Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor."

Transcrição

1 Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx.

2 Diagonalização Definição: Um matriz quadrada A é diagonalizável se existir uma matriz invertível P e se existir uma matriz diagonal D tais que P 1 AP = D

3 Diagonalização Definição: Um matriz quadrada A é diagonalizável se existir uma matriz invertível P e se existir uma matriz diagonal D tais que P 1 AP = D Para P 1 AP = D devemos ter AP = PD com P invertível.

4 Diagonalização Definição: Um matriz quadrada A é diagonalizável se existir uma matriz invertível P e se existir uma matriz diagonal D tais que P 1 AP = D Para P 1 AP = D devemos ter AP = PD com P invertível. De modo geral, a igualdade AP = PD não implica que A é diagonalizável, pois esta igualdade pode ser verdadeira com P não invertível.

5 Diagonalização Definição: Um matriz quadrada A é diagonalizável se existir uma matriz invertível P e se existir uma matriz diagonal D tais que P 1 AP = D Para P 1 AP = D devemos ter AP = PD com P invertível. De modo geral, a igualdade AP = PD não implica que A é diagonalizável, pois esta igualdade pode ser verdadeira com P não invertível. Então podemos dizer que A é diagonalizável se AP = PD com P invertível e D diagonal.

6 Diagonalização Mostramos que a igualdade AP = PD significa que:

7 Diagonalização Mostramos que a igualdade AP = PD significa que: As colunas de P são autovetores de A. Na diagonal principal de D aparecem os respectivos autovalores de A.

8 Diagonalização Mostramos que a igualdade AP = PD significa que: As colunas de P são autovetores de A. Na diagonal principal de D aparecem os respectivos autovalores de A. Se A é uma matriz n n, para P ser invertível, P deve ser formada por n autovetores LI.

9 Diagonalização Mostramos que a igualdade AP = PD significa que: As colunas de P são autovetores de A. Na diagonal principal de D aparecem os respectivos autovalores de A. Se A é uma matriz n n, para P ser invertível, P deve ser formada por n autovetores LI. Teorema: uma matriz quadrada A n n é diagonalizável se A possui n autovetores LI.

10 Autovalores e Autovetores Definição: Seja A uma matriz quadrada. Um número real λ é um autovalor de A se existir um vetor V 0 tal que AV = λv.

11 Autovalores e Autovetores Definição: Seja A uma matriz quadrada. Um número real λ é um autovalor de A se existir um vetor V 0 tal que AV = λv. Neste caso V é um autovetor associado ao autovalor λ.

12 Autovalores e Autovetores Definição: Seja A uma matriz quadrada. Um número real λ é um autovalor de A se existir um vetor V 0 tal que AV = λv. Neste caso V é um autovetor associado ao autovalor λ. Cálculo de autovalores e autovetores: AV = λv.

13 Autovalores e Autovetores Definição: Seja A uma matriz quadrada. Um número real λ é um autovalor de A se existir um vetor V 0 tal que AV = λv. Neste caso V é um autovetor associado ao autovalor λ. Cálculo de autovalores e autovetores: AV = λv. AV λv = 0

14 Autovalores e Autovetores Definição: Seja A uma matriz quadrada. Um número real λ é um autovalor de A se existir um vetor V 0 tal que AV = λv. Neste caso V é um autovetor associado ao autovalor λ. Cálculo de autovalores e autovetores: AV = λv. AV λv = 0 AV λi n V = 0

15 Autovalores e Autovetores Definição: Seja A uma matriz quadrada. Um número real λ é um autovalor de A se existir um vetor V 0 tal que AV = λv. Neste caso V é um autovetor associado ao autovalor λ. Cálculo de autovalores e autovetores: AV = λv. AV λv = 0 AV λi n V = 0 (A λi n )V = 0

16 Autovalores e Autovetores Definição: Seja A uma matriz quadrada. Um número real λ é um autovalor de A se existir um vetor V 0 tal que AV = λv. Neste caso V é um autovetor associado ao autovalor λ. Cálculo de autovalores e autovetores: AV = λv. AV λv = 0 AV λi n V = 0 (A λi n )V = 0 Como V não é o vetor nulo, concluímos que V é uma solução não trivial do sistema linear homogêneo (A λi n )X = 0.

17 Autovalores e autovetores Um autovetor V é uma solução não nula do sistema linear homogêneo (A λi n )X = 0.

18 Autovalores e autovetores Um autovetor V é uma solução não nula do sistema linear homogêneo (A λi n )X = 0. Um sistema homogêneo possui solução não trivial quando a matriz dos coeficientes tem determinante igual a zero.

19 Autovalores e autovetores Um autovetor V é uma solução não nula do sistema linear homogêneo (A λi n )X = 0. Um sistema homogêneo possui solução não trivial quando a matriz dos coeficientes tem determinante igual a zero. Portanto para existir solução não trivial, devemos ter det(a λi n ) = 0.

20 Autovalores e autovetores Um autovetor V é uma solução não nula do sistema linear homogêneo (A λi n )X = 0. Um sistema homogêneo possui solução não trivial quando a matriz dos coeficientes tem determinante igual a zero. Portanto para existir solução não trivial, devemos ter det(a λi n ) = 0. autovalores: são raízes do polinômio característico p(λ) = det(a λi n ) = 0.

21 Autovalores e autovetores Um autovetor V é uma solução não nula do sistema linear homogêneo (A λi n )X = 0. Um sistema homogêneo possui solução não trivial quando a matriz dos coeficientes tem determinante igual a zero. Portanto para existir solução não trivial, devemos ter det(a λi n ) = 0. autovalores: são raízes do polinômio característico p(λ) = det(a λi n ) = 0. autovetores: são soluções do sistema linear homogêneo (A λi n )X = 0.

22 Exemplos Verifique se cada uma das seguintes matrizes A é diagonalizável ou não. Quando for, determine uma matriz invertível P e determine uma matiz diagonal D tais que P 1 AP = D. (a) A = (b) A = (c) A = [ 7 ]

23 Diagonalização Teorema: uma matriz quadrada A n n é diagonalizável se A possui n autovetores LI.

24 Diagonalização Teorema: uma matriz quadrada A n n é diagonalizável se A possui n autovetores LI. Para A não ser diagonalizável tem que faltar autovetores LI.

25 Diagonalização Teorema: uma matriz quadrada A n n é diagonalizável se A possui n autovetores LI. Para A não ser diagonalizável tem que faltar autovetores LI. Teorema: autovetores associados a autovalores diferentes são LI.

26 Diagonalização Teorema: uma matriz quadrada A n n é diagonalizável se A possui n autovetores LI. Para A não ser diagonalizável tem que faltar autovetores LI. Teorema: autovetores associados a autovalores diferentes são LI. Deste teorema vemos que na tentativa de construir a matriz P de autovetores para diagonalizar A: não precisamos nos preocupar com colunas associadas a autovalores diferentes. Elas já nascem LI. precisamos somente pensar nos blocos de autovetores associados a um mesmo autovetor. para este bloco ser LI, se o autovetor é uma raíz de multiplicidade k de p(λ), então o autoespaço associado a λ deve ter dimensão k. Caso contrário A não é diagonalizável.

27 Diagonalização de matrizes simétricas

28 Diagonalização de matrizes simétricas Vimos que existem matrizes que não são diagonalizáveis.

29 Diagonalização de matrizes simétricas Vimos que existem matrizes que não são diagonalizáveis. Vamos ver agora que no caso particular de matrizes simétricas isto não ocorre. Isto é, vamos ver que todas as matrizes simétricas são diagonalizáveis.

30 Diagonalização de matrizes simétricas Vimos que existem matrizes que não são diagonalizáveis. Vamos ver agora que no caso particular de matrizes simétricas isto não ocorre. Isto é, vamos ver que todas as matrizes simétricas são diagonalizáveis. Definição: Uma matriz quadrada A é simétrica se A = A t. Neste caso existe uma simetria em relação a diagonal principal

31 Diagonalização de matrizes simétricas Vimos que existem matrizes que não são diagonalizáveis. Vamos ver agora que no caso particular de matrizes simétricas isto não ocorre. Isto é, vamos ver que todas as matrizes simétricas são diagonalizáveis. Definição: Uma matriz quadrada A é simétrica se A = A t. Neste caso existe uma simetria em relação a diagonal principal Teorema: Para uma matriz simétrica A, autovetores associados a autovalores diferentes são ortogonais.

32 Diagonalização de matrizes simétricas Se A n n é uma matriz simétrica, então autoespaços associados a autovalores diferentes são subespaços ortogonais de R n.

33 Diagonalização de matrizes simétricas Se A n n é uma matriz simétrica, então autoespaços associados a autovalores diferentes são subespaços ortogonais de R n. Considerando bases ortonormais para cada um destes autoespaços, é possível construir uma matriz P para diagonalizar A tal que as colunas de P são vetores ortonormais de R n.

34 Diagonalização de matrizes simétricas Se A n n é uma matriz simétrica, então autoespaços associados a autovalores diferentes são subespaços ortogonais de R n. Considerando bases ortonormais para cada um destes autoespaços, é possível construir uma matriz P para diagonalizar A tal que as colunas de P são vetores ortonormais de R n. Como vetores ortogonais são LI, segue que P é invertível.

35 Diagonalização de matrizes simétricas Se A n n é uma matriz simétrica, então autoespaços associados a autovalores diferentes são subespaços ortogonais de R n. Considerando bases ortonormais para cada um destes autoespaços, é possível construir uma matriz P para diagonalizar A tal que as colunas de P são vetores ortonormais de R n. Como vetores ortogonais são LI, segue que P é invertível. Teorema: Toda matriz simétrica A é diagonalizável. Mais ainda, existe uma matriz P cujas colunas são autovetores ortonormais e existe uma matriz diagonal D tais que P 1 AP = D.

36 Diagonalização de matrizes simétricas Se A n n é uma matriz simétrica, então autoespaços associados a autovalores diferentes são subespaços ortogonais de R n. Considerando bases ortonormais para cada um destes autoespaços, é possível construir uma matriz P para diagonalizar A tal que as colunas de P são vetores ortonormais de R n. Como vetores ortogonais são LI, segue que P é invertível. Teorema: Toda matriz simétrica A é diagonalizável. Mais ainda, existe uma matriz P cujas colunas são autovetores ortonormais e existe uma matriz diagonal D tais que P 1 AP = D. Passamos longe da demonstração deste teorema...para mais detalhes, leia a apostila.

37 Diagonalização de matrizes simétricas Teorema: Toda matriz simétrica A é diagonalizável. Mais ainda, existe uma matriz P cujas colunas são autovetores ortonormais e existe uma matriz diagonal D tais que P 1 AP = D.

38 Diagonalização de matrizes simétricas Teorema: Toda matriz simétrica A é diagonalizável. Mais ainda, existe uma matriz P cujas colunas são autovetores ortonormais e existe uma matriz diagonal D tais que P 1 AP = D. Exemplos: Para cada uma das matrizes simétricas a seguir, determine matrizes P e D como no teorema anterior. [ ] 2 1 (a) A = (b) A =

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral:

Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral: Lema (determinante de matriz ) A B A 0 Suponha que M = ou M =, com A e D 0 D C D matrizes quadradas Então det(m) = det(a) det(d) A B Considere M =, com A, B, C e D matrizes C D quadradas De forma geral,

Leia mais

Autovetor e Autovalor de um Operador Linear

Autovetor e Autovalor de um Operador Linear Autovetor e Autovalor de um Operador Linear Definição Seja T : V V um operador linear. Um vetor v V, v 0, é dito um autovetor de T se existe um número real λ tal que T (v) = λv. O número real λ acima é

Leia mais

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia Álgebra Linear Determinantes, Valores e Vectores Próprios Jorge Orestes Cerdeira Instituto Superior de Agronomia - 200 - ISA/UTL Álgebra Linear 200/ 2 Conteúdo Determinantes 5 2 Valores e vectores próprios

Leia mais

UNIVERSIDADE FEDERAL DE MINAS GERAIS (UFMG) ADÉLIO DANIEL DE SOUSA FREITAS

UNIVERSIDADE FEDERAL DE MINAS GERAIS (UFMG) ADÉLIO DANIEL DE SOUSA FREITAS UNIVERSIDADE FEDERAL DE MINAS GERAIS (UFMG) ADÉLIO DANIEL DE SOUSA FREITAS O ESTUDO DA DIAGONALIZAÇÃO DE MATRIZES SIMETRICAS DE 2º ORDEM. BELO HORIZONTE 2012 ADÉLIO DANIEL DE SOUSA FREITAS O ESTUDO DA

Leia mais

ÁLGEBRA LINEAR. Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller

ÁLGEBRA LINEAR. Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller ÁLGEBRA LINEAR Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller Autovalores e Autovetores de um Operador Linear Seja T:V V um operador linear. Um vetor v V, v 0, é

Leia mais

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br 1 Álgebra Linear Computacional - Parte

Leia mais

Álgebra Linear I - Aula 21

Álgebra Linear I - Aula 21 Álgebra Linear I - Aula 1 1. Matrizes ortogonalmente diagonalizáveis: exemplos. Matrizes simétricas. Roteiro 1 Matrizes ortogonalmente diagonalizáveis: exemplos Exemplo 1. Considere a matriz M = 4 4 4

Leia mais

Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos

Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos Algebra Linear 1. Revisitando autovalores e autovetores 2. Forma Diagonal e Forma de Jordan 2.1 Autovalores distintos 2.2 Autovalores complexos 2.3 Nem todos autovalores distintos 3. Autovalores e autovetores

Leia mais

Parte I. Álgebra Linear. Sistemas Dinâmicos Lineares. Autovalores, autovetores. Autovalores, autovetores. Autovalores e Autovetores.

Parte I. Álgebra Linear. Sistemas Dinâmicos Lineares. Autovalores, autovetores. Autovalores, autovetores. Autovalores e Autovetores. Sistemas Dinâmicos Lineares Romeu Reginatto Programa de Pós-Graduação em Engenharia de Sistemas Dinâmicos e Energéticos Universidade Estadual do Oeste do Paraná Parte I Álgebra Linear Adaptado das notas

Leia mais

Aula 1 Autovetores e Autovalores de Matrizes Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17

Aula 1 Autovetores e Autovalores de Matrizes Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17 Sumário Aula 1 Autovetores e Autovalores de Matrizes.......... 8 Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17 Aula 3 Polinômio Característico................. 25 Aula 4 Cálculo de Autovalores

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A REVIÃO DA PARTE IV Parte IV - Diagonalização Conceitos: valor próprio, vector

Leia mais

Aula 19 Operadores ortogonais

Aula 19 Operadores ortogonais Operadores ortogonais MÓDULO 3 AULA 19 Aula 19 Operadores ortogonais Objetivos Compreender o conceito e as propriedades apresentadas sobre operadores ortogonais. Aplicar os conceitos apresentados em exemplos

Leia mais

Álgebra Linear I - Aula Autovetores e autovalores de uma transformação

Álgebra Linear I - Aula Autovetores e autovalores de uma transformação Álgebra Linear I - Aula 18 1. Autovalores e autovetores. 2. Cálculo dos autovetores e autovalores. Polinômio característico. Roteiro 1 Autovetores e autovalores de uma transformação linear Considere uma

Leia mais

0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1.

0 1. Assinale a alternativa verdadeira Q1. Seja A = (d) Os autovalores de A 101 são i e i. (c) Os autovalores de A 101 são 1 e 1. Nesta prova, se V é um espaço vetorial, o vetor nulo de V será denotado por 0 V. Se u 1,...,u n forem vetores de V, o subespaço de V gerado por {u 1,...,u n } será denotado por [u 1,...,u n ]. O operador

Leia mais

6 Valores e Vectores Próprios de Transformações Lineares

6 Valores e Vectores Próprios de Transformações Lineares Nova School of Business and Economics Prática Álgebra Linear 6 Valores e Vectores Próprios de Transformações Lineares 1 Definição Valor próprio de uma transformação linear ( ) Número real (ou complexo)

Leia mais

Álgebra Linear I - Aula 19

Álgebra Linear I - Aula 19 Álgebra Linear I - Aula 19 1. Matrizes diagonalizáveis. 2. Matrizes diagonalizáveis. Exemplos. 3. Forma diagonal de uma matriz diagonalizável. 1 Matrizes diagonalizáveis Uma matriz quadrada T = a 1,1 a

Leia mais

Multiplicidade geométrica

Multiplicidade geométrica Valores e Vectores Próprios - ALGA - /5 Multiplicidade geométrica Chama-se multiplicidade geométrica de um valor próprio ao grau de indeterminação do sistema (A I n ) X : O grau de indeterminação de corresponde

Leia mais

(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v.

(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v. Q1. Seja V um espaço vetorial real de dimensão finita munido de um produto interno. Sejam T : V V um operador linear simétrico e W um subespaço de V tal que T (w) W, para todo w W. Suponha que W V e que

Leia mais

(I) T tem pelo menos um autovalor real; (II) T é diagonalizável; (III) no espaço vetorial real R n, o conjunto {u, v} é linearmente independente.

(I) T tem pelo menos um autovalor real; (II) T é diagonalizável; (III) no espaço vetorial real R n, o conjunto {u, v} é linearmente independente. Q1. Sejam n um inteiro positivo, T : C n C n um operador linear e seja A = [T ] can a matriz que representa T em relação à base canônica do espaço vetorial complexo C n. Suponha que a matriz A tenha entradas

Leia mais

Segunda prova de Álgebra Linear - 01/07/2011 Prof. - Juliana Coelho

Segunda prova de Álgebra Linear - 01/07/2011 Prof. - Juliana Coelho Segunda prova de Álgebra Linear - 01/07/011 Prof - Juliana Coelho JUSTIFIQUE SUAS RESPOSTAS! Questões contendo só a resposta, sem desenvolvimento ou justificativa serão desconsideradas! QUESTÃO 1, pts

Leia mais

Roteiros e Exercícios - Álgebra Linear v1.0

Roteiros e Exercícios - Álgebra Linear v1.0 Roteiros e Exercícios - Álgebra Linear v1.0 Robinson Alves Lemos 14 de janeiro de 2017 Introdução Este material é um roteiro/apoio para o curso de álgebra linear da engenharia civil na UNEMAT de Tangará

Leia mais

1 Diagonalização de Matrizes 2 2. Sistemas de Equações Diferenciais Lineares

1 Diagonalização de Matrizes 2 2. Sistemas de Equações Diferenciais Lineares Diagonalização de Matrizes e Sistemas de Equações Diferenciais Lineares Reginaldo J Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 3 de setembro de

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

Módulos. Volume 2ª edição. Hernando Bedoya Ricardo Camelier. Álgebra Linear II

Módulos. Volume 2ª edição. Hernando Bedoya Ricardo Camelier. Álgebra Linear II Módulos 1e2 Volume 2ª edição Hernando Bedoya Ricardo Camelier Álgebra Linear II 1 Álgebra Linear II Volume 1 - Módulos 1 e 2 2ª edição Hernando Bedoya Ricardo Camelier Apoio: Fundação Cecierj / Consórcio

Leia mais

Capítulo 4 - Valores e Vectores Próprios

Capítulo 4 - Valores e Vectores Próprios Capítulo 4 - Valores e Vectores Próprios Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 17

Leia mais

1 Determinantes, traços e o teorema espectral para operadores arbitrários

1 Determinantes, traços e o teorema espectral para operadores arbitrários Álgebra Linear e Aplicações - Lista para Segunda Prova Nestas notas, X, Y,... são espaços vetoriais sobre o mesmo corpo F {R, C}. Você pode supor que todos os espaços têm dimensão finita. (x, y) = (x,

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução

Leia mais

2 Álgebra Linear (revisão)

2 Álgebra Linear (revisão) Teoria de Controle (sinopse) 2 Álgebra Linear (revisão) J. A. M. Felippe de Souza Neste capítulo vamos citar os principais tópicos de Álgebra Linear que são necessários serem revistos para o acompanhamento

Leia mais

FORMA CANÔNICA DE JORDAN

FORMA CANÔNICA DE JORDAN FORMA CANÔNICA DE JORDAN Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 4 de novembro de 2011 Roteiro Motivação 1 Motivação 2 3 4 5 6 Roteiro Motivação 1 Motivação 2 3 4 5 6 Matrizes Quase Diagonalizáveis

Leia mais

- identificar operadores ortogonais e unitários e conhecer as suas propriedades;

- identificar operadores ortogonais e unitários e conhecer as suas propriedades; DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;

Leia mais

Forma Canônica de Jordan para Operadores Lineares do Plano - Matrizes Reais 2 2

Forma Canônica de Jordan para Operadores Lineares do Plano - Matrizes Reais 2 2 Forma Canônica de Jordan para Operadores Lineares do Plano - Matrizes Reais Sylvie Olison Kamphorst Departamento de Matemática - ICE - UFMG Versão 5. - Agosto Resumo O Teorema da Forma Canônica de Jordan

Leia mais

Geometria anaĺıtica e álgebra linear

Geometria anaĺıtica e álgebra linear Geometria anaĺıtica e álgebra linear Francisco Dutenhefner Departamento de Matematica ICEx UFMG 22/08/13 1 / 24 Determinante: teorema principal Teorema: Se A é uma matriz quadrada, então o sistema linear

Leia mais

APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES

APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES Universidade Federal de Goiás Câmpus de Catalão Departamento de Matemática Seminário Semanal de Álgebra APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES Aluno: Ana Nívia Pantoja Daniela

Leia mais

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru 1 Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru Neste capítulo vamos considerar espaços vetoriais sobre K, onde K = R ou K = C, ou seja, os espaços vetoriais podem ser reais

Leia mais

Matrizes hermitianas e unitárias

Matrizes hermitianas e unitárias Matrizes hermitianas e unitárias Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro amit@nacad.ufrj.br http://www.nacad.ufrj.br/ amit Matrizes complexas O produto

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR

EXERCÍCIOS DE ÁLGEBRA LINEAR IST - 1 o Semestre de 016/17 MEBiol, MEAmbi EXERCÍCIOS DE ÁLGEBRA LINEAR FICHA - Vectores e valores próprios 1 1 Vectores e valores próprios de transformações lineares Dada uma transformação linear T V!

Leia mais

Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011

Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011 APLICAÇÕES DA DIAGONALIZAÇÃO Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 21 de outubro de 2011 Roteiro 1 2 3 Roteiro 1 2 3 Introdução Considere a equação de uma cônica: Forma Geral Ax 2 + Bxy

Leia mais

Exponencial de uma matriz

Exponencial de uma matriz Exponencial de uma matriz Ulysses Sodré Londrina-PR, 21 de Agosto de 2001; Arquivo: expa.tex Conteúdo 1 Introdução à exponencial de uma matriz 2 2 Polinômio característico, autovalores e autovetores 2

Leia mais

Álgebra Linear Teoria de Matrizes

Álgebra Linear Teoria de Matrizes Álgebra Linear Teoria de Matrizes 1. Sistemas Lineares 1.1. Coordenadas em espaços lineares: independência linear, base, dimensão, singularidade, combinação linear 1.2. Espaço imagem (colunas) - Espaço

Leia mais

Álgebra Linear Diagonalização de Operadores

Álgebra Linear Diagonalização de Operadores Introdução e Motivação Preliminares Diagonalização de Operadores Aplicações Referências Álgebra Linear Diagonalização de Operadores Universidade Estadual Vale do Acaraci - Sobral - CE Semana da Matemática

Leia mais

. Repare que ao multiplicar os vetores (-1,1) e

. Repare que ao multiplicar os vetores (-1,1) e Álgebra Linear II P1-2014.2 Obs: Todas as alternativas corretas são as representadas pela letra A. 1 AUTOVETORES/ AUTOVALORES Essa questão poderia ser resolvida por um sistema bem chatinho. Mas, faz mais

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

Capítulo 7. Operadores Normais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo

Capítulo 7. Operadores Normais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Capítulo 7 Operadores Normais Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 7: Operadores Normais Meta

Leia mais

Álgebra Linear I - Aula Propriedades dos autovetores e autovalores

Álgebra Linear I - Aula Propriedades dos autovetores e autovalores Álgebra Linear I - Aula 17 1. Propriedades dos autovetores e autovalores. 2. Matrizes semelhantes. 1 Propriedades dos autovetores e autovalores Propriedade 1: Sejam λ e β autovalores diferentes de T e

Leia mais

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 657- - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 8 I SEMESTRE DE Entre as funções dadas abaixo, verifique quais são transformações

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto

Leia mais

Cálculo Diferencial e Integral 2 Formas Quadráticas

Cálculo Diferencial e Integral 2 Formas Quadráticas Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral 2 Formas Quadráticas 1 Formas quadráticas Uma forma quadrática em R n é um polinómio do

Leia mais

AUTOVALORES E AUTOVETORES: CONCEITOS E UMA APLICAÇÃO A UM SISTEMA DINÂMICO

AUTOVALORES E AUTOVETORES: CONCEITOS E UMA APLICAÇÃO A UM SISTEMA DINÂMICO AUTOVALORES E AUTOVETORES: CONCEITOS E UMA APLICAÇÃO A UM SISTEMA DINÂMICO Patrícia Eduarda de Lima 1, Luciane de Fátima Rodrigues de Souza 2* 1 Departamento de Exatas, Faculdades Integradas Regionais

Leia mais

LEONARDO MORETO ELIAS MINIMIZAÇÃO DE FUNÇÕES QUADRÁTICAS

LEONARDO MORETO ELIAS MINIMIZAÇÃO DE FUNÇÕES QUADRÁTICAS LEONARDO MORETO ELIAS MINIMIZAÇÃO DE FUNÇÕES QUADRÁTICAS CURITIBA DEZEMBRO, 2010 LEONARDO MORETO ELIAS MINIMIZAÇÃO DE FUNÇÕES QUADRÁTICAS Monografia apresentada como requisito parcial à obtenção do grau

Leia mais

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante

Leia mais

Álgebra Linear Exercícios Resolvidos

Álgebra Linear Exercícios Resolvidos Álgebra Linear Exercícios Resolvidos Agosto de 001 Sumário 1 Exercícios Resolvidos Uma Revisão 5 Mais Exercícios Resolvidos Sobre Transformações Lineares 13 3 4 SUMA RIO Capítulo 1 Exercícios Resolvidos

Leia mais

1 Matrizes Ortogonais

1 Matrizes Ortogonais Álgebra Linear I - Aula 19-2005.1 Roteiro 1 Matrizes Ortogonais 1.1 Bases ortogonais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de vetores distintos

Leia mais

CSE-020 Revisão de Métodos Matemáticos para Engenharia

CSE-020 Revisão de Métodos Matemáticos para Engenharia CSE-020 Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

Matrizes e Linearidade

Matrizes e Linearidade Matrizes e Linearidade 1. Revisitando Matrizes 1.1. Traço, Simetria, Determinante 1.. Inversa. Sistema de Equações Lineares. Equação Característica.1. Autovalor & Autovetor 4. Polinômios Coprimos 5. Função

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Algoritmos Numéricos II / Computação Científica Autovalores e Autovetores Lucia Catabriga 1 1 DI/UFES - Brazil Junho 2016 Introdução Ideia Básica Se multiplicarmos a matriz por um autovetor encontramos

Leia mais

EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) GRUPO I

EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) GRUPO I Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise EXAME DE ÁLGEBRA LINEAR (Semestre Alternativo, Alameda) (24/JUNHO/2005) Duração: 3h Nome de Aluno: Número de Aluno: Curso:

Leia mais

0.1 Matrizes, determinantes e sistemas lineares

0.1 Matrizes, determinantes e sistemas lineares SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ PARFOR MATEMÁTICA Lista de Exercícios para a Prova Substituta de Álgebra Linear 0.1 Matrizes, determinantes e sistemas lineares 1. Descreva explicitamente

Leia mais

OPERADORES LINEARES ESPECIAIS: CARACTERIZAÇÃO EM ESPAÇOS DE DIMENSÃO DOIS*

OPERADORES LINEARES ESPECIAIS: CARACTERIZAÇÃO EM ESPAÇOS DE DIMENSÃO DOIS* OPERADORES LINEARES ESPECIAIS: CARACTERIZAÇÃO EM ESPAÇOS DE DIMENSÃO DOIS* FABIANA BARBOSA DA SILVA, ALINE MOTA DE MESQUITA ASSIS, JOSÉ EDER SALVADOR DE VASCONCELOS Resumo: o objetivo deste artigo é apresentar

Leia mais

Álgebra Linear I - Aula 18

Álgebra Linear I - Aula 18 Álgebra Linear I - Aula 18 1. Matrizes semelhantes. 2. Matriz de uma transformação linear em uma base. Roteiro 1 Matrizes semelhantes Definição 1 (Matrizes semelhantes). Considere duas matrizes quadradas

Leia mais

7 Formas Quadráticas

7 Formas Quadráticas Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Forma quadrática em variáveis Função polinomial, de grau, cuja expressão tem apenas termos de grau. Ex. 1: é uma forma quadrática

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ WAGNER AUGUSTO ALMEIDA DE MORAES AUTOVALORES, AUTOVETORES E A DECOMPOSIÇÃO EM VALORES SINGULARES

UNIVERSIDADE FEDERAL DO PARANÁ WAGNER AUGUSTO ALMEIDA DE MORAES AUTOVALORES, AUTOVETORES E A DECOMPOSIÇÃO EM VALORES SINGULARES UNIVERSIDADE FEDERAL DO PARANÁ WAGNER AUGUSTO ALMEIDA DE MORAES AUTOVALORES, AUTOVETORES E A DECOMPOSIÇÃO EM VALORES SINGULARES CURITIBA Resumo Neste trabalho estudamos primeiramente o que são autovalores

Leia mais

1. Encontre os autovalores e autovetores das transformações lineares dadas: 2. Encontre os autovalores e autovetores correspondentes das matrizes 2

1. Encontre os autovalores e autovetores das transformações lineares dadas: 2. Encontre os autovalores e autovetores correspondentes das matrizes 2 UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS CCT DEP ART AMENT O DE MAT EMAT ICA DMAT Exercícios sobre AUTOVALORES e AUTOVETORES Professora: Graciela Moro. Encontre

Leia mais

Parte II. Decomposição de matrizes

Parte II. Decomposição de matrizes Parte II Decomposição de matrizes 119 Uma das características da ciência, e em particular das estruturas em Matemática é a busca de elementos simples com os quais podemos gerar todos os elementos de um

Leia mais

2.1 Fundamentos Básicos

2.1 Fundamentos Básicos .1 Fundamentos Básicos Recordemos que uma aplicação (ou transformação) entre espaços vetoriais T : V! W é linear quando: (a) T (u + v) = T (u) + T (v) ; u; v V: (b) T ( u) = T (u) ; u V e F: Podemos condensar

Leia mais

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III e IV GRUPO I (50 PONTOS)

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III e IV GRUPO I (50 PONTOS) Faculdade de Ciências Económicas e Empresariais UCP MATEMÁTICA I FREQUÊNCIA 1 - versão A Duração: 15 minutos Durante a prova não serão prestados quaisquer tipo de esclarecimentos. Qualquer dúvida ou questão

Leia mais

PLANO DE ENSINO E APRENDIZAGEM

PLANO DE ENSINO E APRENDIZAGEM SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A) DA DISCIPLINA:

Leia mais

Ficha de Exercícios nº 3

Ficha de Exercícios nº 3 Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 3 Transformações Lineares, Valores e Vectores Próprios e Formas Quadráticas 1 Qual das seguintes aplicações não é uma transformação

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares

Leia mais

Álgebras de Lie são espaços vetoriais munidos de uma nova operaçao que em geral não é comutativa nem associativa: [x, y] = xy yx.

Álgebras de Lie são espaços vetoriais munidos de uma nova operaçao que em geral não é comutativa nem associativa: [x, y] = xy yx. 4 Álgebras de Lie Álgebras de Lie são espaços vetoriais munidos de uma nova operaçao que em geral não é comutativa nem associativa: [x, y] = xy yx. 4.1 Álgebras de Lie Simples Definição 4.1 Uma álgebra

Leia mais

Fundamentos de Álgebra Linear

Fundamentos de Álgebra Linear Fundamentos de Álgebra Linear Jonathan Tejeda Quartuccio Instituto de Pesquisas Científicas SISTEMAS DE EQUAÇÕES Uma equação linear com n incógnitas é descrita como a x + a x + a 3 x 3 + + a n x n = b

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear UNIFEI - Universidade Federal de Itajubá campus Itabira Geometria Analítica e Álgebra Linear Parte 1 Matrizes 1 Introdução A teoria das equações lineares desempenha papel importante e motivador da álgebra

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp. Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Autovalores e Autovetores Definição e Exemplos 2 Polinômio Característico

Leia mais

Noções de Álgebra Linear

Noções de Álgebra Linear Noções de Álgebra Linear 1. Espaços vetoriais lineares 1.1. Coordenadas 2. Operadores lineares 3. Subespaços fundamentais 4. Espaços normados 5. Espaços métricos 6. Espaços de Banach 7. Espaços de Hilbert

Leia mais

A forma canônica de Jordan

A forma canônica de Jordan A forma canônica de Jordan 1 Matrizes e espaços vetoriais Definição: Sejam A e B matrizes quadradas de orden n sobre um corpo arbitrário X. Dizemos que A é semelhante a B em X (A B) se existe uma matriz

Leia mais

Aula 5 - Produto Vetorial

Aula 5 - Produto Vetorial Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Autovalores e Autovetores INTRODUÇÃO Essa apostila vai explicar um pouco de Auto Valores e Auto Vetores. A primeira coisa que é importante ressaltar é que essa matéria normalmente cai de forma bem simples

Leia mais

Sistemas lineares e matrizes, C = e C =

Sistemas lineares e matrizes, C = e C = 1. Considere as matrizes ( 2 1 A 4 0 1 MATEMÁTICA I (M 195 (BIOLOGIA, BIOQUÍMICA E ARQUITETURA PAISAGISTA 2014/2015, B Sistemas lineares e matrizes ( 4 1 2 5 1 Verifique se está definida e, caso esteja,

Leia mais

7. Sejam U, W subespaços vetoriais de um espaço vetorial V sobre um corpo K. Prove que U W é um subespaço vetorial de V se e somente se U W ou W U.

7. Sejam U, W subespaços vetoriais de um espaço vetorial V sobre um corpo K. Prove que U W é um subespaço vetorial de V se e somente se U W ou W U. Lista de Álgebra Linear - Prof. Edson Iwaki 1. Quais dos subconjuntos são R subespaços vetoriais? Ache uma base para os que forem. (a) S = {(x, y, z) R 3 x 0} R 3 (b) S = {(x, y, z) R 3 x = 0} R 3 (c)

Leia mais

Produto Misto, Determinante e Volume

Produto Misto, Determinante e Volume 15 Produto Misto, Determinante e Volume Sumário 15.1 Produto Misto e Determinante............ 2 15.2 Regra de Cramer.................... 10 15.3 Operações com matrizes............... 12 15.4 Exercícios........................

Leia mais

CM005 Algebra Linear Lista 1

CM005 Algebra Linear Lista 1 CM005 Algebra Linear Lista Alberto Ramos. Para cada um dos sistemas de equações lineares, use o método de Gauss para obter um sistema equivalente cuja matriz de coeficientes esteja na forma escada. Indique

Leia mais

Elementos de Matemática Avançada

Elementos de Matemática Avançada Elementos de Matemática Avançada Prof. Dr. Arturo R. Samana Semestre: 2012.2 Conteúdo - Objetivos da Disciplina - Ementa curricular - Critérios de avaliação - Conteúdo programático - Programação Objetivos

Leia mais

Lista de Exercícios III. junho de 2005

Lista de Exercícios III. junho de 2005 ÁLGEBRA LINEAR II Prof Amit Bhaya Lista de Exercícios III junho de 2005 Ortogonalidade, espaços fundamentais 1 Se Ax = b possui solução e A T y = 0, então y é perpendicular a 2 Se Ax = b não possui solução

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Summary. Espaços Vetoriais. Hector L.Carrion ECT-UFRN. fevereiro, 2012

Summary. Espaços Vetoriais. Hector L.Carrion ECT-UFRN. fevereiro, 2012 Summary Espaços Vetoriais Hector L. Carrion ECT-UFRN fevereiro, 2012 Summary Dependencia Linear 1 Definição de E. V. 2 Subespaço 3 Dependencia Linear 4 Base e Dimensão 5 Produto interno 6 Espaço Vetorial

Leia mais

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação)

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação) Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação) Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 Importante Material desenvolvido a partir

Leia mais

Método de Gauss-Jordan e Sistemas Homogêneos

Método de Gauss-Jordan e Sistemas Homogêneos Método de Gauss-Jordan e Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 14 de agosto

Leia mais

ÁLGEBRA LINEAR. Combinação Linear, Subespaços Gerados, Dependência e Independência Linear. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Combinação Linear, Subespaços Gerados, Dependência e Independência Linear. Prof. Susie C. Keller ÁLGEBRA LINEAR Combinação Linear, Subespaços Gerados, Dependência e Prof. Susie C. Keller Combinação Linear Sejam os vetores v 1, v 2,..., v n do espaço vetorial V e os escalares a 1, a 2,..., a n. Qualquer

Leia mais

Apostila de Matemática 10 Matriz

Apostila de Matemática 10 Matriz Apostila de Matemática 10 Matriz 1.0 Definição m e n são números inteiros maiores que zero. Matriz mxn é uma tabela retangular formada por m.n números reais, dispostos é m linhas e n colunas. A tabela

Leia mais

Departamento de Estatística

Departamento de Estatística Departamento de Estatística Universidade Federal de São Carlos José Carlos Fogo São Carlos Julho de 207 Sumário Vetores Definição Representação gráfica no R 2 2 2 Propriedades algébricas 2 2 Vetores especiais

Leia mais

Valores e vectores próprios

Valores e vectores próprios Valores e Vectores Prórios - Matemática II- /5 Valores e vectores rórios De nem-se valores e vectores rórios aenas ara matrizes quadradas, elo que, ao longo deste caítulo e quando mais nada seja eseci

Leia mais

ADVERTÊNCIA: os exercícios listados abaixo são para diversão pessoal do autor; nada substitui a resolução de problemas das referências.

ADVERTÊNCIA: os exercícios listados abaixo são para diversão pessoal do autor; nada substitui a resolução de problemas das referências. ADVERTÊNCIA: os exercícios listados abaixo são para diversão pessoal do autor; nada substitui a resolução de problemas das referências. (Atualizada em 7 de maio de 2007 1. Seja G um grupo e seja GxC C

Leia mais

Introdução à Álgebra Linear - 1a lista de exercícios Prof. - Juliana Coelho

Introdução à Álgebra Linear - 1a lista de exercícios Prof. - Juliana Coelho Introdução à Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Ache uma forma escalonada para cada matriz abaixo. (Lembre que a forma escalonada não é única, então você pode obter uma resposta

Leia mais

Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho

Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho 1 - Verifique que os conjuntos V abaixo com as operações dadas não são espaços vetoriais explicitando a falha em alguma das propriedades.

Leia mais

Revisão: Matrizes e Sistemas lineares. Parte 01

Revisão: Matrizes e Sistemas lineares. Parte 01 Revisão: Matrizes e Sistemas lineares Parte 01 Definição de matrizes; Tipos de matrizes; Operações com matrizes; Propriedades; Exemplos e exercícios. 1 Matrizes Definição: 2 Matrizes 3 Tipos de matrizes

Leia mais

SME0812 Modelos Lineares. Álgebra Matricial. 17 de março de / 1

SME0812 Modelos Lineares. Álgebra Matricial. 17 de março de / 1 SME0812 Modelos Lineares Álgebra Matricial 17 de março de 2015 1 / 1 Notação Escreveremos A = A n m para denotar uma matriz de dimensão n m, ou seja, uma matriz com n linhas e m colunas: a 11 a 12 : :

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO CURSOS Bacharelados e Licenciaturas MATRIZ SA (Informação do Sistema Acadêmico) FUNDAMENTAÇÃO LEGAL Resolução

Leia mais

Ao iniciar o programa winmat, abre-se a janela:

Ao iniciar o programa winmat, abre-se a janela: Winmat (em português) 8// Material elaborado por Mauri C. Nascimento Dep. Matemática/UNESP/Bauru Este programa é de uso livre e pode ser obtido no endereço http://math.eeter.edu/rparris Ao iniciar o programa

Leia mais

Diagonalização unitária e diagonalização ortogonal. (Positividade do produto interno) Raíz quadrada. Formas quadráticas.

Diagonalização unitária e diagonalização ortogonal. (Positividade do produto interno) Raíz quadrada. Formas quadráticas. Aplicações: Diagonalização unitária e diagonalização ortogonal (Positividade do produto interno) Raíz quadrada Formas quadráticas Mínimos quadrados Produto externo e produto misto (Área do paralelogramo.

Leia mais