagem do cotidiano

Unidade 1 - Elementos de Lógica e Linguagem Matemáticas. Exemplo. O significado das palavras. Matemática Básica linguagem do cotidiano A Pirâmide de aprendizagem de William Glasser Unidade 1 - Elementos de Lógica e Linguagem Matemáticas Matemática Básica Departamento de Matemática Aplicada Universidade Federal Fluminense 2018.1 Segundo

Leia mais

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UFRPE Matemática Discreta Bacharelado em Sistemas de Informação Respostas - 1ª Lista de Exercícios

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UFRPE Matemática Discreta Bacharelado em Sistemas de Informação Respostas - 1ª Lista de Exercícios UNIERSIDADE EDERAL RURAL DE PERNAMBUCO URPE Matemática Discreta Bacharelado em Sistemas de Inormação Resolução Lista 1 Monitoria: Bruna 1) Lógica Proposicional a) Marque as rases que orem proposições:

Leia mais

Cálculo de Predicados 1

Cálculo de Predicados 1 Matemática Discreta - Departamento de Matemática - EST-IPV - 2005/2006 - II Capítulo II Cálculo de Predicados 1 1 Predicados e quantificadores Consideremos as afirmações seguintes: x é par. (1.1) x é tão

Leia mais

Cálculo Diferencial e Integral 2 Formas Quadráticas

Cálculo Diferencial e Integral 2 Formas Quadráticas Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral 2 Formas Quadráticas 1 Formas quadráticas Uma forma quadrática em R n é um polinómio do

Leia mais

Para provar uma implicação se p, então q, é suficiente fazer o seguinte:

Para provar uma implicação se p, então q, é suficiente fazer o seguinte: Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que

Leia mais

UNIP Ciência da Computação Prof. Gerson Pastre de Oliveira

UNIP Ciência da Computação Prof. Gerson Pastre de Oliveira Aula 6 Lógica Matemática Álgebra das proposições e método dedutivo As operações lógicas sobre as proposições possuem uma série de propriedades que podem ser aplicadas, considerando os conectivos inseridos

Leia mais

2015/1S QM35B Mét. de Matemática Aplicada

2015/1S QM35B Mét. de Matemática Aplicada 2015/1S QM35B Mét. de Matemática Aplicada Avaliação P 1 Data: 28/09/2015 INFORMAÇÕES: (i) a prova é individual; (ii) resoluções e grácos/diagramas podem ser manuscritos e/ou compuscritos; (iii) resoluções

Leia mais

Apresentação do curso

Apresentação do curso Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Apresentação do curso Parte 1 Parte 1 Matemática Básica 1 Parte 1 Matemática Básica

Leia mais

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE Indução Matemática George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Qual é a fórmula para a soma dos primeiros n inteiros ímpares positivos? Observando os resultados para um n pequeno, encontra-se

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 01 Lista 1 Números Naturais 1. Demonstre por indução as seguintes fórmulas: (a) (b) n (j 1) = n (soma dos n primeiros ímpares).

Leia mais

Sumário. Capítulo 1 - Conhecendo os Vários Tipos de Problema... 1

Sumário. Capítulo 1 - Conhecendo os Vários Tipos de Problema... 1 Sumário Capítulo 1 - Conhecendo os Vários Tipos de Problema... 1 Capítulo 2 - Problemas sobre Correlacionamento... 7 2.1. Problemas Envolvendo Correlação entre Elementos...7 2.2. Considerações Finais sobre

Leia mais

Gestão Empresarial Prof. Ânderson Vieira

Gestão Empresarial Prof. Ânderson Vieira NOÇÕES DE LÓGICA Gestão Empresarial Prof. Ânderson ieira A maioria do texto apresentado neste arquivo é do livro Fundamentos de Matemática Elementar, ol. 1, Gelson Iezzi e Carlos Murakami (eja [1]). Algumas

Leia mais

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior Lógica Formal Matemática Discreta Prof. Vilson Heck Junior vilson.junior@ifsc.edu.br Objetivos Utilizar símbolos da lógica proposicional; Encontrar o valor lógico de uma expressão em lógica proposicional;

Leia mais

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago Capítulo 1 Os Números Última atualização em setembro de 2017 por Sadao Massago 1.1 Notação Números naturais: Neste texto, N = {0, 1, 2, 3,...} e N + = {1, 2, 3, }. Mas existem vários autores considerando

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 06 de junho de 2011 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R

Leia mais

Departamento de Matemática da Universidade de Aveiro Matemática Discreta. A prova consta de 4 questões cada uma cotada com 5 valores.

Departamento de Matemática da Universidade de Aveiro Matemática Discreta. A prova consta de 4 questões cada uma cotada com 5 valores. Departamento de Matemática da Universidade de Aveiro Matemática Discreta Exame Final ( 2 a Chamada: 22/0/2007 Licenciatura em Matemática (8220 Mest. Int. Eng. Computadores e Telemática (8240 Informações

Leia mais

Apêndice B: Resolução dos Exercícios Propostos

Apêndice B: Resolução dos Exercícios Propostos Apêndice B: Resolução dos Exercícios Propostos É importante que o aluno verifique a resolução dos exercícios somente após ter tentado resolvê-los. De fato, para que ocorra a aprendizagem é importante que

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 11 de maio de 2010 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R

Leia mais

Lógica Proposicional Parte II. Raquel de Souza Francisco Bravo 25 de outubro de 2016

Lógica Proposicional Parte II. Raquel de Souza Francisco Bravo   25 de outubro de 2016 Lógica Proposicional Parte II e-mail: raquel@ic.uff.br 25 de outubro de 2016 Argumento Válido Um argumento simbólica como: pode ser ser representado em forma P 1 P 2 P 3 P n Q Onde P 1, P 2,,P n são proposições

Leia mais

Tópicos de Matemática Discreta. mestrado integrado em Engenharia Informática. notas para a unidade curricular. Universidade do Minho 2017/2018

Tópicos de Matemática Discreta. mestrado integrado em Engenharia Informática. notas para a unidade curricular. Universidade do Minho 2017/2018 notas para a unidade curricular Tópicos de Matemática Discreta mestrado integrado em Engenharia Informática Universidade do Minho 2017/2018 Cláudia Mendes Araújo Carla Mendes Suzana Mendes Gonçalves Capítulo

Leia mais

Apresentação do curso

Apresentação do curso Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Apresentação do curso Parte 1 Parte 1 Matemática Básica 1 Parte 1 Matemática Básica 2 Conteúdo

Leia mais

A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS.

A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS. A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS. SANDRO MARCOS GUZZO RESUMO. A construção dos conjuntos numéricos é um assunto clássico na matemática, bem como o estudo das propriedades das operações

Leia mais

SMA0341 e SLC Elementos de Matemática Notas de Aulas

SMA0341 e SLC Elementos de Matemática Notas de Aulas Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação SMA0341 e SLC0603 - Elementos de Matemática Notas de Aulas Ires Dias Sandra Maria Semensato de Godoy São Carlos 2012 Sumário

Leia mais

EP33D Matemática Discreta 2013/2S

EP33D Matemática Discreta 2013/2S EP33D Matemática Discreta 2013/2S Lista 01 Lógica Proosicional Problema 1. Qual é a negação de cada roosição a seguir? a) Hoje é quinta-feira. b) Não há oluição em São Paulo. c) 2+1=3 d) O verão no Rio

Leia mais

Matemática Discreta - 05

Matemática Discreta - 05 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 05 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Matemática Discreta - 03

Matemática Discreta - 03 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 03 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Dedução Natural e Sistema Axiomático Pa(Capítulo 6)

Dedução Natural e Sistema Axiomático Pa(Capítulo 6) Dedução Natural e Sistema Axiomático Pa(Capítulo 6) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Sistemas axiomático Pa 4. Lista

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Lógica Matemática - Quantificadores

Lógica Matemática - Quantificadores Lógica Matemática - Quantificadores Prof. Elias T. Galante - 2017 Quantificador Universal Seja p(x) uma sentença aberta em um conjunto não-vazio A e seja V p o seu conjunto verdade: V p = {x x A p(x)}.

Leia mais

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1 Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados

Leia mais

LFA. Provas formais; Indução; Sintaxe e Semântica Teoria dos Conjuntos

LFA. Provas formais; Indução; Sintaxe e Semântica Teoria dos Conjuntos LFA Provas formais; Indução; Sintaxe e Semântica Teoria dos Conjuntos Técnicas de Demonstração Um teorema é uma proposição do tipo: p q a qual, prova-se, é verdadeira sempre que: p q Técnicas de Demonstração

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Correção dos Exercícios (Rosen 47) Prioridade dos Quantificadores (Rosen 38) Ligando Variáveis (Rosen 38) Quantificadores Agrupados Negando expressões com quantificadores

Leia mais

Argumentação em Matemática período Prof. Lenimar N. Andrade. 1 de setembro de 2009

Argumentação em Matemática período Prof. Lenimar N. Andrade. 1 de setembro de 2009 Noções de Lógica Matemática 2 a parte Argumentação em Matemática período 2009.2 Prof. Lenimar N. Andrade 1 de setembro de 2009 Sumário 1 Condicional 1 2 Bicondicional 2 3 Recíprocas e contrapositivas 2

Leia mais

3.3 Cálculo proposicional clássico

3.3 Cálculo proposicional clássico 81 3.3 Cálculo proposicional clássico 3.3.1 Estrutura dedutiva Neste parágrafo serão apresentados, sem preocupação com excesso de rigor e com riqueza de detalhes, alguns conceitos importantes relativos

Leia mais

ANÁLISE MATEMÁTICA I. Curso: EB

ANÁLISE MATEMÁTICA I. Curso: EB ANÁLISE MATEMÁTICA I (com Laboratórios) Curso: EB Lógica - Resumo Ana Matos DMAT Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a qualquer sequência de símbolos.

Leia mais

9.2 Relação de Ordem em Q

9.2 Relação de Ordem em Q META: Apresentar uma ordem para os números racionais. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Comparar números racionais e trabalhar com relações envolvendo desigualdades. PRÉ-REQUISITOS

Leia mais

Lógica para Computação

Lógica para Computação Aula 19 - Lógica de Predicados 1 Faculdade de Informática - PUCRS October 6, 2015 1 Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores. Sinopse Lógica de Predicados

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos 1 - Algoritmo de Euclides; Indução Matemática; Teorema Fundamental da Aritmética 1. Considere os inteiros a 406 e b 654. (a) Encontre d mdc(a,b), o

Leia mais

ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011

ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011 Uma Resolução ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011 1. Seleccione e transcreva para a sua folha de exame a única opção correcta: A fórmula proposicional (p q) (p q) é a) logicamente

Leia mais

Ordem dos Inteiros AULA. 4.1 Introdução. 4.2 Ordem Ordem dos Inteiros

Ordem dos Inteiros AULA. 4.1 Introdução. 4.2 Ordem Ordem dos Inteiros META: Apresentar ordem nos números inteiros e os Princípio de indução e do Menor elemento. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Usar o processo de indução finita dos Inteiros. Justificar

Leia mais

Eduardo. Matemática Matrizes

Eduardo. Matemática Matrizes Matemática Matrizes Eduardo Definição Tabela de números dispostos em linhas e colunas. Representação ou Ordem da Matriz Se uma matriz A possui m linhas e n colunas, dizemos que A tem ordem m por n e escrevemos

Leia mais

= o A MATRIZ IDENTIDADE. a(i, :) = (aii, ai2,, ai.) i = 1,, m

= o A MATRIZ IDENTIDADE. a(i, :) = (aii, ai2,, ai.) i = 1,, m Matrizes e Sistemas de Equações 9 para toda matriz A n X n. Vamos discutir, também, a existência e o cálculo de inversas multiplicativas. A MATRIZ IDENTIDADE Uma matriz muito importante é a matriz / n

Leia mais

2015/2S EM32C Probabilidade & Estatística

2015/2S EM32C Probabilidade & Estatística 0/S EMC Probabilidade & Estatística Avaliação P Data: 09//0 INFORMAÇÕES: (i) a prova é individual; (ii) é facultado ao aluno o porte e consulta de uma folha tamanho A4, de uso exclusivamente individual;

Leia mais

Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. Exemplos:

Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. Exemplos: 1 Noções Básicas de Lógica 1.1 Proposições Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. 1. Os sapos são anfíbios. 2. A capital do Brasil é Porto Alegre. 3. O tomate é um tubérculo.

Leia mais