Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior"

Transcrição

1 Lógica Formal Matemática Discreta Prof. Vilson Heck Junior

2 Objetivos Utilizar símbolos da lógica proposicional; Encontrar o valor lógico de uma expressão em lógica proposicional; Construir demonstrações formais em lógica proposicional; Usar símbolos formais da lógica predicada; Construir demonstração formais; [Talvez] Conhecer a linguagem de programação Prolog;

3 Lógica na MTD Discreta? Resolver problemas que envolvam raciocínio lógico; Construir, questionar, compreender e criticar argumentos; Reconhecer e trabalhar com símbolos formais que são utilizados na lógica proposicional; Usar a lógica proposicional para representar e avaliar argumentos; Construir demonstrações formais nas lógicas proposicionais e usá-las para determinar a validade de um argumento; Executar diversas técnicas de demonstração;

4 Conteúdo Proposições; Valores lógicos; Conectivos; Tabelas-verdade; Tautologias, Contradições e Contingências; Lógica proposicional; Predicados; Talvez: Programação Lógica.

5 Lógica Formal PROPOSIÇÕES

6 Proposições Em lógica, proposições são sentenças declarativas com valores comprovadamente e indiscutivelmente: verdadeiro ou falso; Nenhum outro possível valor! Proposições também são chamadas de declarações por diferentes autores ou contextos.

7 Proposições As seguintes sentenças são proposições: 1. Dez é menor do que sete. Matematicamente comprovado ser Falso. 2. Existe vida em outros planetas do universo. Por enquanto, não sabemos a resposta, mas conhecemos meios viáveis a longo prazo que nos darão está resposta. 3. Um triângulo tem três lados. Verdadeiro. 4. Madrid é a capital da Espanha. Verdadeiro

8 Proposições As seguintes sentenças não são proposições: 1. Como está você? Isto não contém uma declaração com significado V ou F. 2. Ela é muito talentosa. Apesar de ser uma frase declarativa, faltam informações sobre quem é ela para constatar V ou F. 3. Brócolis é saboroso. Isto não é nem verdade e nem falso absoluto, é uma questão de opinião, por tanto, não é uma proposição válida.

9 Proposições Algumas sentenças são, ainda, dignas de muito debate filosófico: 1. Fantasmas existem. Alguns filósofos defendem que é uma proposição, mas que é definitivamente falsa, pois não há provas contrárias; Outros defendem que a sentença nem se quer é uma proposição, mas sim parte de crendices ou folclores, da imaginação e, por tanto, impossível de ser verificada.

10 Negação de uma Proposição Qualquer proposição existente pode ser negada; Em escrita ou fala, utilizamos a partícula negativa não ; Ex. de Proposição: P : Está chovendo agora. Ex. de Proposição Negada: P, P, ~P ou P : Não está chovendo agora. Ao aplicar a negação, o valor lógico da proposição será invertido: P P P V F V F V F

11 Negação de uma Proposição P representado em conjunto P representado em conjunto

12 Lógica Formal CONECTIVOS LÓGICOS

13 Conectivos Lógicos Ao falar ou escrever, combinamos frases simples por meio de conectivos lógicos; Estas combinações formam sentenças compostas que enriquecem as informações trocadas; As informações como um todo, dependem de uma combinação dos valores lógicos das proposições e seus conectivos; Na Lógica Formal, chamaremos estas sentenças compostas de: Sistema Formal. Outros nomes utilizados são: Fórmulas Proposicionais; Fórmulas Bem Formuladas: FBFs.

14 Conectivos Lógicos Exemplos: 1. Fulano foi até a loja de esportes e foi até a casa de sua avó. 2. Fulano foi até a loja de esportes ou foi até a casa de sua avó. 3. Fulano ou foi até a loja de esportes, ou foi até a casa de sua avó. Há duas proposições: A. Fulano foi até a loja de esportes; B. Fulano foi até a casa de sua avó. Quais são as interpretações possíveis para os três exemplos?

15 Conectivos Lógicos Conectivo lógico E: Também conhecido como conjunção; Representado na lógica proposicional pelo símbolo ou. Presume que ambas as proposições conectadas devem ser verdadeiras. Exemplo: A ^ B Lê-se A e B Lê-se Fulano foi até a loja de esportes e foi até a casa de sua avó.

16 Conectivos Lógicos Conjunção, do ponto de vista de conjuntos: A ^ B

17 Conectivos Lógicos Conectivo lógico E: Para determinar se o Sistema Formal é verdadeiro, é necessária a construção da tabela-verdade; A tabela-verdade é um arranjo dos possíveis valores lógicos de cada proposição do sistema; Tabela-verdade E: A B A ^ B V V V F V F V F F F F F

18 Conectivos Lógicos Conectivo lógico OU: Também conhecido como disjunção; Representado na lógica proposicional pelo símbolo ou + Presume que ao menos uma proposição conectada deve ser verdadeira. Exemplo: A B Lê-se A ou B Lê-se Fulano foi até a loja de esportes ou foi até a casa de sua avó.

19 Conectivos Lógicos Disjunção, do ponto de vista de conjuntos: A B

20 Conectivos Lógicos Conectivo lógico OU: Para determinar se o Sistema Formal é verdadeiro, é necessária a construção da tabela-verdade; A tabela-verdade é um arranjo dos possíveis valores lógicos de cada proposição do sistema; Tabela-verdade OU: A B A B V V V F V V V F V F F F

21 Conectivos Lógicos Conectivo lógico OU Exclusivo: Também conhecido como disjunção exclusiva; Representado na lógica proposicional pelo símbolo ou Presume que somente uma proposição conectada deve ser verdadeira. Exemplo: A B Lê-se A ou exclusivo B Lê-se Ou Fulano foi até a loja de esportes ou foi até a casa de sua avó.

22 Conectivos Lógicos Disjunção exclusiva, do ponto de vista de conjuntos: A B

23 Conectivos Lógicos Conectivo lógico OU Exclusivo: Para determinar se o Sistema Formal é verdadeiro, é necessária a construção da tabela-verdade; A tabela-verdade é um arranjo dos possíveis valores lógicos de cada proposição do sistema; Tabela-verdade OU Exclusivo: A B A B V V F F V V V F V F F F

24 Exercícios do livro Parte A - Lista de questões do livro. GERSTING, J. L. Fundamentos Matemáticos para a Ciência da Computação - um tratamento moderno de matemática discreta - 5 ed. Rio de Janeiro, LTC 2013.

25 Lógica Formal CONSTRUINDO TABELAS-VERDADE

26 Precedência dos Operadores Para construir uma tabela-verdade, será necessário resolver todas as possíveis combinações de valores lógicos das proposições existentes; A resolução de um sistema formal deve seguir uma ordem, assim como acontece nas equações matemáticas: 1. (), {} 2. 3., ^,

27 Tabelas-Verdade Assumindo o seguinte: Hoje irá chover ou nevar e não iremos caminhar. A. Hoje irá chover; B. Hoje irá nevar; C. Hoje iremos caminhar; (A B)^ C

28 Tabelas-Verdade Sistema Lógico: (A B)^ C Valores possíveis para proposição A: A V F

29 Tabelas-Verdade Sistema Lógico: (A B)^ C Arranjo de valores entre proposições A B: A B V F V F V V F F

30 Tabelas-Verdade Sistema Lógico: (A B)^ C Arranjo de proposições incluindo C: A B C V V V F V V V F V F F V V V F F V F V F F F F F

31 Tabelas-Verdade Sistema Lógico: (A B)^ C Inclusão da primeira parte do sistema: A B C (AvB) V V V V F V V V V F V V F F V F V V F V F V F V V F F V F F F F

32 Tabelas-Verdade Sistema Lógico: (A B)^ C Inclusão da segunda parte do sistema: A B C (AvB) C V V V V F F V V V F V F V V F F F V F F V V F V V F V F V V V F F V V F F F F V

33 Tabelas-Verdade Sistema Lógico: (A B)^ C Solução final do sistema: A B C (AvB) C (A B)^ C V V V V F F F V V V F F V F V V F F F F V F F F V V F V V V F V F V V V V F F V V V F F F F V F

34 Lógica Formal CONECTIVOS LÓGICOS (PARTE - 2)

35 Conectivos Lógicos Exemplos: 1. Se Fulano foi até a loja de esportes então foi até a casa de sua avó. 2. Fulano foi até a loja de esportes se e somente se foi até a casa de sua avó. Há duas proposições: A. Fulano foi até a loja de esportes; B. Fulano foi até a casa de sua avó. Quais são as interpretações possíveis para os dois exemplos?

36 Conectivos Lógicos Conectivo lógico Se... Então...: Também conhecido como implicação ou condicional; Representado na lógica proposicional pelo símbolo Assume a existência de uma proposição antecedente e uma consequente; Sempre que a proposição antecedente for verdadeira, há a implicação da consequente também ser verdadeira Exemplo: A B Lê-se A implica em B Lê-se Se Fulano foi até a loja de esportes, então Fulano foi até a casa de sua avó.

37 Conectivos Lógicos Implicação, do ponto de vista de conjuntos: A B

38 Conectivos Lógicos Conectivo lógico Se... Então...: Para determinar se o Sistema Formal é verdadeiro, é necessária a construção da tabela-verdade; A tabela-verdade é um arranjo dos possíveis valores lógicos de cada proposição do sistema; Tabela-verdade Implicação: A B A B V V V F V V V F F F F V

39 Atividade Prática Escreva o antecedente e o consequente de cada uma das sentenças a seguir: (sugestão: reescreva as sentenças colocandoas na forma se/então): 1. Se a chuva continuar, então o rio vai transbordar. 2. Uma condição suficiente para a falha de uma rede elétrica é que a chave central desligue. 3. Os abacates só estão maduros quando estão escuros e macios. 4. Uma boa dieta é uma condição necessária para uma saúde saudável.

40 Conectivos Lógicos Agora imagine um cenário onde há uma implicação dupla. Neste caso, ambas proposições dependeriam uma da outra mutuamente; Construa a tabela-verdade para: (A B)^(B A) A V F V F B V V F F

41 Conectivos Lógicos Agora imagine um cenário onde há uma implicação dupla. Neste caso, ambas proposições dependeriam uma da outra mutuamente; Construa a tabela-verdade para: (A B)^(B A) A B A B B A V V V V F V V F V F F V F F V V

42 Conectivos Lógicos Agora imagine um cenário onde há uma implicação dupla. Neste caso, ambas proposições dependeriam uma da outra mutuamente; Construa a tabela-verdade para: (A B)^(B A) A B A B B A (A B)^(B A) V V V V V F V V F F V F F V F F F V V V

43 Conectivos Lógicos Conectivo lógico se e somente se: Também conhecido como bi-implicação (bicondicional ou equivalência); Representado na lógica proposicional pelo símbolo Assume que ambas proposições devem ter valores iguais; Exemplo: A B Lê-se A se e somente se B Lê-se Fulano foi até a loja de esportes se e somente se foi até a casa de sua avó.

44 Conectivos Lógicos Bi-implicação, do ponto de vista de conjuntos: A B

45 Conectivos Lógicos Conectivo lógico... se e somente se...: Para determinar se o Sistema Formal é verdadeiro, é necessária a construção da tabela-verdade; A tabela-verdade é um arranjo dos possíveis valores lógicos de cada proposição do sistema; Tabela-verdade Bi-implicação: A B A B V V V F V F V F F F F V

46 Atividade Prática Utilizando apenas os operadores/conectivos lógicos: E, OU, Não; Construa sistemas lógicos equivalentes aos seguintes conectivos: 1. Ou exclusivo; 2. Se... Então Se e somente se

47 Precedência dos Operadores Para construir uma tabela-verdade, será necessário resolver todas as possíveis combinações de valores lógicos das proposições existentes; A resolução de um sistema formal deve seguir uma ordem, assim como acontece nas equações matemáticas: 1. (), {} 2. 3., ^, 4. 5.

48 Precedência dos Operadores 1. (), {} 2. 3., ^, Equação Original Certo Errado A v B ( A) v B (A v B) A v B C (A v B) C A v (B C) A ^ B C D ((A ^ B) C) D A ^ (B (C D))

49 Não A. É falso que A... Não é verdade que A... Expressões em Português Português Conectivo Lógico Expressão Lógica Negação A E; mas; também; além disso Conjunção A ^ B Ou Disjunção A v B Ou A, Ou B. Se A, então B. A implica B. A, logo B. A só se B; A somente se B. B segue A A é uma condição suficiente para B; basta A para B. B é uma condição necessária para A. A se e somente se B. A é condição necessária e suficiente para B. Disjunção exclusiva Condicional Bicondicional A v B A B A B

50 Negações corretas e incorretas Proposições Correta Incorreta Vai chover amanhã. Pedro é alto e magro. O rio é raso ou está poluído. É falso que vá chover amanhã. Não vai chover amanhã É falso que Pedro seja alto e magro. Pedro não é alto ou não é magro. Pedro é baixo ou gordo. É falso que o rio seja raso ou esteja poluído. O rio não é raso nem está poluído. O rio é fundo e não está poluído. Pedro é baixo e gordo. (Pode ser que Pedro não tenha apenas 1 das propriedades) O rio não é raso ou não está poluído. (Ambas devem ser falsas!)

51 Atividade Prática Sendo A: Júlia gosta de manteiga mas detesta creme. Qual das alternativas representa A? 1. Júlia detesta manteiga e creme. 2. Júlia não gosta de manteiga nem de creme. 3. Júlia não gosta de manteiga mas adora creme. 4. Júlia odeia manteiga ou gosta de creme.

52 Lógica Formal TAUTOLOGIAS, CONTRADIÇÕES E CONTINGÊNCIAS

53 Tautologia É dita tautológico todo sistema lógico cuja tabela-verdade resulta apenas em valores Verdadeiros: A ^ B B ^ A: (comutatividade) A B A ^ B B ^ A V V V V V F V F F V V F F F V F F F F V

54 Tautologia É dita tautológico todo sistema lógico cuja tabela-verdade resulta apenas em valores Verdadeiros: (A ^ B) ^ C A ^ (B ^ C): (associatividade) A B C A ^ B B ^ C ^ C A ^ V V V V V V V V F V V F V F F V V F V F F F F V F F V F F F F V V V F V F F F V F V F F F F F V V F F F F F F V F F F F F F F V

55 Tautologia É dita tautológico todo sistema lógico cuja tabela-verdade resulta apenas em valores Verdadeiros: A ^ (B v C) (A ^ B) v (A ^ C): (distributividade) A B C A ^ B B v C A ^ C A ^ ) v ( V V V V V V V V V F V V F V F F F V V F V F V V V V V F F V F V F F F V V V F V V F V V V F V F F V F F F V V F F F F F F F V F F F F F F F F V

56 Contradição É dita contradição todo sistema lógico cuja tabela-verdade resulta apenas em valores Falsos: A ^ A A A A ^ A V F F F V F

57 Contradição É dita contradição todo sistema lógico cuja tabela-verdade resulta apenas em valores Falsos: (A B) ^ (A ^ B) A B A B A ^ B (A B) ^ (A ^ B) V V V F F F V V F F V F F V F F F V F F

58 Contingências Todo e qualquer sistema lógico que não seja Tautologia e Contradição, será considerado contingência.

59 Questões Poscomp (1/2) Poscomp[2013, q11]: seguir: Considere as sentenças a P: Pedro faz as tarefas todos os dias. Q: Pedro terá boas notas no final do ano. Assinale a alternativa que apresenta, corretamente, a tradução em linguagem simbólica sentença composta a seguir: da negação da Se Pedro faz as tarefas todos os dias, então Pedro terá boas notas no final do ano. 1. P Q 2. P Q 3. P ^ ~Q 4. ~P ^ ~Q 5. ~P ^ Q

60 Questões Poscomp (2/2) P Q P Q V V F V F V F V F F F F Poscomp[2013, q13]: Admita que um novo conectivo binário, rotulado pelo símbolo, seja definido pela tabela-verdade ao lado. Com base nessa definição e nas operações usuais com os conectivos v, ^ e ~, considere as afirmativas a seguir. I. P Q é equivalente a Q P. II. III. IV. (P Q) v (Q P) não é uma contingência. (Q P) ^ (P Q) é uma contradição. ~[(Q P) ^ (P Q)] é uma tautologia. Assinale a alternativa correta. a) Somente as afirmativas I e II são corretas. b) Somente as afirmativas I e IV são corretas. c) Somente as afirmativas III e IV são corretas. d) Somente as afirmativas I, II e III são corretas. e) Somente as afirmativas II, III e IV são corretas.

61 Exercícios do livro Parte B Lista de questões do livro. GERSTING, J. L. Fundamentos Matemáticos para a Ciência da Computação - um tratamento moderno de matemática discreta - 5 ed. Rio de Janeiro, LTC 2013.

62 Lógica Formal PROPRIEDADES, SUBSTITUIÇÕES, DEDUÇÕES E VALIDADE

63 Validade de Argumentos A argumentação de um advogado é válida? Se meu cliente fosse culpado, a faca estaria na gaveta. A faca não estava na gaveta ou Jason Pritchard viu a faca. Se a faca não estava lá no dia 10 de outubro, segue que Jason Pritchard não viu a faca. Além disso, se a faca estava lá no dia 10 de outubro, então a faca estava na gaveta e o martelo estava no celeiro. Mas todos sabemos que o martelo não estava no celeiro. Portanto, senhoras e senhores do Júri, meu cliente é inocente.

64 Outras equivalências A ^ F F A^ V A A ^ A F A ^ A A B v F B B v V V B v B V B v B B A v (B ^ C) (A v B) ^ (A v C) A v B (A ^ B) v ( A ^ B) A B (A ^ B) A v B A B (A ^ B) v ( A ^ B)

65 Leis de De Morgan O matemático inglês Augusto De Morgan ( ) foi o primeiro a enunciar algumas equivalências lógicas (e de conjuntos). Estas equivalências convertem operações lógicas E em OU e vice-versa e são amplamente utilizadas na construção de sistemas lógicos: (A v B) A ^ B (A ^ B) A v B

66 Leis de De Morgan Na prática, não importa o número de proposições. Ex.: (A v B v C v D) A ^ B ^ C ^ D (A ^ B ^ C ^ D ^ E) A v B v C v D v E

67 Substituições e Deduções As substituições e as deduções lógicas são utilizadas para a verificação da validade em argumentos lógicos: Através do Cálculo Proposicional! Ver as tabelas de equivalência e de inferência. Modus ponens: modus ponendo ponens - em Latim significa a maneira que afirma afirmando. Modus tollens: em Latim significa modo que nega.

68 Validade de Argumentos Alguns argumentos lógicos precisam ser interpretados para terem suas validades lógicas verificadas; Nem sempre é possível constatar a validade de uma argumento de maneira objetiva, às vezes é necessário aplicar algumas substituições, ou realizar um cálculo proposicional; Um argumento pode ser representado em forma simbólica como: P 1^P 2^P 3^ ^P n Q Neste caso: P 1, P 2,, P n são proposições dadas, chamadas de hipóteses do argumento, enquanto Q é a conclusão do argumento.

69 Ex. 1: Validade de Argumentos Argumento: P 1 ^ P 2 Q P 1 : Se está chovendo, então há nuvens. P 2 : Está chovendo. Q: Há nuvens. Proposições: A: Está chovendo. B: Há nuvens Dedução/validação: P 1 : A B P 2 : A Q: B Válido? Argumentos fortes!

70 Ex. 1: Validade de Argumentos Iniciamos pelas hipóteses, assumindo-as como verdadeiras: 1. A B (V) 2. A (V) Agora iniciamos um processo de verificação da lógica. Geralmente iniciamos a análise pela hipótese mais simples. A hipótese 2 nos diz que A deve ser V. Sabendo que A é V, podemos verificar quais os possíveis valores para B que garantam que a hipótese 1 seja V. Para isto, consultaremos a tabela verdade da implicação: A B A B V V V F V V V F F F F V

71 Ex. 1: Validade de Argumentos Neste caso, tínhamos duas opções: Analisar toda a tabela verdade da implicação; ou Aplicar alguma regra de inferência ou equivalência que nos indicasse a resposta. A primeira regra de inferência da tabela entregue: Modus Ponens diz: sempre que o antecedente em uma implicação for verdadeiro, seu consequente também deverá ser verdadeiro. Portanto, A sendo verdade, resta a B apenas ser verdade. Logo, nossa conclusão é B! Desta forma o argumento é válido!

72 Ex. 1: Validade de Argumentos Argumento original: P 1 : A B P 2 : A Q: B Foi possível chegar à mesma conclusão Validade? 1. A B (hip, V) 2. A (hip, V) 3. B (mp, 1,2) O argumento é válido!

73 Ex. 2: Validade de Argumentos Argumento: P 1 ^ P 2 Q P 1 : Se está chovendo, então há nuvens. P 2 : Não há nuvens. Q: Não está chovendo. Proposições: A: Está chovendo. B: Há nuvens Dedução/validação: P 1 : A B P 2 : B Q: A Válido?

74 Ex. 2: Validade de Argumentos Iniciamos pelas hipóteses, assumindo-as como verdadeiras: 1. A B (V) 2. B (V) Agora iniciamos um processo de verificação da lógica. Geralmente iniciamos a análise pela hipótese mais simples. A hipótese 2 nos diz que B deve ser F. Sabendo que B é F, podemos verificar quais os possíveis valores para A que garantam que a hipótese 1 seja V. Para isto, consultaremos a tabela verdade da implicação: A B A B V V V F V V V F F F F V

75 Ex. 2: Validade de Argumentos Neste caso, tínhamos duas opções: Analisar toda a tabela verdade da implicação; ou Aplicar alguma regra de inferência ou equivalência que nos indicasse a resposta. A segunda regra de inferência da tabela entregue: Modus Tollens diz: sempre que o consequente em uma implicação for falso, seu subsequente também deverá ser falso. Portanto, B sendo falso, resta a A apenas ser falso. Logo, nossa conclusão é A! Desta forma o argumento é válido!

76 Ex. 2: Validade de Argumentos Argumento original: P 1 : A B P 2 : B Q: A Foi possível chegar à mesma conclusão Validade? 1. A B (hip, V) 2. B (hip, V) 3. A (mt, 1,2) O argumento é válido!

77 Ex. 3: Validade de Argumentos Argumento: P 1 ^ P 2 Q P 1 : Se está chovendo, então há nuvens. P 2 : Há nuvens. Q: Está chovendo. Proposições: A: Está chovendo. B: Há nuvens Dedução/validação: P 1 : A B P 2 : B Q: A Válido?

78 Ex. 3: Validade de Argumentos Iniciamos pelas hipóteses, assumindo-as como verdadeiras: 1. A B (V) 2. B (V) Agora iniciamos um processo de verificação da lógica. Geralmente iniciamos a análise pela hipótese mais simples. A hipótese 2 nos diz que B deve ser V. Sabendo que B é V, podemos verificar quais os possíveis valores para A que garantam que a hipótese 1 seja V. Para isto, consultaremos a tabela verdade da implicação: A B A B V V V F V V V F F F F V

79 Ex. 3: Validade de Argumentos Neste caso, tínhamos duas opções: Analisar toda a tabela verdade da implicação; ou Aplicar alguma regra de inferência ou equivalência que nos indicasse a resposta. Não encontramos uma regra de inferência ou substituição que possa nos resultar em um único valor lógico aceitável para A. Na prática, A pode ser tanto V quanto F, não há garantias lógicas para apenas um resultado. Portanto, B sendo verdadeiro, A não tem um único valor definido. Logo, nossa conclusão A v A! Desta forma o argumento é inválido!

80 Ex. 3: Validade de Argumentos Argumento original: P 1 : A B P 2 : B Q: A Não foi possível chegar à mesma conclusão Validade? 1. A B (hip, V) 2. B (hip, V) 3. A v A (tab. verd., 1,2) O argumento é inválido!

81 Ex. 4: Validade de Argumentos ( A v B) ^ (B C) (A C) 1. A v B (hip) 2. B C (hip) 3. A (hip da conclusão) 4. B (1, 3, silogismo disjuntivo) 5. C (2, 4, modus ponens)

82 Ex. 5: Validade de Argumentos A argumentação de um advogado: Se meu cliente fosse culpado, a faca estaria na gaveta. A faca não estava na gaveta ou Jason Pritchard viu a faca. Se a faca não estava lá no dia 10 de outubro, segue que Jason Pritchard não viu a faca. Além disso, se a faca estava lá no dia 10 de outubro, então a faca estava na gaveta e o martelo estava no celeiro. Mas todos sabemos que o martelo não estava no celeiro. Portanto, senhoras e senhores do Júri, meu cliente é inocente.

83 Ex. 5: Validade de Argumentos Proposições: A. O cliente é inocente. B. A faca estava na gaveta. C. Jason viu a faca. D. A faca estava lá no dia 10 de outubro. E. O martelo estava no celeiro. Equação: ( A -> B) ^ ( B v C) ^ ( D -> C) ^ [D -> (B ^ E)] ^ E -> A

84 Ex. 5: Validade de Argumentos ( A -> B) ^ ( B v C) ^ ( D -> C) ^ [D -> (B ^ E)] ^ E -> A Prova: 1. A B (hip) 2. B v C (hip) 3. D C (hip) 4. D (B ^ E) (hip) 5. E (hip) 6. E v B (5, adição) 7. (E ^ B) (6, De Morgan) 8. (B ^ E) (7, comutatividade) 9. D (4, 8, modus tollens) 10. C (3, 9, modus ponens) 11. B (2, 10, silogismo disjuntivo) 12. A (1, 11, modus tollens) 13. A (12, dupla negação)

85 Exercícios do livro Parte C Lista de questões do livro. GERSTING, J. L. Fundamentos Matemáticos para a Ciência da Computação - um tratamento moderno de matemática discreta - 5 ed. Rio de Janeiro, LTC 2013.

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Implicação As proposições podem ser combinadas na forma se proposição 1, então proposição 2 Essa proposição composta é denotada por Seja

Leia mais

Lógica Proposicional (Consequência lógica / Dedução formal)

Lógica Proposicional (Consequência lógica / Dedução formal) Faculdade de Tecnologia Senac Pelotas Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas Matemática Aplicada Prof. Edécio Fernando Iepsen Lógica Proposicional (Consequência lógica /

Leia mais

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG Matemática Discreta Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Tautologias Tautologia é uma fórmula proposicional que é verdadeira para todos os possíveis valores-verdade

Leia mais

LÓGICA EM COMPUTAÇÃO

LÓGICA EM COMPUTAÇÃO CEC CENTRO DE ENGENHARIA E COMPUTAÇÃO UNIVERSIDADE CATÓLICA DE PETRÓPOLIS LÓGICA EM COMPUTAÇÃO TAUTOLOGIA - EQUIVALÊNCIA E INFERÊNCIA VERSÃO: 0.1 - MARÇO DE 2017 Professor: Luís Rodrigo E-mail: luis.goncalves@ucp.br

Leia mais

Lógica Proposicional Parte 2

Lógica Proposicional Parte 2 Lógica Proposicional Parte 2 Como vimos na aula passada, podemos usar os operadores lógicos para combinar afirmações criando, assim, novas afirmações. Com o que vimos, já podemos combinar afirmações conhecidas

Leia mais

Lógica. Cálculo Proposicional. Introdução

Lógica. Cálculo Proposicional. Introdução Lógica Cálculo Proposicional Introdução Lógica - Definição Formalização de alguma linguagem Sintaxe Especificação precisa das expressões legais Semântica Significado das expressões Dedução Provê regras

Leia mais

Regras de Inferência. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março

Regras de Inferência. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março Matemática Discreta Regras de Inferência Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Argumentos Válidos em Lógica Proposicional Considere o argumento: Se João pensa, então João existe.

Leia mais

Prof. Jorge Cavalcanti

Prof. Jorge Cavalcanti Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Matemática Discreta - 01

Matemática Discreta - 01 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Lógica e Matemática Discreta

Lógica e Matemática Discreta Lógica e Matemática Discreta Proposições Prof clezio 26 de Abril de 2017 Curso de Ciência da Computação Inferência Lógica Uma inferência lógica, ou, simplesmente uma inferência, é uma tautologia da forma

Leia mais

Cálculo proposicional

Cálculo proposicional O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais

Leia mais

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados

Leia mais

Matemática discreta e Lógica Matemática

Matemática discreta e Lógica Matemática AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1 Lógica Sentenças, representação

Leia mais

Fundamentos de Lógica Matemática

Fundamentos de Lógica Matemática Webconferência 3-01/03/2012 Inferência Lógica Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Objetivos Análise

Leia mais

Lógica Proposicional Parte I. Raquel de Souza Francisco Bravo 11 de outubro de 2016

Lógica Proposicional Parte I. Raquel de Souza Francisco Bravo   11 de outubro de 2016 Lógica Proposicional Parte I e-mail: raquel@ic.uff.br 11 de outubro de 2016 Lógica Matemática Cáculo Proposicional Uma aventura de Alice Alice, ao entrar na floresta, perdeu a noção dos dias da semana.

Leia mais

Cálculo proposicional

Cálculo proposicional O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais

Leia mais

Fundamentos da Computação 1. Aula 03

Fundamentos da Computação 1. Aula 03 Fundamentos da Computação 1 Aula 03 Conteúdo Introdução à Lógica. Definição da Sintaxe. Traduzindo Sentenças. Introdução à Lógica O que é lógica? Introdução à Lógica O que é lógica? Lógica é a análise

Leia mais

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Exercícios Use lógica proposicional para provar os seguintes argumentos: a) A B C B A C b) A B C B C A c) A B B A C C Exercícios Use lógica

Leia mais

Lógica para computação

Lógica para computação Lógica para computação PROPRIEDADES SEMÂNTICAS DA LÓGICA PROPOSICIONAL Professor Marlon Marcon Introdução Esta seção considera a análise de algumas propriedades semânticas da LP que relacionam os resultados

Leia mais

Introdução a computação

Introdução a computação Introdução a computação 0 Curso Superior de Tecnologia em Gestão da Tecnologia da Informação Coordenador: Emerson dos Santos Paduan Autor(a): Daniel Gomes Ferrari São Paulo - 2016 1 Sumário 1. Lógica Matemática...

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL FACULDADE PITÁGORAS Curso Superior em Tecnologia Redes de Computadores e Banco de dados Matemática Computacional Prof. Ulisses Cotta Cavalca LÓGICA PROPOSICIONAL Belo Horizonte/MG

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural. Lista de exercícios 1

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural. Lista de exercícios 1 UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural Disciplina: Lógica Computacional I Professora: Juliana Pinheiro Campos Data: 25/08/2011 Lista

Leia mais

Lógica Proposicional Semântica e Tabelas Verdade

Lógica Proposicional Semântica e Tabelas Verdade Lógica Proposicional Semântica e Tabelas Verdade Prof. Marcos A. Schreiner Disciplina de Introdução à Lógica 30 de março de 2015 Prof. Marcos A. Schreiner (UFPR) 30 de março de 2015 1 / 20 1 Introdução

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo

Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo Lógica Proposicional Prof. Dr. Silvio do Lago Pereira Departamento de Tecnologia da Informação aculdade de Tecnologia de São Paulo Motivação IA IA estuda estuda como como simular simular comportamento

Leia mais

Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade

Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade Resumo de Filosofia Capítulo I Argumentação e Lógica Formal Validade e Verdade O que é um argumento? Um argumento é um conjunto de proposições em que se pretende justificar ou defender uma delas, a conclusão,

Leia mais

Iniciação a Lógica Matemática

Iniciação a Lógica Matemática Iniciação a Lógica Matemática Faculdade Pitágoras Prof. Edwar Saliba Júnior Julho de 2012 1 O Nascimento da Lógica É lógico que eu vou!, Lógico que ela disse isso! são expressões que indicam alguma coisa

Leia mais

Cálculo proposicional

Cálculo proposicional Notas de aula de MAC0329 (2003) 9 2 Cálculo proposicional Referências para esta parte do curso: capítulo 1 de [Mendelson, 1977], capítulo 3 de [Whitesitt, 1961]. Proposição Proposições são sentenças afirmativas

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL Prof. Cesar Tacla/UTFPR/Curitiba Slides baseados no capítulo 1 de DA SILVA, F. S. C.; FINGER M. e de MELO A. C. V.. Lógica para Computação. Thomson Pioneira Editora, 2006. Conceitos

Leia mais

Fundamentos de Lógica Lógica Proposicional

Fundamentos de Lógica Lógica Proposicional Fundamentos de Lógica Lógica Proposicional Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro Alguns fatos históricos Primeiros grandes trabalhos de lógica escritos

Leia mais

Técnicas de Inteligência Artificial

Técnicas de Inteligência Artificial Universidade do Sul de Santa Catarina Ciência da Computação Técnicas de Inteligência Artificial Aula 04 Lógica Proposicional e Lógica dos Predicados Max Pereira Proposicional A lógica está relacionada

Leia mais

Matemática discreta e Lógica Matemática

Matemática discreta e Lógica Matemática AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1. Lógica proposicional: introdução,

Leia mais

RACIOCÍNIO LÓGICO PROPOSIÇÕES LÓGICAS

RACIOCÍNIO LÓGICO PROPOSIÇÕES LÓGICAS 1 RACIOCÍNIO LÓGICO PROPOSIÇÕES LÓGICAS 2 TIPOS DE PROPOSIÇÃO Simples ou Atômicas Oscar é prudente; Mário é engenheiro; Maria é morena. 3 TIPOS DE PROPOSIÇÃO Composta ou Molecular Walter é engenheiro E

Leia mais

Lógica Matemática. Prof. Gerson Pastre de Oliveira

Lógica Matemática. Prof. Gerson Pastre de Oliveira Lógica Matemática Prof. Gerson Pastre de Oliveira Programa da Disciplina Proposições e conectivos lógicos; Tabelas-verdade; Tautologias, contradições e contingências; Implicação lógica e equivalência lógica;

Leia mais

Lógica Matemática UNIDADE II. Professora: M. Sc. Juciara do Nascimento César

Lógica Matemática UNIDADE II. Professora: M. Sc. Juciara do Nascimento César Lógica Matemática UNIDADE II Professora: M. Sc. Juciara do Nascimento César 1 1 - Álgebra das Proposições 1.1 Propriedade da Conjunção Sejam p, q e r proposições simples quaisquer e sejam t e c proposições

Leia mais

Departamento de Engenharia Informática da Universidade de Coimbra

Departamento de Engenharia Informática da Universidade de Coimbra Departamento de Engenharia Informática da Universidade de Coimbra Estruturas Discretas 2013/14 Folha 1 - TP Lógica proposicional 1. Quais das seguintes frases são proposições? (a) Isto é verdade? (b) João

Leia mais

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues As respostas encontram-se em itálico. 1. Quais das frases a seguir são sentenças? a. A lua é feita de queijo verde. erdadeira, pois é uma

Leia mais

Campos Sales (CE),

Campos Sales (CE), UNIERSIDADE REGIONAL DO CARIRI URCA PRÓ-REITORIA DE ENSINO E GRADUAÇÃO PROGRAD UNIDADE DESCENTRALIZADA DE CAMPOS SALES CAMPI CARIRI OESTE DEPARTAMENTO DE MATEMÁTICA DISCIPLINA: Tópicos de Matemática SEMESTRE:

Leia mais

Prof. João Giardulli. Unidade I LÓGICA

Prof. João Giardulli. Unidade I LÓGICA Prof. João Giardulli Unidade I LÓGICA Introdução A primeira qualidade do estilo é a clareza. Aristóteles Introdução Aristóteles é considerado o precursor da lógica. Aristóteles (384-322 a.c.) Introdução

Leia mais

Professor conteudista: Ricardo Holderegger

Professor conteudista: Ricardo Holderegger Lógica Professor conteudista: Ricardo Holderegger Sumário Lógica Unidade I 1 SISTEMAS DICOTÔMICOS...3 1.1 Proposições...3 1.1.1 Proposições lógicas...3 1.1.2 Símbolos da lógica matemática...4 1.1.3 A negação...4

Leia mais

UNIP Ciência da Computação Prof. Gerson Pastre de Oliveira

UNIP Ciência da Computação Prof. Gerson Pastre de Oliveira Aula 6 Lógica Matemática Álgebra das proposições e método dedutivo As operações lógicas sobre as proposições possuem uma série de propriedades que podem ser aplicadas, considerando os conectivos inseridos

Leia mais

MATEMÁTICA Questões comentadas Daniela Arboite

MATEMÁTICA Questões comentadas Daniela Arboite MATEMÁTICA Questões comentadas Daniela Arboite TODOS OS DIREITOS RESERVADOS. É vedada a reprodução total ou parcial deste material, por qualquer meio ou processo. A violação de direitos autorais é punível

Leia mais

Dedução Natural e Sistema Axiomático Pa(Capítulo 6)

Dedução Natural e Sistema Axiomático Pa(Capítulo 6) Dedução Natural e Sistema Axiomático Pa(Capítulo 6) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Sistemas axiomático Pa 4. Lista

Leia mais

Lógica Matemática UNIDADE I. Professora: M.Sc. Juciara do Nascimento César

Lógica Matemática UNIDADE I. Professora: M.Sc. Juciara do Nascimento César Lógica Matemática UNIDADE I Professora: M.Sc. Juciara do Nascimento César 1 A Lógica na Cultura Helênica A Lógica foi considerada na cultura clássica e medieval como um instrumento indispensável ao pensamento

Leia mais

1 TEORIA DOS CONJUNTOS

1 TEORIA DOS CONJUNTOS 1 TEORIA DOS CONJUNTOS Definição de Conjunto: um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada. Em outras palavras,

Leia mais

Métodos para a construção de algoritmo

Métodos para a construção de algoritmo Métodos para a construção de algoritmo Compreender o problema Identificar os dados de entrada e objetos desse cenário-problema Definir o processamento Identificar/definir os dados de saída Construir o

Leia mais

Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3

Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3 Proposições Lógicas Proposições O principal conceito usado nos estudos da lógica matemática é o de uma proposição. Uma proposição é essencialmente uma afirmação, transmite pensamentos completos, afirmando

Leia mais

Como primeira e indispensável parte da Lógica Matemática temos o Cálculo Proporcional ou Cálculo Sentencial ou ainda Cálculo das Sentenças.

Como primeira e indispensável parte da Lógica Matemática temos o Cálculo Proporcional ou Cálculo Sentencial ou ainda Cálculo das Sentenças. NE-6710 - SISTEMAS DIGITAIS I LÓGICA PROPOSICIONAL, TEORIA CONJUNTOS. A.0 Noções de Lógica Matemática A,0.1. Cálculo Proposicional Como primeira e indispensável parte da Lógica Matemática temos o Cálculo

Leia mais

Universidade do Vale do Rio dos Sinos - UNISINOS. Apostila da Disciplina de. Lógica. Prof. João Carlos Gluz

Universidade do Vale do Rio dos Sinos - UNISINOS. Apostila da Disciplina de. Lógica. Prof. João Carlos Gluz Universidade do Vale do Rio dos Sinos - UNISINOS Apostila da Disciplina de Lógica Prof. João Carlos Gluz São Leopoldo, março de 2009 UNISINOS Lógica Apostila 1 Sumário CAPÍTULO 1 LÓGICA PROPOSICIONAL...1

Leia mais

Lógica Proposicional e Álgebra de Boole

Lógica Proposicional e Álgebra de Boole Lógica Proposicional e Álgebra de Boole A lógica proposicional remonta a Aristóteles, e teve como objectivo modelizar o raciocínio humano. Partindo de frases declarativas ( proposições), que podem ser

Leia mais

OFICINA DA PESQUISA APOSTILA 3 MATEMÁTICA COMPUTACIONAL. Autor do Conteúdo: Prof. Msc. Júlio Cesar da Silva

OFICINA DA PESQUISA APOSTILA 3 MATEMÁTICA COMPUTACIONAL. Autor do Conteúdo: Prof. Msc. Júlio Cesar da Silva OFICINA DA PESQUISA DISCIPLINA: LÓGICA MATEMÁTICA E COMPUTACIONAL APOSTILA 3 MATEMÁTICA COMPUTACIONAL Autor do Conteúdo: Prof. Msc. Júlio Cesar da Silva juliocesar@eloquium.com.br Alterações eventuais

Leia mais

CONTEÚDO LÓGICA FUZZY LÓGICA FUZZY. Proposições Fuzzy. Regras são implicações lógicas. Introdução Introdução, Objetivo e Histórico

CONTEÚDO LÓGICA FUZZY LÓGICA FUZZY. Proposições Fuzzy. Regras são implicações lógicas. Introdução Introdução, Objetivo e Histórico CONTEÚDO Introdução Introdução, Objetivo e Histórico Conceitos ásicos Definição, Características e Formas de Imprecisão Conjuntos Fuzz Propriedades, Formas de Representação e Operações Relações, Composições,

Leia mais

Afirmações Matemáticas

Afirmações Matemáticas Afirmações Matemáticas Na aula passada, vimos que o objetivo desta disciplina é estudar estruturas matemáticas, afirmações sobre elas e como provar essas afirmações. Já falamos das estruturas principais,

Leia mais

Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. Exemplos:

Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. Exemplos: 1 Noções Básicas de Lógica 1.1 Proposições Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. 1. Os sapos são anfíbios. 2. A capital do Brasil é Porto Alegre. 3. O tomate é um tubérculo.

Leia mais

Lógica e Metodologia Jurídica

Lógica e Metodologia Jurídica Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão julianomaranhao@gmail.com Quais sentenças abaixo são argumentos? 1. Bruxas são feitas de madeira.

Leia mais

Uma proposição composta é uma contradição, se for sempre falsa, independentemente do valor lógico das proposições simples que a compõem.

Uma proposição composta é uma contradição, se for sempre falsa, independentemente do valor lógico das proposições simples que a compõem. Tautologia Uma proposição composta é uma tautologia, se for sempre verdadeira, independentemente do valor lógico das proposições simples que a compõem. Exemplos: Contradição Uma proposição composta é uma

Leia mais

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL Atualizado em 12/11/2015 LÓGICA PROPOSICIONAL Lógica é a ciência que estuda as leis do pensamento e a arte de aplicá-las corretamente na investigação e demonstração

Leia mais

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1 Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados

Leia mais

Matemática Régis Cortes. Lógica matemática

Matemática Régis Cortes. Lógica matemática Lógica matemática 1 INTRODUÇÃO Neste roteiro, o principal objetivo será a investigação da validade de ARGUMENTOS: conjunto de enunciados dos quais um é a CONCLUSÃO e os demais PREMISSAS. Os argumentos

Leia mais

Lógica para Computação

Lógica para Computação Universidade Estadual do Rio Grande do Sul - UERGS Unidade de Guaíba Curso de Engenharia em Sistemas Digitais Apostila da Disciplina de Lógica para Computação Prof. João Carlos Gluz Guaíba, 2003 UERGS

Leia mais

RECEITA FEDERAL ANALISTA

RECEITA FEDERAL ANALISTA SENTENÇAS OU PROPOSIÇÕES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (V), ou só como

Leia mais

2 AULA. Conectivos e Quantificadores. lógicas. LIVRO. META: Introduzir os conectivos e quantificadores

2 AULA. Conectivos e Quantificadores. lógicas. LIVRO. META: Introduzir os conectivos e quantificadores 1 LIVRO Conectivos e Quantificadores Lógicos META: Introduzir os conectivos e quantificadores lógicos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Compreender a semântica dos conectivos

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 06 Lógica Proposicional Lógica Proposicional Lógica simples. A sentenças são formadas por conectivos como: e, ou, então.

Leia mais

01/09/2014. Capítulo 1. A linguagem da Lógica Proposicional

01/09/2014. Capítulo 1. A linguagem da Lógica Proposicional Capítulo 1 A linguagem da Lógica Proposicional 1 Introdução O estudo da Lógica é fundamentado em: Especificação de uma linguagem Estudo de métodos que produzam ou verifiquem as fórmulas ou argumentos válidos.

Leia mais

MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP

MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP 1 MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP 2009 02 2 CÁLCULO PROPOSICIONAL 1. Proposições Uma proposição é uma sentença declarativa que pode ser verdade ou falsa, mas

Leia mais

n. 11 Argumentos e Regras de Inferência

n. 11 Argumentos e Regras de Inferência n. 11 Argumentos e Regras de Inferência A lógica formal lida com um tipo particular de argumento, denominado de argumento dedutivo, que nos permite deduzir uma conclusão Q, com base num conjunto de proposições

Leia mais

Filosofia (aula 10) Dimmy Chaar Prof. de Filosofia. SAE

Filosofia (aula 10) Dimmy Chaar Prof. de Filosofia. SAE Filosofia (aula 10) Prof. de Filosofia SAE leodcc@hotmail.com Lógica Tipos de Argumentação Dedução parte-se do Universal para o Particular Tipos de Argumentação Dedução parte-se do Universal para o Particular;

Leia mais

4 AULA. Regras de Inferência e Regras de Equivalência LIVRO. META: Introduzir algumas regras de inferência e algumas regras de equivalência.

4 AULA. Regras de Inferência e Regras de Equivalência LIVRO. META: Introduzir algumas regras de inferência e algumas regras de equivalência. 1 LIVRO Regras de Inferência e Regras de Equivalência 4 AULA META: Introduzir algumas regras de inferência e algumas regras de equivalência. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de:

Leia mais

Lógica e Metodologia Jurídica

Lógica e Metodologia Jurídica Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão julianomaranhao@gmail.com Puzzle 2 pessoas A e B fazem uma oferta um ao outro. O problema é identificar

Leia mais

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico.

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico. CENTRO UNVERSITÁRIO UNA NOÇÕES DE RACIOCÍNIO LÓGICO Professor: Rodrigo Eustáquio Borges A disciplina Lógica Matemática tem como objetivo capacitar o aluno a reconhecer e aplicar os conceitos fundamentais

Leia mais

III. RACIONALIDADE ARGUMEN NTATIVA E FILOSOFIA

III. RACIONALIDADE ARGUMEN NTATIVA E FILOSOFIA III. RACIONALIDADE ARGUMEN NTATIVA E FILOSOFIA 1. Argumentação e Lóg gica Formal 1.1. Distinção validade - verdade 1.2. Formas de Inferên ncia Válida. 1.3. Principais Falácias A Lógica: objecto de estudo

Leia mais

Lógica para computação

Lógica para computação Lógica para computação A SEMÂNTICA DA LÓGICA PROPOSICIONAL Professor Marlon Marcon Após entender como deve ser uma fórmula da Lógica Proposicional, devemos entender como esta deve ser interpretada. Quando

Leia mais

MAT I Solução dos Exercícios para os dias 20, 25 e 27/08/ Simbolize as sentenças a seguir, definindo as letras de proposição usadas.

MAT I Solução dos Exercícios para os dias 20, 25 e 27/08/ Simbolize as sentenças a seguir, definindo as letras de proposição usadas. MAT I 2004-2 Solução dos Exercícios para os dias 20, 25 e 27/08/04 1. Simbolize as sentenças a seguir, definindo as letras de proposição usadas. a. A B, onde A:= Alfredo gosta de dançar e B:= Alfredo gosta

Leia mais

SMA Elementos de Matemática Notas de Aulas

SMA Elementos de Matemática Notas de Aulas Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação SMA 341 - Elementos de Matemática Notas de Aulas Ires Dias Sandra Maria Semensato de Godoy São Carlos 2009 Sumário 1 Noções

Leia mais

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE 1 1. LÓGICA SETENCIAL E DE PRIMEIRA Conceito de proposição ORDEM Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo, seja este verdadeiro ou falso.

Leia mais

Lógica formal. A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação IV) Simbolização 1. Simples 2.

Lógica formal. A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação IV) Simbolização 1. Simples 2. Lógica formal A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação I) Simbolização 1. Simples 2. Composta B)Leis do pensamento I) Princípio da Identidade II) Principio do não-contraditório

Leia mais

Lógica para Computação

Lógica para Computação Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br Linguagem informal x linguagem formal; Linguagem proposicional: envolve proposições e conectivos,

Leia mais

Lógica Proposicional

Lógica Proposicional Slides da disciplina Lógica para Computação, ministrada pelo Prof. Celso Antônio Alves Kaestner, Dr. Eng. (kaestner@dainf.ct.utfpr.edu.br) entre 2007 e 2008. Alterações feitas em 2009 pelo Prof. Adolfo

Leia mais

01/02/2016 LÓGICA MATEMÁTICA. Conectivos lógicos e tabela verdade. Os conectivos lógicos são utilizados para formar novas preposições.

01/02/2016 LÓGICA MATEMÁTICA. Conectivos lógicos e tabela verdade. Os conectivos lógicos são utilizados para formar novas preposições. LÓGICA MATEMÁTICA Prof Esp Fabiano Taguchi fabianotaguchi@gmailcom http://fabianotaguchiwordpresscom Conectivos lógicos e tabela verdade CONECTIVOS LÓGICOS Os conectivos lógicos são utilizados para formar

Leia mais

Aula 04 Operações Lógicas sobre Proposições. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes

Aula 04 Operações Lógicas sobre Proposições. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Aula 04 Operações Lógicas sobre Proposições Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Tabela da Verdade; Operações Lógicas sobre Proposições; Revisando As proposições

Leia mais

Lógica Proposicional. p : Hoje não é sexta-feira. q : Todo homem é mortal. r : Existem pessoas inseguras.

Lógica Proposicional. p : Hoje não é sexta-feira. q : Todo homem é mortal. r : Existem pessoas inseguras. Tópicos Introdução à Lógica Edna A. Hoshino DCT - UFMS fevereiro de 2011 1 Tabela-Verdade Equivalências Proposicionais Formas Normais 2 Variáveis e Predicados Quantificadores 3 para predicados e quantificadores

Leia mais

Linguagem com sintaxe e semântica precisas: lógica. Mecanismo de inferência: derivado da sintaxe e da

Linguagem com sintaxe e semântica precisas: lógica. Mecanismo de inferência: derivado da sintaxe e da istemas de Apoio à Decisão Clínica, 09-1 1 Linguagem com sintaxe e semântica precisas: lógica. Mecanismo de inferência: derivado da sintaxe e da semântica. Importante: distinguir entre os fatos e sua representação

Leia mais

Alfabeto da Lógica Proposicional

Alfabeto da Lógica Proposicional Ciência da Computação Alfabeto da Lógica Sintaxe e Semântica da Lógica Parte I Prof. Sergio Ribeiro Definição 1.1 (alfabeto) - O alfabeto da é constituído por: símbolos de pontuação: (, ;, ) símbolos de

Leia mais

Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática

Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Argumentação em Matemática Prof. Lenimar Nunes de Andrade e-mail: numerufpb@gmail.com ou lenimar@mat.ufpb.br versão 1.0

Leia mais

LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q :

LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q : LÓGICA - 2 Proposições: 1) Recíproca 2) Contrária 3) Contra positiva 1) Proposição recíproca de p q : q p 2) Proposição contrária de p q : ~ p 3) Proposição contra positiva de p q : ~ p ex. Determinar:

Leia mais

Modus ponens, modus tollens, e respectivas falácias formais

Modus ponens, modus tollens, e respectivas falácias formais Modus ponens, modus tollens, e respectivas falácias formais Jerzy A. Brzozowski 28 de abril de 2011 O objetivo deste texto é apresentar duas formas válidas de argumentos o modus ponens e o modus tollens

Leia mais

2 Lógica Fuzzy. 2 Lógica Fuzzy. Sintaxe da linguagem

2 Lógica Fuzzy. 2 Lógica Fuzzy. Sintaxe da linguagem 2 Lógica Fuzzy 2.1 Cálculo proposicional (lógica proposicional) 2.2 Lógica de Predicados 2.3 Lógica de múltiplos valores 2.4 Lógica Fuzzy Proposições fuzzy Inferência a partir de proposições fuzzy condicionais

Leia mais

CAPÍTULO I. Lógica Proposicional

CAPÍTULO I. Lógica Proposicional Lógica Proposicional CAPÍTULO I Lógica Proposicional Sumário: 1. Lógica proposicional 2. Proposição 2.1. Negação da proposição 2.2. Dupla negação 2.3. Proposição simples e composta 3. Princípios 4. Classificação

Leia mais

LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014

LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 1) Determinar o valor verdade da proposição (p q) r, sabendo-se que AL (p) =, AL (q) = e AL (r) =. Proposições são afirmações que podem ser julgadas como verdadeira

Leia mais

A semântica da Lógica Proposicional(Capítulo 2)

A semântica da Lógica Proposicional(Capítulo 2) A semântica da Lógica Proposicional(Capítulo 2) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Interpretação 2. Semântica dos conectivos 3. Exemplos 4. Questão desafio

Leia mais

Lóg L ica M ca at M em e ática PROF.. J EAN 1

Lóg L ica M ca at M em e ática PROF.. J EAN 1 Lógica Matemática PRO. JEAN 1 LÓGICA MATEMÁTICA - CONTEÚDO Definição de Termo e Proposição alor Lógico Proposição Simples e Proposição Composta Conectivos Tabela-erdade 2 LÓGICA MATEMÁTICA INTRODUÇÃO ao

Leia mais

Lógica Computacional

Lógica Computacional Lógica Computacional Modus Ponens e Raciocínio Hipotético Introdução e eliminação da Implicação e da Equivalência Completude e Coerência do Sistema de Dedução Natural 24 Outubro 2016 Lógica Computacional

Leia mais

Lógica Proposicional Fórmulas e Precedência de Operadores

Lógica Proposicional Fórmulas e Precedência de Operadores Lógica Proposicional Fórmulas e Precedência de Operadores Prof. Marcos A. Schreiner Disciplina de Introdução à Lógica 23 de março de 2015 Prof. Marcos A. Schreiner (UFPR) 23 de março de 2015 1 / 18 1 Introdução

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial INF 1771 Inteligência Artificial Aula 06 Lógica Proposicional Edirlei Soares de Lima Lógica Proposicional Lógica muito simplificada. A sentenças são formadas por conectivos como:

Leia mais

Gestão Empresarial Prof. Ânderson Vieira

Gestão Empresarial Prof. Ânderson Vieira NOÇÕES DE LÓGICA Gestão Empresarial Prof. Ânderson ieira A maioria do texto apresentado neste arquivo é do livro Fundamentos de Matemática Elementar, ol. 1, Gelson Iezzi e Carlos Murakami (eja [1]). Algumas

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Fundamentos de Lógica No nosso dia a dia, usamos todo o tipo de frases: Cinco é menor

Leia mais

Fundamentos 1. Lógica de Predicados

Fundamentos 1. Lógica de Predicados Fundamentos 1 Lógica de Predicados Predicados e Quantificadores Estudamos até agora a lógica proposicional Predicados e Quantificadores Estudamos até agora a lógica proposicional A lógica proposicional

Leia mais

Lógica de Programação

Lógica de Programação Lógica de Programação Autor: Jusdewbe Tatiane de Souza Mora 1 Introdução: LÓGICA O estudo da Lógica, é o estudo dos métodos e princípios usados para distinguir o raciocínio correto do incorreto. Esta definição

Leia mais

Matemática Discreta - Exercícios de Lógica. 1. Diga que relações lógicas existem entre as seguintes proposições:

Matemática Discreta - Exercícios de Lógica. 1. Diga que relações lógicas existem entre as seguintes proposições: 1. Diga que relações lógicas existem entre as seguintes proposições: (a) Todos os marcianos falam inglês. (b) Todos os marcianos não falam inglês. (c) Nenhum marciano fala inglês. (d) Alguns marcianos

Leia mais