Cálculo Diferencial e Integral 2 Formas Quadráticas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Cálculo Diferencial e Integral 2 Formas Quadráticas"

Transcrição

1 Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral 2 Formas Quadráticas 1 Formas quadráticas Uma forma quadrática em R n é um polinómio do segundo grau homogéneo. Por exemplo, q(x, y) = x 2 3xy 2y 2 (1) é uma forma quadrática em R 2 e q(x, y, z) = x 2 3xy + y 2 4xz z 2 (2) é uma forma quadrática em R 3. De certa forma, estas funções são as mais simples a seguir às funções lineares. Em Cálculo, elas aparecem como primeira aproximação 1 a uma função de várias variáveis junto a um ponto em que a derivada se anula 2. A expressão geral de uma forma quadrática em R n é q(x 1, x 2,..., x n ) = a 11 x 2 1 +a 12 x 1 x a 1n x 1 x n + +a 22 x a 2n x 2 x n a nn x 2 n onde a ij são números reais quaisquer. A expressão anterior pode escrever-se matricialmente (identificando como é habitual matrizes 1 1 com escalares) na forma q(x) = x T Ax onde x T - a matriz transposta da matriz coluna x - é a matriz linha correspondente ao vector x = (x 1,..., x n ), e A é a matriz quadrada n n a 11 a a 1n 0 a 22 a 2n A = a nn 1 A seguir à aproximação de ordem zero que é a constante dada pelo valor da função no ponto. 2 Quando a derivada não se anula, a primeira aproximação é a aplicação linear determinada pela derivada. 1

2 Por exemplo, no caso de (1) temos q(x, y) = [ x y ] [ ] [ ] 1 3 x 0 2 y e no caso de (2) temos q(x, y, z) = [ x y z ] x y z Mais geralmente, se A é uma matriz n n qualquer (não necessariamente triangular superior), a expressão q(x) = x T Ax (3) define uma forma quadrática. Por exemplo, [ ] [ ] [ ] 2 3 x x y = 2x 2 + 3xy yx 2y 2 = 2x 2 + 2xy 2y y Como se vê no exemplo anterior, entradas da matriz que sejam simétricas em relação à diagonal principal contribuem com termos semelhantes. Em geral, se A tem entradas (a ij ) com 1 i, j n, o coeficiente de x i x j na expansão de x T Ax será (a ij + a ji ) e portanto se A e B são matrizes tais que a ij + a ji = b ij + b ji temos x T Bx = x T Ax para todo o x. Uma maneira de descrever esta situação é dizer que a forma quadrática determinada por A depende apenas da parte simétrica 3 da matriz A, que é dada por 1 2 (A + AT ) e portanto tem entrada ij igual a a ij+a ji. 2 Assim, considerando apenas matrizes simétricas na expressão (3), temos uma correspondência biunívoca entre matrizes n n simétricas e formas quadráticas em R n dada por A simétrica q(x) = x T Ax. 3 Recorde que qualquer matriz A se pode escrever de forma única como uma soma A = S + T com S simétrica (isto significa que s ij = s ji ) e T anti-simétrica (isto significa que t ij = t ji ). S diz-se a parte simétrica de A e T diz-se a parte anti-simétrica de A. Além disso, é fácil ver que S = 1 2 (A + AT ) e T = 1 2 (A AT ). 2

3 2 Classificação de formas quadráticas No estudo de extremos de funções de várias variáveis é necessário entender se o sinal de uma forma quadrática q(x) = x T Ax é ou não constante para x 0. Como q(0) = 0, estudar o sinal de q corresponde a determinar se 0 é ou não um ponto de extremo de q. Por exemplo, se q(x) 0 para todo o x, a função q tem um máximo (absoluto) em x = 0. Se f : R n R é de classe C 2 e f(a) = 0 então, junto a x = a temos (pela fórmula de Taylor) f(a + h) f(a) + h T Hf(a)h onde Hf(a) é a matriz Hessiana de f em a (cuja entrada ij é 2 f x i x j (a)). É de esperar que o problema de decidir se f tem um máximo 4 (por exemplo) em a esteja relacionado com a existência de um máximo para a sua aproximação h h T Hf(a)h em h = 0, e de facto assim é como vimos na aula. Concentremo-nos agora então na questão se q(x) = x T Ax tem ou não um extremo em x = 0. Precisamos de alguma terminologia. Definição: Uma forma quadrática q(x) diz-se 1. definida positiva se q(x) > 0 para todo o x 0, 2. definida negativa se q(x) < 0 para todo o x 0, 3. semidefinida positiva se q(x) 0 para todo o x, 4. semidefinida negativa se q(x) 0 para todo o x, 5. indefinida caso contrário, isto é se existem x, y R n com q(x) > 0 e q(y) < 0. Note-se que se q(x) é definida positiva então também é semi-definida positiva (como q(0) = 0 é claro que q(x) 0 para todo o x quando q é definida positiva). A interpretação das condições acima em termos de extremos é muito simples: Dizer que q é definida positiva é equivalente a dizer que 0 é um ponto de mínimo absoluto estrito para q, dizer que é semi-definida positiva é equivalente a dizer que 0 é um ponto de mínimo absoluto não estrito 5 para q e dizer que q é indefinida é dizer que 0 não é ponto nem de máximo nem de mínimo para q. 4 Por máximo entendemos máximo local. a diz-se um ponto de máximo local de f se existe um aberto U contendo a tal que x U f(x) f(a). A aproximação dada pela fórmula de Taylor só é boa perto do ponto onde estamos a desenvolver e não nos diz nada sobre o valor de f longe de a. 5 Isto significa que possivelmente há pontos diferentes de 0 onde o valor mínimo q(0) = 0 é atingido. 3

4 Vejamos agora como usar Álgebra Linear para classificar uma forma quadrática dada. Recorde que uma matriz quadrada X se diz ortogonal se as suas colunas formam uma base ortonormal de R n, ou equivalentemente, se X T X = I onde I designa a matriz identidade (note que a entrada ij do produto X T X é o produto interno das colunas i e j da matriz X). É um resultado de Álgebra Linear que as matrizes simétricas são diagonalizáveis por matrizes ortogonais. Isto é, se A é simétrica, existe uma matriz X ortogonal tal que X 1 AX = X T AX = Λ com Λ = diag(λ 1,..., λ n ). Esboço de demonstração: É fácil ver que uma matriz simétrica tem valores próprios reais: Escrevendo, para o produto interno em C n temos, para qualquer matriz n n complexa A, x, Ay = A x, y onde A é a transposta da matriz conjugada de A (isto é, a matriz cuja entrada ij é a ji ). Se A é uma matriz real simétrica, temos A = A. Tomando na fórmula acima y = x e x um vector próprio associado ao valor próprio λ, obtemos x, λx = λx, x λ x 2 = λ x 2 e portanto λ = λ. As colunas da matriz ortogonal X que diagonaliza A constroem-se indutivamente. Para primeira coluna toma-se um vector próprio qualquer x 1 de A, de comprimento 1. Denotando por λ 1 o valor próprio de x 1 e por U o complemento ortogonal da linha gerada por x 1 em R n, temos, para y U, x 1, Ay = A x 1, y = Ax 1, y = λ 1 x 1, y = λ 1 x 1, y = 0 Isto diz-nos que a transformação linear T (x) = Ax leva U em U e portanto, numa base para R n formada por x 1 e uma base {v 2,..., v n } de U, T é representada por uma matriz diagonal por blocos [ ] λ1 0 0 B onde B é uma matrix (n 1) (n 1) que representa a restrição de T a U na base {v 2,..., v n }. É fácil verificar que, desde que {v 2,..., v n } seja ortonormal, B é uma matriz simétrica e portanto, por hipótese de indução pode ser diagonalizada através de uma matriz (n 1) (n 1) ortogonal. 4

5 Note que as entradas ao longo da diagonal da matriz Λ são os valores próprios da matriz A. O resultado anterior tem a seguinte consequência para uma forma quadrática q(x) = x T Ax com A simétrica: Fazendo a mudança de variável x = Xy (onde X é uma matriz ortogonal com X T AX = Λ diagonal) temos x T Ax = (Xy) T A(Xy) = y T X T AXy = y T Λy = λ 1 y λ n y 2 n. Imagine-se que queremos ver se q(x) é definida positiva. Ora q(x) > 0 para todo o x 0 é equivalente a dizer que λ 1 y λ n y 2 n > 0 para todo o y 0 (como X é invertível, x 0 Xy 0 y 0), e é claro que isto é equivalente a λ i > 0 para i = 1,... n. Os casos restantes são inteiramente análogos e portanto podemos concluir o seguinte. Proposição: Seja q(x) = x T Ax a forma quadrática correspondente à matriz simétrica A. (i) q é definida positiva sse todos os valores próprios de A são > 0. (ii) q é definida negativa sse todos os valores próprios de A são < 0. (iii) q é semidefinida positiva sse todos os valores próprios de A são 0. (iv) q é semidefinida positiva sse todos os valores próprios de A são 0. (v) q é indefinida sse A tem pelo menos um valor próprio positivo e outro negativo. 5

Capítulo 4 - Valores e Vectores Próprios

Capítulo 4 - Valores e Vectores Próprios Capítulo 4 - Valores e Vectores Próprios Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 17

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia Álgebra Linear Determinantes, Valores e Vectores Próprios Jorge Orestes Cerdeira Instituto Superior de Agronomia - 200 - ISA/UTL Álgebra Linear 200/ 2 Conteúdo Determinantes 5 2 Valores e vectores próprios

Leia mais

Matrizes e Linearidade

Matrizes e Linearidade Matrizes e Linearidade 1. Revisitando Matrizes 1.1. Traço, Simetria, Determinante 1.. Inversa. Sistema de Equações Lineares. Equação Característica.1. Autovalor & Autovetor 4. Polinômios Coprimos 5. Função

Leia mais

Matrizes hermitianas e unitárias

Matrizes hermitianas e unitárias Matrizes hermitianas e unitárias Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro amit@nacad.ufrj.br http://www.nacad.ufrj.br/ amit Matrizes complexas O produto

Leia mais

MATRIZES POSITIVAS DEFINIDAS

MATRIZES POSITIVAS DEFINIDAS MATRIZES POSITIVAS DEFINIDAS Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 7 de novembro de 2011 Roteiro 1 2 3 Roteiro 1 2 3 Por que saber se uma matriz é definida positiva? Importância do sinal

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR

EXERCÍCIOS DE ÁLGEBRA LINEAR IST - 1 o Semestre de 016/17 MEBiol, MEAmbi EXERCÍCIOS DE ÁLGEBRA LINEAR FICHA - Vectores e valores próprios 1 1 Vectores e valores próprios de transformações lineares Dada uma transformação linear T V!

Leia mais

7 Formas Quadráticas

7 Formas Quadráticas Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Forma quadrática em variáveis Função polinomial, de grau, cuja expressão tem apenas termos de grau. Ex. 1: é uma forma quadrática

Leia mais

= f(0) D2 f 0 (x, x) + o( x 2 )

= f(0) D2 f 0 (x, x) + o( x 2 ) 6 a aula, 26-04-2007 Formas Quadráticas Suponhamos que 0 é um ponto crítico duma função suave f : U R definida sobre um aberto U R n. O desenvolvimento de Taylor de segunda ordem da função f em 0 permite-nos

Leia mais

Álgebra Linear Teoria de Matrizes

Álgebra Linear Teoria de Matrizes Álgebra Linear Teoria de Matrizes 1. Sistemas Lineares 1.1. Coordenadas em espaços lineares: independência linear, base, dimensão, singularidade, combinação linear 1.2. Espaço imagem (colunas) - Espaço

Leia mais

Aula 19 Operadores ortogonais

Aula 19 Operadores ortogonais Operadores ortogonais MÓDULO 3 AULA 19 Aula 19 Operadores ortogonais Objetivos Compreender o conceito e as propriedades apresentadas sobre operadores ortogonais. Aplicar os conceitos apresentados em exemplos

Leia mais

Ficha de Exercícios nº 3

Ficha de Exercícios nº 3 Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 3 Transformações Lineares, Valores e Vectores Próprios e Formas Quadráticas 1 Qual das seguintes aplicações não é uma transformação

Leia mais

FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS

FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS Maio 12, 2008 2 Contents 1. Complementos de Álgebra Linear 3 1.1. Determinantes 3 1.2. Valores e vectores próprios 5 2. Análise em

Leia mais

ficha 1 matrizes e sistemas de equações lineares

ficha 1 matrizes e sistemas de equações lineares Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A REVIÃO DA PARTE IV Parte IV - Diagonalização Conceitos: valor próprio, vector

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx. Diagonalização

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu Programação Não Linear Aula 7: Programação Não-Linear - Funções de Várias variáveis Vector Gradiente; Matriz Hessiana; Conveidade de Funções e de Conjuntos; Condições óptimas de funções irrestritas; Método

Leia mais

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru 1 Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru Neste capítulo vamos considerar espaços vetoriais sobre K, onde K = R ou K = C, ou seja, os espaços vetoriais podem ser reais

Leia mais

PROGRAMA ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32

PROGRAMA ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32 ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32 PROGRAMA 1. Sistemas de equações lineares e matrizes 1.1 Sistemas 1.2 Matrizes 1.3 Determinantes 2. Espaços vectoriais (ou espaços lineares) 2.1 Espaços e subespaços

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 5) 1 Etremos de Funções Escalares. Eemplos Nos eemplos seguintes

Leia mais

AUTOVALORES E AUTOVETORES: CONCEITOS E UMA APLICAÇÃO A UM SISTEMA DINÂMICO

AUTOVALORES E AUTOVETORES: CONCEITOS E UMA APLICAÇÃO A UM SISTEMA DINÂMICO AUTOVALORES E AUTOVETORES: CONCEITOS E UMA APLICAÇÃO A UM SISTEMA DINÂMICO Patrícia Eduarda de Lima 1, Luciane de Fátima Rodrigues de Souza 2* 1 Departamento de Exatas, Faculdades Integradas Regionais

Leia mais

Matrizes positivas definidas, semidefinidas, etc.

Matrizes positivas definidas, semidefinidas, etc. Matrizes positivas definidas, semidefinidas, etc. Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro amit@nacad.ufrj.br http://www.nacad.ufrj.br/ amit Funções

Leia mais

- identificar operadores ortogonais e unitários e conhecer as suas propriedades;

- identificar operadores ortogonais e unitários e conhecer as suas propriedades; DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;

Leia mais

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III e IV GRUPO I (50 PONTOS)

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III e IV GRUPO I (50 PONTOS) Faculdade de Ciências Económicas e Empresariais UCP MATEMÁTICA I FREQUÊNCIA 1 - versão A Duração: 15 minutos Durante a prova não serão prestados quaisquer tipo de esclarecimentos. Qualquer dúvida ou questão

Leia mais

EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) GRUPO I

EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) GRUPO I Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) (24/JUNHO/2005) Duração: 3h Nome de Aluno: Número de Aluno: Curso:

Leia mais

Álgebra Linear Exercícios Resolvidos

Álgebra Linear Exercícios Resolvidos Álgebra Linear Exercícios Resolvidos Agosto de 001 Sumário 1 Exercícios Resolvidos Uma Revisão 5 Mais Exercícios Resolvidos Sobre Transformações Lineares 13 3 4 SUMA RIO Capítulo 1 Exercícios Resolvidos

Leia mais

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor Identificação de Cônicas Uma equação do segundo grau ax + bxy + cy + dx + ey + f = 0 define de maneira implícita uma curva no plano xy: o conjunto dos pontos (x, y) que satisfazem a equação. Por exemplo,

Leia mais

Esmeralda Sousa Dias. (a) (b) (c) Figura 1: Ajuste de curvas a um conjunto de pontos

Esmeralda Sousa Dias. (a) (b) (c) Figura 1: Ajuste de curvas a um conjunto de pontos Mínimos quadrados Esmeralda Sousa Dias É frequente ser necessário determinar uma curva bem ajustada a um conjunto de dados obtidos experimentalmente. Por exemplo, suponha que como resultado de uma certa

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu wwwestvipvpt/paginaspessoais/lucas lucas@matestvipvpt 007/008 Álgebra Linear e Geometria Analítica

Leia mais

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br 1 Álgebra Linear Computacional - Parte

Leia mais

Recordamos que Q M n n (R) diz-se ortogonal se Q T Q = I.

Recordamos que Q M n n (R) diz-se ortogonal se Q T Q = I. Diagonalização ortogonal de matrizes simétricas Detalhes sobre a Secção.3 dos Apontamentos das Aulas teóricas de Álgebra Linear Cursos: LMAC, MEBiom e MEFT (semestre, 0/0, Prof. Paulo Pinto) Recordamos

Leia mais

Matemática II /06 - Matrizes 1. Matrizes

Matemática II /06 - Matrizes 1. Matrizes Matemática II - 00/0 - Matrizes Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma função A : f; ; :::; mg f; ; :::; ng R: (i; j) A (i; j)

Leia mais

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1 I Lista de Álgebra Linear - 2012/02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1. Determine os valores de x e y que tornam verdadeira a igualdade ( x 2 + 5x x 2 ( 6 3 2x y 2 5y y 2 = 5 0

Leia mais

Matrizes e sistemas de equações algébricas lineares

Matrizes e sistemas de equações algébricas lineares Capítulo 1 Matrizes e sistemas de equações algébricas lineares ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 1 / 37 Definições Equação linear Uma equação (algébrica)

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.1 Função do 2º grau Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil Roteiro Função do Segundo Grau; Gráfico da Função Quadrática;

Leia mais

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares Matemática I Capítulo 3 Matrizes e sistemas de equações lineares Objectivos Matrizes especiais e propriedades do produto de matrizes Matriz em escada de linhas Resolução de sistemas de equações lineares

Leia mais

FORMA CANÔNICA DE JORDAN

FORMA CANÔNICA DE JORDAN FORMA CANÔNICA DE JORDAN Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 4 de novembro de 2011 Roteiro Motivação 1 Motivação 2 3 4 5 6 Roteiro Motivação 1 Motivação 2 3 4 5 6 Matrizes Quase Diagonalizáveis

Leia mais

Sistemas de Equações Lineares e Matrizes

Sistemas de Equações Lineares e Matrizes Sistemas de Equações Lineares e Matrizes. Quais das seguintes equações são lineares em x, y, z: (a) 2x + 2y 5z = x + xy z = 2 (c) x + y 2 + z = 2 2. A parábola y = ax 2 + bx + c passa pelos pontos (x,

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

Matrizes - ALGA /05 1. Matrizes

Matrizes - ALGA /05 1. Matrizes Matrizes - ALGA - 004/0 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n a uma função A de nida no conjunto f(i; j) : i f1; ; :::; mg e j f1; ; :::; ngg e com valores

Leia mais

Dr. Ole Peter Smith Instituto de Matemática e Estatística Universidade Federal de Goiás 1 Vetores em R 2 e R 3

Dr. Ole Peter Smith Instituto de Matemática e Estatística Universidade Federal de Goiás 1 Vetores em R 2 e R 3 Dr Ole Peter Smith olematufgbr Data: 7/5/ urso Engenharia de omputação Disciplina: Álgebra Linear Lista: I Vetores em R e R Dado os vetores a = (,, ) T, b = (,, 4) T e c = (,, ) T Determine o constante

Leia mais

Álgebra Linear I - Aula 21

Álgebra Linear I - Aula 21 Álgebra Linear I - Aula 1 1. Matrizes ortogonalmente diagonalizáveis: exemplos. Matrizes simétricas. Roteiro 1 Matrizes ortogonalmente diagonalizáveis: exemplos Exemplo 1. Considere a matriz M = 4 4 4

Leia mais

1 Determinantes, traços e o teorema espectral para operadores arbitrários

1 Determinantes, traços e o teorema espectral para operadores arbitrários Álgebra Linear e Aplicações - Lista para Segunda Prova Nestas notas, X, Y,... são espaços vetoriais sobre o mesmo corpo F {R, C}. Você pode supor que todos os espaços têm dimensão finita. (x, y) = (x,

Leia mais

Análise Convexa. 1. Conjuntos convexos 1.1. Casca convexa, ponto extremo, cone. 2. Hiperplanos: suporte, separador, teorema da separação

Análise Convexa. 1. Conjuntos convexos 1.1. Casca convexa, ponto extremo, cone. 2. Hiperplanos: suporte, separador, teorema da separação Análise Convexa 1. Conjuntos convexos 1.1. Casca convexa, ponto extremo, cone 2. Hiperplanos: suporte, separador, teorema da separação 3. Funções convexas 4. Teoremas de funções convexas 5. Conjunto poliedral

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Função do 2º Grau Alex Oliveira Engenharia Civil Função do Segundo Grau Chama-se função do segundo grau ou função quadrática a função f: R R que

Leia mais

Produto Misto, Determinante e Volume

Produto Misto, Determinante e Volume 15 Produto Misto, Determinante e Volume Sumário 15.1 Produto Misto e Determinante............ 2 15.2 Regra de Cramer.................... 10 15.3 Operações com matrizes............... 12 15.4 Exercícios........................

Leia mais

Revisão: Matrizes e Sistemas lineares. Parte 01

Revisão: Matrizes e Sistemas lineares. Parte 01 Revisão: Matrizes e Sistemas lineares Parte 01 Definição de matrizes; Tipos de matrizes; Operações com matrizes; Propriedades; Exemplos e exercícios. 1 Matrizes Definição: 2 Matrizes 3 Tipos de matrizes

Leia mais

Multiplicidade geométrica

Multiplicidade geométrica Valores e Vectores Próprios - ALGA - /5 Multiplicidade geométrica Chama-se multiplicidade geométrica de um valor próprio ao grau de indeterminação do sistema (A I n ) X : O grau de indeterminação de corresponde

Leia mais

Sistemas lineares e matrizes, C = e C =

Sistemas lineares e matrizes, C = e C = 1. Considere as matrizes ( 2 1 A 4 0 1 MATEMÁTICA I (M 195 (BIOLOGIA, BIOQUÍMICA E ARQUITETURA PAISAGISTA 2014/2015, B Sistemas lineares e matrizes ( 4 1 2 5 1 Verifique se está definida e, caso esteja,

Leia mais

Exercícios e questões de Álgebra Linear

Exercícios e questões de Álgebra Linear CEFET/MG Exercícios e questões de Álgebra Linear Versão 1.2 Prof. J. G. Peixoto de Faria Departamento de Física e Matemática 25 de outubro de 2012 Digitado em L A TEX (estilo RevTEX). 2 I. À GUISA DE NOTAÇÃO

Leia mais

Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê)

Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê) Matemática- 00/09. Se possível, dê exemplos de (no caso de não ser possível explique porquê) (a) Uma matriz do tipo ; cujos elementos principais sejam 0. (b) Uma matriz do tipo ; cujo elemento na posição

Leia mais

MAT 1202 ÁLGEBRA LINEAR II SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro

MAT 1202 ÁLGEBRA LINEAR II SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro MAT 1202 ÁLGEBRA LINEAR II 2012.2 SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro 1. Subespaços Fundamentais de uma Matriz (1.1) Definição. Seja A uma matriz retangular m

Leia mais

Resolução de problemas com apenas restrições lineares de igualdade

Resolução de problemas com apenas restrições lineares de igualdade Resolução de problemas com apenas restrições lineares de igualdade Marina Andretta ICMC-USP 14 de outubro de 2014 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 14 de outubro de 2014 1 / 22

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 2 a Lista - MAT 137 - Introdução à Álgebra Linear II/2005 1 Resolva os seguintes sistemas lineares utilizando o Método

Leia mais

Capítulo 1 - Cálculo Matricial

Capítulo 1 - Cálculo Matricial Capítulo 1 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 34 DeMat-ESTiG Sumário Cálculo

Leia mais

Capítulo 1 - Cálculo Matricial

Capítulo 1 - Cálculo Matricial Capítulo 1 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 33 DeMat-ESTiG Sumário Cálculo

Leia mais

Ajuste de mínimos quadrados

Ajuste de mínimos quadrados Capítulo 5 Ajuste de mínimos quadrados 5 Ajuste de mínimos quadrados polinomial No capítulo anterior estudamos como encontrar um polinômio de grau m que interpola um conjunto de n pontos {{x i, f i }}

Leia mais

Exponencial de uma matriz

Exponencial de uma matriz Exponencial de uma matriz Ulysses Sodré Londrina-PR, 21 de Agosto de 2001; Arquivo: expa.tex Conteúdo 1 Introdução à exponencial de uma matriz 2 2 Polinômio característico, autovalores e autovetores 2

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Cálculo II Sucessões de números reais revisões Mestrado Integrado em Engenharia Aeronáutica António Bento bento@ubi.pt Departamento de Matemática Universidade da Beira Interior 2012/2013 António Bento

Leia mais

Processamento digital de imagens

Processamento digital de imagens Processamento digital de imagens Agostinho Brito Departamento de Engenharia da Computação e Automação Universidade Federal do Rio Grande do Norte 11 de novembro de 2016 Fluxo óptico Usado para estimar

Leia mais

Álgebra Linear I - Aula 19

Álgebra Linear I - Aula 19 Álgebra Linear I - Aula 19 1. Matrizes diagonalizáveis. 2. Matrizes diagonalizáveis. Exemplos. 3. Forma diagonal de uma matriz diagonalizável. 1 Matrizes diagonalizáveis Uma matriz quadrada T = a 1,1 a

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 1 a Lista - MAT 17 - Introdução à Álgebra Linear II/2005 1 Considere as matrizes A, B, C, D e E com respectivas ordens,

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares

Leia mais

Álgebra Linear Diagonalização de Operadores

Álgebra Linear Diagonalização de Operadores Introdução e Motivação Preliminares Diagonalização de Operadores Aplicações Referências Álgebra Linear Diagonalização de Operadores Universidade Estadual Vale do Acaraci - Sobral - CE Semana da Matemática

Leia mais

OPERADORES LINEARES ESPECIAIS: CARACTERIZAÇÃO EM ESPAÇOS DE DIMENSÃO DOIS*

OPERADORES LINEARES ESPECIAIS: CARACTERIZAÇÃO EM ESPAÇOS DE DIMENSÃO DOIS* OPERADORES LINEARES ESPECIAIS: CARACTERIZAÇÃO EM ESPAÇOS DE DIMENSÃO DOIS* FABIANA BARBOSA DA SILVA, ALINE MOTA DE MESQUITA ASSIS, JOSÉ EDER SALVADOR DE VASCONCELOS Resumo: o objetivo deste artigo é apresentar

Leia mais

0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1.

0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1. Nesta prova, se V é um espaço vetorial, o vetor nulo de V será denotado por 0 V. Se u 1,...,u n forem vetores de V, o subespaço de V gerado por {u 1,...,u n } será denotado por [u 1,...,u n ]. O operador

Leia mais

São tabelas de elementos dispostos ordenadamente em linhas e colunas.

São tabelas de elementos dispostos ordenadamente em linhas e colunas. EMENTA (RESUMO) Matrizes Matrizes, determinantes e suas propriedades, Multiplicação de matrizes, Operações com matrizes, Matrizes inversíveis. Sistemas de Equações Lineares Sistemas equações lineares,

Leia mais

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 657- - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 8 I SEMESTRE DE Entre as funções dadas abaixo, verifique quais são transformações

Leia mais

2 - f: R R: y = x 2 Classicação: Nem injetora, nem sobrejetora.

2 - f: R R: y = x 2 Classicação: Nem injetora, nem sobrejetora. Apostila de Métodos Quantitativos - UERJ Professor: Pedro Hemsley Funções: f: X Y : Associa a cada elemento do conjunto X um único elemento do conjunto Y. Existem tres tipos especícos de funções: Sobrejetora,

Leia mais

Álgebra linear & notação de Dirac

Álgebra linear & notação de Dirac Álgebra linear & notação de Dirac Química Teórica e Estrutural P.J.S.B. Caridade & U. Miranda 21/10/2013 25/10/2013, Aula 4 Química Teórica & Estrutural (2013) Caridade & Ulises 1 A reter e saber! As observáveis

Leia mais

1 Diagonalização de Matrizes 2 2. Sistemas de Equações Diferenciais Lineares

1 Diagonalização de Matrizes 2 2. Sistemas de Equações Diferenciais Lineares Diagonalização de Matrizes e Sistemas de Equações Diferenciais Lineares Reginaldo J Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 3 de setembro de

Leia mais

decomposição de Cholesky.

decomposição de Cholesky. Decomposição LU e Cholesky Prof Doherty Andrade - DMA-UEM Sumário 1 Introdução 1 2 Método de Eliminação de Gauss 1 3 Decomposição LU 2 4 O método de Cholesky 5 5 O Algoritmo para a decomposição Cholesky

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 12 04/2014 Sistemas de Equações Lineares Parte 2 FATORAÇÃO LU Cálculo Numérico 3/37 FATORAÇÃO LU Uma fatoração LU de uma dada

Leia mais

Apontamentos das Aulas Teóricas de Álgebra Linear. LEAN - LEMat - MEAer - MEAmbi - MEEC - MEMec. Nuno Martins. Departamento de Matemática

Apontamentos das Aulas Teóricas de Álgebra Linear. LEAN - LEMat - MEAer - MEAmbi - MEEC - MEMec. Nuno Martins. Departamento de Matemática Apontamentos das Aulas Teóricas de Álgebra Linear para LEAN - LEMat - MEAer - MEAmbi - MEEC - MEMec Nuno Martins Departamento de Matemática Instituto Superior Técnico Fevereiro de 0 Índice Sistemas de

Leia mais

Dependência linear e bases

Dependência linear e bases Dependência linear e bases Sadao Massago 2014 Sumário 1 Dependência linear 1 2 ases e coordenadas 3 3 Matriz mudança de base 5 Neste texto, introduziremos o que é uma base do plano ou do espaço 1 Dependência

Leia mais

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n 1. Descrição do método e alguns exemplos Colocamos o seguinte problema: dado um conjunto finito: A = {a 1, a 2,...,

Leia mais

Segunda prova de Álgebra Linear - 01/07/2011 Prof. - Juliana Coelho

Segunda prova de Álgebra Linear - 01/07/2011 Prof. - Juliana Coelho Segunda prova de Álgebra Linear - 01/07/011 Prof - Juliana Coelho JUSTIFIQUE SUAS RESPOSTAS! Questões contendo só a resposta, sem desenvolvimento ou justificativa serão desconsideradas! QUESTÃO 1, pts

Leia mais

Conceitos Básicos de Matemática. Aula 1. ISCTE - IUL, Mestrados de Continuidade. Diana Aldea Mendes. 12 de Setembro de 2011

Conceitos Básicos de Matemática. Aula 1. ISCTE - IUL, Mestrados de Continuidade. Diana Aldea Mendes. 12 de Setembro de 2011 Conceitos Básicos de Matemática Aula 1 ISCTE - IUL, Mestrados de Continuidade Diana Aldea Mendes diana.mendes@iscte.pt 12 de Setembro de 2011 DMQ, ISCTE-IUL (diana.mendes@iscte.pt) Matemática 12 de Setembro

Leia mais

Álgebra Linear. Jorge Orestes Cerdeira Instituto Superior de Agronomia

Álgebra Linear. Jorge Orestes Cerdeira Instituto Superior de Agronomia Álgebra Linear Jorge Orestes Cerdeira Instituto Superior de Agronomia - 202 - ISA/UTL Álgebra Linear 202/3 2 Conteúdo Cálculo matricial 5. Sistemas de equações lineares......................... 5.2 Matrizes

Leia mais

Aula 4 Colinearidade, coplanaridade e dependência linear

Aula 4 Colinearidade, coplanaridade e dependência linear Aula 4 Colinearidade, coplanaridade e dependência linear MÓDULO 1 - AULA 4 Objetivos Compreender os conceitos de independência e dependência linear. Estabelecer condições para determinar quando uma coleção

Leia mais

Módulo 4 Ajuste de Curvas

Módulo 4 Ajuste de Curvas Módulo 4 Ajuste de Curvas 4.1 Intr odução Em matemática e estatística aplicada existem muitas situações onde conhecemos uma tabela de pontos (x; y), com y obtido experimentalmente e deseja se obter uma

Leia mais

Lista de exercícios 5 Determinantes

Lista de exercícios 5 Determinantes Universidade Federal do Paraná semestre 015. Algebra Linear, CM 005 Olivier Brahic Lista de exercícios 5 Determinantes Exercício 1: Seja A := 3 1 3 3 Encontre os valores dos menores det(m,1 ), det(m, )

Leia mais

Mudança de Coordenadas

Mudança de Coordenadas Mudanças de Coordenadas Mudança de Coordenadas A origem O = (0, 0, 0) e os vetores i, j, k da base canônica de R determinam um sistema de coordenadas: se as coordenadas de um ponto no espaço são (x, y,

Leia mais

Notas em Álgebra Linear

Notas em Álgebra Linear Notas em Álgebra Linear 1 Pedro Rafael Lopes Fernandes Definições básicas Uma equação linear, nas variáveis é uma equação que pode ser escrita na forma: onde e os coeficientes são números reais ou complexos,

Leia mais

UFSC Matrizes. Prof. BAIANO

UFSC Matrizes. Prof. BAIANO UFSC Matrizes Prof. BAIANO Matrizes Classifique como Verdadeiro ou Falso ( F ) Uma matriz é dita retangular, quando o número de linhas é igual ao número de colunas. ( F ) A matriz identidade é aquela em

Leia mais

Profs. Alexandre Lima e Moraes Junior 1

Profs. Alexandre Lima e Moraes Junior  1 Raciocínio Lógico-Quantitativo para Traumatizados Aula 07 Matrizes, Determinantes e Solução de Sistemas Lineares. Conteúdo 7. Matrizes, Determinantes e Solução de Sistemas Lineares...2 7.1. Matrizes...2

Leia mais

Módulos. Volume 2ª edição. Hernando Bedoya Ricardo Camelier. Álgebra Linear II

Módulos. Volume 2ª edição. Hernando Bedoya Ricardo Camelier. Álgebra Linear II Módulos 1e2 Volume 2ª edição Hernando Bedoya Ricardo Camelier Álgebra Linear II 1 Álgebra Linear II Volume 1 - Módulos 1 e 2 2ª edição Hernando Bedoya Ricardo Camelier Apoio: Fundação Cecierj / Consórcio

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 06. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 06. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 06 Prof. Dr. Marco Antonio Leonel Caetano 1 Guia de Estudo para Aula 06 Aplicação de AutoValores - Usando autovalor para encontrar pontos

Leia mais

OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA

OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA Professora: Elisandra Figueiredo OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA DEFINIÇÃO 1 Sendo E um conjunto não vazio, toda aplicação f : E E E recebe o nome de operação sobre E (ou em E) ou lei de composição

Leia mais

(Todos os cursos da Alameda) Paulo Pinto

(Todos os cursos da Alameda) Paulo Pinto Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Resumo das Aulas Teóricas de 2 o Semestre 2004/2005 (Todos os cursos da Alameda) Paulo Pinto Álgebra Linear Conteúdo Sistemas

Leia mais

Trabalhos e Exercícios 1 de Álgebra Linear

Trabalhos e Exercícios 1 de Álgebra Linear Trabalhos e Exercícios de Álgebra Linear Fabio Iareke 30 de março de 0 Trabalhos. Mostre que se A tem uma linha nula, então AB tem uma linha nula.. Provar as propriedades abaixo:

Leia mais

Matrizes Reais conceitos básicos

Matrizes Reais conceitos básicos Cálculo Numérico Matrizes Reais conceitos básicos Wagner de Souza Borges FCBEE, Universidade Presbiteriana Mackenzie wborges@mackenzie.com.br Resumo O conceito de matriz tem origem no estudo de sistemas

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 0 1 Matriz de Mudança de Base Bases Ortonormais 3 Matrizes Ortogonais 1 Matriz de Mudança de Base Os próximos problemas que estudaremos são os seguintes (na verdade são o mesmo

Leia mais

Capítulo 5 - Interpolação Polinomial

Capítulo 5 - Interpolação Polinomial Capítulo 5 - Interpolação Polinomial Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa

Leia mais

Lista de Exercícios III. junho de 2005

Lista de Exercícios III. junho de 2005 ÁLGEBRA LINEAR II Prof Amit Bhaya Lista de Exercícios III junho de 2005 Ortogonalidade, espaços fundamentais 1 Se Ax = b possui solução e A T y = 0, então y é perpendicular a 2 Se Ax = b não possui solução

Leia mais

MAT Poli Cônicas - Parte I

MAT Poli Cônicas - Parte I MAT2454 - Poli - 2011 Cônicas - Parte I Uma equação quadrática em duas variáveis, x e y, é uma equação da forma ax 2 +by 2 +cxy +dx+ey +f = 0, em que pelo menos um doscoeficientes a, b oucénão nulo 1.

Leia mais

Capítulo 1. Matrizes e Sistema de Equações Lineares. 1.1 Corpos

Capítulo 1. Matrizes e Sistema de Equações Lineares. 1.1 Corpos Capítulo 1 Matrizes e Sistema de Equações Lineares Neste capítulo apresentaremos as principais de nições e resultados sobre matrizes e sistemas de equações lineares que serão necessárias para o desenvolvimento

Leia mais

Polinómios Simétricos e Polinómios W-harmónicos

Polinómios Simétricos e Polinómios W-harmónicos Sob orientação do Prof. Samuel Lopes Faculdade de Ciências da Universidade do Porto 28 de Maio de 2014 Terminologia Consideramos polinómios sobre C em n variáveis: c(j1,...,j n)x j 1 1 x n jn c (j) C O

Leia mais