LÓGICA PROPOSICIONAL

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "LÓGICA PROPOSICIONAL"

Transcrição

1 FACULDADE PITÁGORAS Curso Superior em Tecnologia Redes de Computadores e Banco de dados Matemática Computacional Prof. Ulisses Cotta Cavalca LÓGICA PROPOSICIONAL Belo Horizonte/MG 2014

2 1. ELEMENTO DA LINGUAGEM INFORMAL E OUTROS TÓPICOS FRASE é o elemento de comunicação que relaciona palavras entre si de modo a estabelecer uma mensagem com sentido completo: Declarativa: O sol é uma estrela Imperativa: Não faça isto! Interrogativa: Onde você mora? Exclamativa: Parabéns!!! PROPOSIÇÃO é uma frase declarativa a qual pode ser atribuído, sem ambiguidade, um dos valores lógicos: Verdadeiro (V) ou Falso (F). Exemplos: O Japão fica na África O Brasil não é uma ilha 3+4=7 Não são preposições: 3+4 (não tem predicado) onde você vai? (interrogativa) Proposições serão representadas por letras minúsculas do nosso alfabeto: p: O México fica na América do Norte q: O número 16 é primo. CONECTIVOS LÓGICOS, ou operadores lógicos, são palavras ou expressões que se usam para formar novas proposições a partir de outras preposições: não (negação) e (conjunção) ou (disjunção) se então (condicional) se, e somente se (bicondicional)

3 VALOR LÓGICO de uma preposição é a verdade (V) se a preposição for verdadeira e é a falsidade (F) se a proposição for falsa: p: O sol é verde V(p)=F q: Um hexágono tem seis lados V(q)=V r: 2 é raiz da equação x² + 3x 4 = 0 V(p)=F PRINCÍPIOS FUNDAMENTAIS DA LÓGICA Princípio da não contradição: Uma proposição não pode ser simultaneamente verdadeira (V) e falsa (F). Princípio do terceiro excluído: Toda preposição ou só é verdadeira (V) ou só é falsa (F). Logo, toda preposição admite um e um só dos valores V e F. REPRESENTAÇÃO DE PROPOSIÇÕES LÓGICAS Proposições lógicas podem ser representadas através de diagramas de árvores ou de tabelas verdade. Seja a proposição P composta por p: P(p) Diagrama em árvore V p F Tabela verdade p V F Seja a proposição P composta por p e q: P(p,q) p Diagrama em árvore V V q F F V q F Tabela verdade p q V V V F F V F F

4 2. OPERAÇÕES LÓGICAS SOBRE PROPOSIÇÕES 2.1 NEGAÇÃO Apresenta valor lógico oposto ao da proposição dada. Seja a proposição p, a negação da proposição dada será ~p, as vezes também denotada por p (lê-se não p). Tabela verdade p ~p V F F V p: O sol é uma planeta ~p: O sol não é um planeta q: 2+3 = 5 ~q: Negar uma preposição p não é apenas afirmar algo diferente do que p afirma, ou algo com o valor lógico diferente: A proposição O sol é uma estrela (que é verdadeira) não é negação da O sol é um planeta (que é falsa). 2.2 CONJUNÇÃO Apresenta valor lógico se, e somente se, cada componente for verdadeira. Duas proposições p e q podem ser combinadas pelo conectivo e para firmas uma proposição composta denominada conjunção das proposições originais. Denota-se p^q (lê-se p e q). Tabela verdade p q p^q V V V V F F F V F F F F p: Carlos estuda matemática; q: Calor joga xadrez p^q: Carlos estuda matemática e joga xadrez p: 2>0; q: 2 5 p^q: 2>0 e DISJUNÇÃO Pode traduzir tanto a ideia de hipótese mutuamente exclusiva (ou ocorre isto ou aquilo) quanto a de que pelo menos uma das hipóteses ocorre: Sejam p e q duas proposições combinadas pelo conectivo ou, para formar uma proposição composta denominada disjunção. Denota-se p V q (lê-se p ou q). A disjunção inclusa de duas proposições (p V q) é false se, e somente se, todas as componentes forem falsas.

5 Tabela verdade p q p v q V V V V F V F V V F F F seguir: Determinar o valor lógico da proposição composta P dada a p: 3<π (pi) (verdadeiro: V) q: 2 não é primo (falso: F) P(p,q) = p V q V(P)=F Disjunção exclusiva Seja o exemplo: P(p,q): Pedro passará nos exames ou repetirá de ano. p: Pedro passará nos exames. q: Pedro repetirá de ano. A proposição P será verdadeira somente nos casos em que p e q forem verdadeiros. No caso o exemplo é falso, se Pedro passará nos exames e repetirá de ano. 2.4 CONDICIONAL Dadas duas proposições p e q, o conectivo lógico se, então estabelece uma relação condicional, traduzindo uma ideia de antecedência e consequência. Notação: p q (Lê-se p então q) Tabela verdade p q p v q V V V V F F F V V F F V A proposição condicional Se chove, então a rua fica molhada, também pode ser lida das seguintes formas: Chover é uma condição suficiente para a rua ficar molhada. A rua ficar molhada é uma condição necessária quando chove. De um modo geral, p q só é falso quando p é verdadeiro e q é falso. Outros exemplos: 1) Dadas as proposições p: 1litro = 1 dm³ q: 1mL = 1cm³ p q: Se 1L = dm³ então 1mL = 1cm³

6 2) Dada as proposições: p: Chove q: Faz Frio p q: Se chove, então faz frio. 2.5 BICONDICIONAL Dadas duas proposições p e q, o conectivo lógico se, e somente se estabelece uma relação bi condicional, traduzindo uma ideia de antecedência e consequência se satisfazem mutuamente. Ou outras palavaras: p é condição necessária e suficiente para q. q é condição necessária e suficiente para p. Notação: p q (Lê-se: p se, e somente se q) Tabela verdade p q p v q V V V V F F F V F F F V Dadas as proposições: p: 2 Q q: 2 1 p q: 2 Q se, e somente se 2 1 Dada as proposições: p: Perereca se transforma em sapo. q: Sapo se transforma em príncipe p q: Perereca se transforma em sapo se, e somente se sapo se transforma em príncipe. De um modo geral, p q só é verdadeiro quando V(p) = V(q) 2.6 PRIORIDADE DE CONJUNÇÕES LÓGICAS Em geral será emprego parêntese para especificar ordem e agrupamento de conjunções lógicas. De um modo geral, a tabela a seguir ilustra tais prioridades. Operador Prioridade ~ 1 ^ 2 V A conjunção tem prioridade sobre a disjunção: p ^ q v r é o mesmo que (p ^ q) v r Outra regra afirma que, conjunção e disjunção tem prioridade sobre condicional e bicondicional. p ^ q r é o mesmo que (p ^ q) r

7 3. TAUTOLOGIAS, CONTRADIÇÃOE INDETERMINAÇÃO 3.1 Tautologia Dada um proposição composta P(p 1,p 2,,p n ), definiremos como TAUTOLOGIA quando o V(P) (valor de P) sempre for verdade (V). Exemplo: Exemplo: p ~p p v ~p V F V F V V p: Chove. Chove ou não chove. 3.2 Contradição Dada um proposição composta P(p 1,p 2,,p n ), definiremos como CONTRADIÇÃO quando o V(P) (valor de P) sempre for falsidade (F). Exemplo: Exemplo: p ~p p ^ ~p V F V F V V p: Chove. Chove e não chove. 3.3 Indeterminação Dada um proposição composta P(p 1,p 2,,p n ), P será INDETERMINADA (ou contingente) se, e somente se, P não for uma tautologia e não for uma contradição.

8 4. IMPLICAÇÃO E EQUIVALÊNCIA LÓGICA Dada as proposições compostas P e Q, diz-se que ocorre uma implicação lógica (ou relação de implicação) entre P e Q quando a proposição condicional P Q é uma tautologia. Notação P ==> Q (Lê-se P implica Q) Exemplo: Mostrar que (p^q) ==> p p q p ^ q (p ^ q) p V V V V V F F V F V F V F F F V Dadas as proposições compostas P e Q, diz-se que ocorre uma equivalência lógica entre P e Q quando suas tabelas verdade forem idênticas. Notação: P Q ou P <==> Q (Lê-se P é equivalente a Q). Exemplo: Mostrar que (p q)^(q p) e p q são equivalentes. p q p q q p (p q)^(q p) p q V V V V V V V F F V F F F V V F F F F F V V V V 4.1 Negação da negação Dada as proposições p e ~(~p). p ~p ~(~p) V F V F V F Conclusão: ~(~p) p

9 4.2 Negação da conjunção Dada as proposições ~(p^q) e ~pv~q p q p^q ~(p^q) ~p ~q ~pv~q V V V F F F F V F F V F V V F V F V V F V F F F V V V V Conclusão: ~(p^q) ~pv~q 4.3 Negação da disjunção Dada as proposições ~(pvq) e ~p^~q p q pvq ~(pvq) ~p ~q ~p^~q V V V F F F F V F V F F V F F V V F V F F F F F V V V V Conclusão: ~(p^q) ~pv~q 4.4 Negação do Condicional Dada as proposições p q e ~(p^~q). p q p q ~q p^~q ~(p^~q) V V V F F V V F F V V F F V V F F V F F V V F V Conclusão: p q ~(p^~q)

10 5. EQUIVALÊNCIAS LÓGICAS NOTÁVEIS Referências Dupla negação Leis idempotentes Leis Comutativas Leis Associativas Leis Distributivas Leis de De Morgan Leis de Identidade Leis Complementares Condicional Bicondicional p, q, r proposições τ - tautologia γ - contradição ~(~p) p p ^ p p p V p p p ^ q q ^ p p V q q V p p ^ (q ^ r) (p ^ q) ^ r p V (q V r) (p V q) V r p V (q ^ r) (p V q) ^ (p V r) p ^ (q V r) (p ^ q) V (p ^ r) ~(p V q) ~p ^ ~q ~(p ^ q) ~p V ~q p V γ p p ^ γ γ p ^ τ p p V τ τ p V ~p τ p ^ ~p γ ~τ γ ~γ τ p q ~(p^~q) ~pvq p q ~q ~p (Contrapositiva) ~(p q) p^~q p q (p q) ^ (q p) ~(p q) p ~q ~p q

11 6. ARGUMENTOS No contexto da matemática computacional, podemos definir argumentar como o ato de estabelecer relação entre proposição dadas e uma conclusão. Definição: Sejam P 1,..., P n n 1 proposições quaisquer (simples ou compostas). Chama-se argumento a sequência finita de proposições P 1,..., P n n 1 que tem como consequência a proposição C. As proposições P 1,..., P n n 1 chamam-se premissas do argumento, e a proposição C chama-se conclusão do argumento. Uma argumentação com premissas P 1,..., P n com conclusão C indicamos por: P 1,..., P n C Lê-se: P 1,..., P n acarretam C ; P 1,...,P n, logo C ; P 1,..., P n, então C ; Definição: Um argumento P 1,...,P n C é válido se, e somente se a conclusão for verdadeira sempre que as premissas P 1,...,P n forem verdadeiras. Definição: Um argumento não-válido chama-se sofisma ou falácia. Definição: Silogismo é um argumento formado por duas premissas e uma conclusão. Para análise de argumenta a partir de diagramas de Euler-Venn, seguem os exemplos: Todos os homens são mortais Sócrates é homem. Logo, Sócrates é mortal Argumento é válido!. S H M

12 Todos os brasileiros são felizes Todos os paulistas são brasileiros Logo, todos os paulistas são felizes Argumento é válido! P B F Alguns animais podem raciocinar O homem é um animal Logo, o homem pode raciocinar Argumento é sofisma! A.H.H R Em algumas situações, o uso do diagrama de Euler-Venn torna-se inadequado para a análise de argumentos. Dessa forma será utilizada a lógica proposicional, junto com a tabela-verdade, para o estudo de argumentos. Teorema: O argumento P 1,...,P n C é válido se, e somente se o condicional P 1,...,P n C é uma tautologia. Exemplos: 1) O argumento (p q), (r s), (p V r) (q V s) corresponde ao condicional ( (p q) ^ (r s) ^ (p V r) ) (q V s) 2) O condicional ( (p q) ^ p ) q corresponde ao argumento ( (p q), p ) q

13 3) Determine a validade do argumento: P1: Se um homem é solteiro, ele é infeliz P2: Se um homem é infeliz, ele morre cedo. C: Logo, solteiros morrem cedo Considere as seguintes proposições: p: homem é solteiro; q: homem é infeliz; r: homem morre cedo. O argumento pode ser representado da seguinte forma P1, P2 C Com o proposicional P1 ^ P2 C; ((p q) ^ (q r)) (p r) Construindo a tabela-verdade: p q r P1: (p q) P2: (q r) P1 ^ P2 C: (p r) (P1 ^ P2) C V V V V V V V V V V F V F F F V V F V F V F V V V F F F V F F V F V V V V V V V F V F V F F V V F F V V V V V V F F F V V V V V Como P1 ^ P2 C é uma tautologia, o argumento P1, P2 C é válido

14 7. QUANTIFICADORES No estudo da lógica, o uso dos quantificadores impõe a ideia de quantidade (ou quantificação ) na criação de proposições lógicas. Enquanto que na linguagem normal empregamos as palavras muitos, todos, alguns, nenhum e poucos, na matemática formal recorreremos à dois tipos de quantificação: universal: um predicado (proposição ou sentença) é válido para todos os elementos em consideração; existencial: representa a existência de um ou mais elemento que validam um predicado (proposição ou sentença). Os quantificadores serão aplicados considerando os possíveis valores de uma variável, ao qual denominaremos de domínio (conjunto D). Dessa forma, a proposição será da seguinte forma: x D, P x ou x D, P x DEFINIÇÃO: A quantificação universal de P(x) é a afirmação: P(x) é valida para todos os valores de x do domínio. A notação x P x indica a quantificação universal de P x. Aqui é chamado de quantificador universal. Lemos x P x como para todo x P(x). Um exemplo para o qual P(x) é falsa é chamado de contra-exemplo para x P x. DEFINIÇÃO: A quantificação existencial de P(x) é a proposição: Existe um elemento x no domínio tal que P(x) Usamos a notação x P x para a quantificação existencial de P x é chamado de quantificador existencial. P x. Aqui Em síntese: Sentença Quando é verdadeira Quando é falsa x P x P(x) é verdadeira para todo x Existe um x tal que P(x) é falsa x P x Existe um x tal que P(x) é verdadeira P(x) é falsa para todo x Para mostrar que uma proposição da forma x D, P x é falsa, basta mostrar a que a sua negação x D, P x. Assim definimos um contra-exemplo.

15 Em síntese: Sentença x D, P x x D, P x Sentença negada x D, P x x D, P x x D, P x x D, P x Exemplo 1 Seja P(x) a declaração x+1>x. Qual é o valor-verdade da quantificação x P x, no domínio de todos os números reais?? Como P(x) é verdadeira para todo número real x, a quantificação x P x é verdadeira. Exemplo 2 Qual o valor verdade de x P x, em que P(x) é a proposição x² < 10, e o domínio é o conjunto dos inteiros positivos menores que 5? Se for falsa, qual é o seu contra exemplo A declaração x P x é o mesmo que a conjunção P 1 P 2 P 3 P 4, pois o domínio é formado por esses quatro elementos. Para x=4, P 4 : Dessa forma x P x é falsa, e x=4 é o contra exemplo. Exemplo 3 Qual o valor verdade de x D, P x, em que P(x) é a proposição x² > 10, e o domínio é o conjunto dos inteiros positivos menores que 5? A declaração x P x é o mesmo que a conjunção P 1 P 2 P 3 P 4, pois o domínio é formado por esses quatro elementos. Para x=4, P 4 :16 10 e x P x é verdadeira.

16 8. REGRAS DE INFERÊNCIAS Em algumas situações, verificar a validade de alguns argumentos por tabela verdade pode demanda certo esforço. Dessa forma, recorremos às chamadas regras de inferência para validade de alguns argumentos relativamente simples. A tabela a seguir ilustra algumas regras de inferência: Regra de inferência Tautologia p p q q q p q p p q q r p r p q p q p p q p q p p q p q p q p r q r p p q q q p q p p q q r p r p q p q p p q p q p p q p q p q p r q r Nome Modus ponens Modus tollens Silogismo hipotético Silogismo disjuntivo Adição Simplificação Conjunção Resolução Exemplo 1 Qual a regra de inferência para o seguinte argumento: Está esfriando e chovendo agora. Portanto, está esfriando agora. p: Está esfriando q: Está chovendo P1: p q Está esfriando e chovendo agora C : p Portanto está esfriando Argumento que usa regra de simplificação

17 E para estes casos... Qual a regra de inferência para o seguinte argumento: W3 chover, então não haverá churrasco hoje. Se não houver churrasco hoje, haverá amanhã. Portanto, se chover hoje, então haverá churrasco churrasco amanhã Regra do silogismo hipotético Está esfriando agora. Portanto, está esfriando ou chovendo agora Regra da adição Se nevar hoje, então eu vou esquiar. Está nevando hoje. Portanto, eu vou esquiar Regra modus ponens Notas de aulas retirada de: CURY, Márcia Xavier: Introdução à lógica (Estude e use. Série matemática), São Paulo. Editora Érica, ROSEN, Kenneth H.: Matemática Discreta e Suas Aplicações, São Paulo. Editora McGraw Hill, 2009.

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico.

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico. CENTRO UNVERSITÁRIO UNA NOÇÕES DE RACIOCÍNIO LÓGICO Professor: Rodrigo Eustáquio Borges A disciplina Lógica Matemática tem como objetivo capacitar o aluno a reconhecer e aplicar os conceitos fundamentais

Leia mais

ANÁLISE MATEMÁTICA I. Curso: EB

ANÁLISE MATEMÁTICA I. Curso: EB ANÁLISE MATEMÁTICA I (com Laboratórios) Curso: EB Lógica - Resumo Ana Matos DMAT Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a qualquer sequência de símbolos.

Leia mais

Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO

Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO Inteligência Artificial IA Prof. João Luís Garcia Rosa II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO 2004 Representação do conhecimento Para representar o conhecimento do mundo que um sistema

Leia mais

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1 Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados

Leia mais

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa.

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa. Tema 1 Lógica e Teoria dos Conjuntos 1. Proposições e valores lógicos. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira

Leia mais

Para provar uma implicação se p, então q, é suficiente fazer o seguinte:

Para provar uma implicação se p, então q, é suficiente fazer o seguinte: Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que

Leia mais

Matemática Régis Cortes. Lógica matemática

Matemática Régis Cortes. Lógica matemática Lógica matemática 1 INTRODUÇÃO Neste roteiro, o principal objetivo será a investigação da validade de ARGUMENTOS: conjunto de enunciados dos quais um é a CONCLUSÃO e os demais PREMISSAS. Os argumentos

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP

MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP 1 MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP 2009 02 2 CÁLCULO PROPOSICIONAL 1. Proposições Uma proposição é uma sentença declarativa que pode ser verdade ou falsa, mas

Leia mais

Noções básicas de Lógica

Noções básicas de Lógica Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a uma sequências de símbolos. Uma expressão pode ser uma expressão com significado expressão sem significado

Leia mais

RECEITA FEDERAL ANALISTA

RECEITA FEDERAL ANALISTA SENTENÇAS OU PROPOSIÇÕES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (V), ou só como

Leia mais

Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade

Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade Resumo de Filosofia Capítulo I Argumentação e Lógica Formal Validade e Verdade O que é um argumento? Um argumento é um conjunto de proposições em que se pretende justificar ou defender uma delas, a conclusão,

Leia mais

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior Lógica Formal Matemática Discreta Prof. Vilson Heck Junior vilson.junior@ifsc.edu.br Objetivos Utilizar símbolos da lógica proposicional; Encontrar o valor lógico de uma expressão em lógica proposicional;

Leia mais

Lógica e Metodologia Jurídica

Lógica e Metodologia Jurídica Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão julianomaranhao@gmail.com Quais sentenças abaixo são argumentos? 1. Bruxas são feitas de madeira.

Leia mais

Lógica de Programação

Lógica de Programação Lógica de Programação Autor: Jusdewbe Tatiane de Souza Mora 1 Introdução: LÓGICA O estudo da Lógica, é o estudo dos métodos e princípios usados para distinguir o raciocínio correto do incorreto. Esta definição

Leia mais

Unidade I LÓGICA. Profa. Adriane Paulieli Colossetti

Unidade I LÓGICA. Profa. Adriane Paulieli Colossetti Unidade I LÓGICA Profa. Adriane Paulieli Colossetti O que é lógica A lógica ensina a colocar ordem no pensamento. Sistemas Dicotônicos Proposições: São sentenças declarativas, que satisfazem três princípios

Leia mais

Lógica para Computação

Lógica para Computação Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br Linguagem informal x linguagem formal; Linguagem proposicional: envolve proposições e conectivos,

Leia mais

Matemática para controle:

Matemática para controle: Matemática para controle: Introdução à Lógica Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro amit@nacad.ufrj.br http://www.nacad.ufrj.br/ amit Introdução

Leia mais

Prof. Jorge Cavalcanti

Prof. Jorge Cavalcanti Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Lógica para computação - Linguagem da Lógica de Predicados

Lógica para computação - Linguagem da Lógica de Predicados DAINF - Departamento de Informática Lógica para computação - Linguagem da Lógica de Predicados Prof. Alex Kutzke ( http://alex.kutzke.com.br/courses ) 13 de Outubro de 2015 Razões para uma nova linguagem

Leia mais

CCAE. Lógica Aplicada a Computação - Cálculo Proposicional - Parte I. UFPB - Campus IV - Litoral Norte. Centro de Ciências Aplicadas e Educação

CCAE. Lógica Aplicada a Computação - Cálculo Proposicional - Parte I. UFPB - Campus IV - Litoral Norte. Centro de Ciências Aplicadas e Educação CCAE Centro de Ciências Aplicadas e Educação UFPB - Campus IV - Litoral Norte Lógica Aplicada a Computação - Cálculo Proposicional - Parte I Estes slides foram criados pelo Professor Alexandre Duarte Para

Leia mais

LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q :

LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q : LÓGICA - 2 Proposições: 1) Recíproca 2) Contrária 3) Contra positiva 1) Proposição recíproca de p q : q p 2) Proposição contrária de p q : ~ p 3) Proposição contra positiva de p q : ~ p ex. Determinar:

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO SENTENÇAS OU PROPOSIÇÕES MODIICADORES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (),

Leia mais

Lóg L ica M ca at M em e ática PROF.. J EAN 1

Lóg L ica M ca at M em e ática PROF.. J EAN 1 Lógica Matemática PRO. JEAN 1 LÓGICA MATEMÁTICA - CONTEÚDO Definição de Termo e Proposição alor Lógico Proposição Simples e Proposição Composta Conectivos Tabela-erdade 2 LÓGICA MATEMÁTICA INTRODUÇÃO ao

Leia mais

Apostilas OBJETIVA Ano X - Concurso Público Conteúdo

Apostilas OBJETIVA Ano X - Concurso Público Conteúdo Conteúdo Introdução Estruturas lógicas. 2 Lógica de argumentação: analogias, inferências, deduções e conclusões. 3 Lógica sentencial (ou proposicional). 3.1 Proposições simples e compostas. 3.2 Tabelas-verdade.

Leia mais

SMA Elementos de Matemática Notas de Aulas

SMA Elementos de Matemática Notas de Aulas Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação SMA 341 - Elementos de Matemática Notas de Aulas Ires Dias Sandra Maria Semensato de Godoy São Carlos 2009 Sumário 1 Noções

Leia mais

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG Matemática Discreta Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Tautologias Tautologia é uma fórmula proposicional que é verdadeira para todos os possíveis valores-verdade

Leia mais

Ló gica. Para Concursos Públicos. Professor Luiz Guilherme

Ló gica. Para Concursos Públicos. Professor Luiz Guilherme Ló gica Para Concursos Públicos Professor Luiz Guilherme 2014 1 Lógica Para Concursos Públicos Proposição... 2 Valor Lógico das Proposições... 2 Axiomas da Lógica... 2 Tabela Verdade:... 3 Conectivos:...

Leia mais

Concurso Público Conteúdo

Concurso Público Conteúdo Concurso Público 2016 Conteúdo Estrutura lógica de relações arbitrárias entre pessoas, lugares, objetos ou eventos fictícios; deduzir novas informações das relações fornecidas e avaliar as condições usadas

Leia mais

Raciocínio lógico matemático

Raciocínio lógico matemático Raciocínio lógico matemático Unidade 2: Introdução à lógica Seção 2.3 Equivalências, contradições e tautologias 1 Proposições compostas Composta de duas ou mais proposições simples Tanto a primeira como

Leia mais

Raciocínio lógico matemático

Raciocínio lógico matemático Raciocínio lógico matemático Unidade 2: Introdução à lógica Seção 2.1: O que é a lógica? 1 Lógica Parte da filosofia que trata das formas do pensamento em geral e das operações intelectuais que visam determinar

Leia mais

Lógica Proposicional. p : Hoje não é sexta-feira. q : Todo homem é mortal. r : Existem pessoas inseguras.

Lógica Proposicional. p : Hoje não é sexta-feira. q : Todo homem é mortal. r : Existem pessoas inseguras. Tópicos Introdução à Lógica Edna A. Hoshino DCT - UFMS fevereiro de 2011 1 Tabela-Verdade Equivalências Proposicionais Formas Normais 2 Variáveis e Predicados Quantificadores 3 para predicados e quantificadores

Leia mais

A Lógica Matemática se ocupa da análise e relações entre certas sentenças, quase sempre de conteúdo matemático, chamadas proposições.

A Lógica Matemática se ocupa da análise e relações entre certas sentenças, quase sempre de conteúdo matemático, chamadas proposições. Capítulo 1 CÁLCULO PROPOSICIONAL 1. PROPOSIÇÕES E CONECTIVOS A Lógica Matemática se ocupa da análise e relações entre certas sentenças, quase sempre de conteúdo matemático, chamadas proposições. Uma proposição

Leia mais

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL Atualizado em 12/11/2015 LÓGICA PROPOSICIONAL Lógica é a ciência que estuda as leis do pensamento e a arte de aplicá-las corretamente na investigação e demonstração

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial INF 1771 Inteligência Artificial Aula 06 Lógica Proposicional Edirlei Soares de Lima Lógica Proposicional Lógica muito simplificada. A sentenças são formadas por conectivos como:

Leia mais

Algoritmia e Programação APROG. Algoritmia 1. Lógica Proposicional (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12

Algoritmia e Programação APROG. Algoritmia 1. Lógica Proposicional (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12 APROG Algoritmia e Programação Algoritmia 1 Lógica (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12 Sumário Lógica Qual é o interesse para a algoritmia? O que é? Cálculo (Noções Básicas) Operações

Leia mais

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA:

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (18 de setembro a 17 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Inclusão Operações com conjuntos

Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Inclusão Operações com conjuntos Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Є (pertence) ou Є (não pertence) Sempre verificando de elemento para conjunto { } ou Ø = vazio {Ø} = conjunto com elemento vazio

Leia mais

Lógica Proposicional

Lógica Proposicional Slides da disciplina Lógica para Computação, ministrada pelo Prof. Celso Antônio Alves Kaestner, Dr. Eng. (kaestner@dainf.ct.utfpr.edu.br) entre 2007 e 2008. Alterações feitas em 2009 pelo Prof. Adolfo

Leia mais

Silogismos Categóricos e Hipotéticos

Silogismos Categóricos e Hipotéticos Silogismos Categóricos e Hipotéticos Resumo elaborado por Francisco Cubal Apenas para publicação em Resumos.tk Primeiros objectivos a alcançar: Reconhecer os quatro tipos de proposições categóricas. Enunciar

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Teoria de Conjuntos Um conjunto é uma colecção de objectos/elementos/membros. (Cantor

Leia mais

1. = F; Q = V; R = V.

1. = F; Q = V; R = V. ENADE 2005 e 2008 Nas opções abaixo, representa o condicional material (se...então...), v representa a disjunção (ou um, ou outro, ou ambos) e ~ representa a negação (não). Com o auxílio de tabelas veritativas,

Leia mais

Quantificadores, Predicados e Validade

Quantificadores, Predicados e Validade Quantificadores, Predicados e Validade Quantificadores e Predicados Fbfs proposicionais tem uma possibilidade limitada de expressão. Exemplo: Para todo x, x > 0 Ela não pode ser simbolizada adequadamente

Leia mais

Lógica: Quadrado lógico:

Lógica: Quadrado lógico: Lógica: 1. Silogismo aristotélico: Podemos encara um conceito de dois pontos de vista: Extensão a extensão é um conjunto de objectos que o conceito considerado pode designar ou aos quais ele se pode aplicar

Leia mais

IMPLICAÇÃO LÓGICA. Prof.: Rafael Dias Ribeiro,M.Sc.

IMPLICAÇÃO LÓGICA. Prof.: Rafael Dias Ribeiro,M.Sc. IMPLICAÇÃO LÓGICA Prof.: Rafael Dias Ribeiro,M.Sc. Imlicação Lógica O rocesso de inferência automática oderia ser realizado utilizando-se tabelas-verdade, mas esta seria uma estratégia lenta e que ocuaria

Leia mais

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula /

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula / 1 www.romulopassos.com.br / www.questoesnasaude.com.br GRATUITO RACIOCÍNIO LÓGICO - EBSERH Professor Paulo Henrique PH Aula 02 R A C I O C Í N I O L Ó G I C O E B S E R H a u l a 0 2 Página 1 2 www.romulopassos.com.br

Leia mais

2 AULA. Conectivos e Quantificadores. lógicas. LIVRO. META: Introduzir os conectivos e quantificadores

2 AULA. Conectivos e Quantificadores. lógicas. LIVRO. META: Introduzir os conectivos e quantificadores 1 LIVRO Conectivos e Quantificadores Lógicos META: Introduzir os conectivos e quantificadores lógicos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Compreender a semântica dos conectivos

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial INF 1771 Inteligência Artificial Aula 07 Agentes Lógicos Edirlei Soares de Lima Introdução Humanos possuem conhecimento e raciocinam sobre este conhecimento. Exemplo: João jogou

Leia mais

MARATONA INSS. Prof. Josimar Padilha

MARATONA INSS. Prof. Josimar Padilha MARATONA INSS Prof. Josimar Padilha Mariana é uma estudante que tem grande apreço pela matemática, apesar de achar essa uma área muito difícil. Sempre que tem tempo suficiente para estudar, Mariana é aprovada

Leia mais

LÓGICA. CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas.

LÓGICA. CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas. LÓGICA 1. PROPOSIÇÃO CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas. Por exemplo: 2 é um número primo. Resposta: É uma proposição verdadeira

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 6: Semântica da Lógica Proposicional Departamento de Informática 3 de Março de 2011 Motivação Expressividade Os conectivos são independentes? Definiu-se a Lógica Proposicional com os símbolos

Leia mais

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues As respostas encontram-se em itálico. 1. Quais das frases a seguir são sentenças? a. A lua é feita de queijo verde. erdadeira, pois é uma

Leia mais

Este material se compõe de exercícios de Lógica relacionadas as disciplinas de Fundamentos de Matemática e Matemática Discreta..

Este material se compõe de exercícios de Lógica relacionadas as disciplinas de Fundamentos de Matemática e Matemática Discreta.. This is page i Printer: Opaque this 1 Lógica Este material se compõe de exercícios de Lógica relacionadas as disciplinas de Fundamentos de Matemática e Matemática Discreta.. 1.1 Tabela Verdade 1. (FM-2003)

Leia mais

RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS

RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS Aula 02 TEORIA DOS CONJUNTOS 1. Definição de Conjuntos 2. Como se representa um Conjunto 3. Subconjunto, Pertinência e Continência 4. Conjunto das Partes 5. Operação com Conjuntos 1. União ou Reunião (Conjunção)

Leia mais

O estudo de lógica é o estudo dos métodos e princípios usados para distinguir o raciocínio correto do incorreto.

O estudo de lógica é o estudo dos métodos e princípios usados para distinguir o raciocínio correto do incorreto. 1 Introdução à Lógica Matemática O que é lógica? As palavras lógica e lógico nos são familiares. Falamos freqüentemente de comportamento lógico, de explicação lógica em contraste com comportamento ilógico,

Leia mais

Lógica das Proposições

Lógica das Proposições Lógica das Proposições Transcrição - Podcast 1 Professor Carlos Mainardes Olá eu sou Carlos Mainardes do blog Matemática em Concursos, e esse material que estou disponibilizando trata de um assunto muito

Leia mais

Lógica Fuzzy. Conectivos e Inferência. Professor: Mário Benevides. Monitores: Bianca Munaro Diogo Borges Jonas Arêas Renan Iglesias Vanius Farias

Lógica Fuzzy. Conectivos e Inferência. Professor: Mário Benevides. Monitores: Bianca Munaro Diogo Borges Jonas Arêas Renan Iglesias Vanius Farias Lógica Fuzzy Conectivos e Inferência Professor: Mário Benevides Monitores: Bianca Munaro Diogo Borges Jonas Arêas Renan Iglesias Vanius Farias Conectivos O que são conectivos? São operadores que conectam

Leia mais

Álgebra das Proposições. Prof. Guilherme Tomaschewski Netto

Álgebra das Proposições. Prof. Guilherme Tomaschewski Netto Álgebra das Proposições Prof. Guilherme Tomaschewski Netto guilherme.netto@gmail.com Roteiro! Lógica Matemática clássica! Proposições! alores lógicos! Conectivos! Fórmulas Lógicas! Exemplos de aplicações

Leia mais

PROBLEMAS DE LÓGICA. Prof. Élio Mega

PROBLEMAS DE LÓGICA. Prof. Élio Mega PROBLEMAS DE LÓGICA Prof. Élio Mega ALGUNS CONCEITOS DA LÓGICA MATEMÁTICA Sentença é qualquer afirmação que pode ser classificada de verdadeira (V) ou falsa (F) (e exatamente uma dessas coisas, sem ambiguidade).

Leia mais

Elementos de Matemática

Elementos de Matemática Elementos de Matemática Álgebra de Boole Roteiro no. 10 - Atividades didáticas de 2007 8 de Outubro de 2007- Arq: elementos10.tex Departamento de Matemática - UEL Prof. Ulysses Sodré E-mail: ulysses(at)matematica(pt)uel(pt)br

Leia mais

VERDADE E VALIDADE, PROPOSIÇÃO E ARGUMENTO

VERDADE E VALIDADE, PROPOSIÇÃO E ARGUMENTO ENADE 2005 e 2008 1 O que B. Russell afirma da matemática, em Misticismo e Lógica: "uma disciplina na qual não sabemos do que falamos, nem se o que dizemos é verdade", seria particularmente aplicável à

Leia mais

Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido.

Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido. Matemática Discreta ESTiG\IPB 2011.12 Cap1 Lógica pg 1 I- Lógica Informal Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido. Afirmação

Leia mais

SMA Elementos de Matemática Notas de Aulas. Ires Dias - Sandra Maria Semensato de Godoy

SMA Elementos de Matemática Notas de Aulas. Ires Dias - Sandra Maria Semensato de Godoy SMA - 341 - Elementos de Matemática Notas de Aulas Ires Dias - Sandra Maria Semensato de Godoy 2006 Capítulo 1 Noções de Lógica Lógica é a higiene usada pelos matemáticos para conservar suas idéias saudáveis

Leia mais

Elementos de Lógica Matemática p. 1/2

Elementos de Lógica Matemática p. 1/2 Elementos de Lógica Matemática Uma Breve Iniciação Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Elementos de Lógica Matemática p. 1/2 Vamos aprender a falar aramaico? ǫ > 0 ( δ

Leia mais

1. À primeira coluna (P), atribui-se uma quantidade de valores V igual à metade do total de linhas

1. À primeira coluna (P), atribui-se uma quantidade de valores V igual à metade do total de linhas LÓGICA MATEMÁTICA Walter Sousa Resumo teórico 1) PROPOSIÇÕES LÓGICAS SIMPLES Uma proposição é uma sentença declarativa que pode ser classificada em verdadeira (V) ou falsa (F), mas não ambas as interpretações.

Leia mais

QUESTÕES REVISÃO DE VÉSPERA FUNAI

QUESTÕES REVISÃO DE VÉSPERA FUNAI QUESTÕES REVISÃO DE VÉSPERA FUNAI RACIOCÍNIO LÓGICO Prof. Josimar Padilha EDITAL: RACIOCÍNIO LÓGICO E QUANTITATIVO: 1. Lógica e raciocínio lógico: problemas envolvendo lógica e raciocínio lógico. 2. Proposições:

Leia mais

APOSTILA DE LÓGICA. # Conceitos iniciais INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE

APOSTILA DE LÓGICA. # Conceitos iniciais INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE INSTITUTO EDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CÂMPUS APODI Sítio Lagoa do Clementino, nº 999, RN 233, Km 2, Apodi/RN, 59700-971. one (084) 4005.0765 E-mail: gabin.ap@ifrn.edu.br

Leia mais

Sumário. Capítulo 1 Conhecendo os Vários Tipos de Problema... 1

Sumário. Capítulo 1 Conhecendo os Vários Tipos de Problema... 1 Sumário Capítulo 1 Conhecendo os Vários Tipos de Problema... 1 Capítulo 2 Problemas sobre Correlacionamento... 5 2.1. Problemas Envolvendo Correlação entre Elementos...5 2.2. Considerações Finais Sobre

Leia mais

XII Semana de Matemática II Semana de Estatística. Minicurso

XII Semana de Matemática II Semana de Estatística. Minicurso XII Semana de Matemática II Semana de Estatística Minicurso Uma pequena introdução à Lógica Moderna: Lógica Clássica, Lógica Trivalente e Lógica Fuzzy Prof. Angelo de Oliveira Universidade Federal de Rondônia

Leia mais

Álgebra de Boole. Nikolas Libert. Aula 4B Eletrônica Digital ET52C Tecnologia em Automação Industrial

Álgebra de Boole. Nikolas Libert. Aula 4B Eletrônica Digital ET52C Tecnologia em Automação Industrial Álgebra de Boole Nikolas Libert Aula 4B Eletrônica Digital ET52C Tecnologia em Automação Industrial Álgebra de Boole Álgebra de Boole Augustus De Morgan (1806-1871) e George Boole (1815-1864). Desenvolvimento

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500. Planificação Anual /Critérios de avaliação

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500. Planificação Anual /Critérios de avaliação Disciplina: Matemática A _ 10º ano _ CCH 2015/2016 AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500 Planificação Anual /Critérios de avaliação Início

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Correção dos Exercícios (Rosen 47) Prioridade dos Quantificadores (Rosen 38) Ligando Variáveis (Rosen 38) Predicados com duas variáveis. Equivalências lógicas (Rosen 39) Negando

Leia mais

Apostila de Raciocínio Lógico Notas de Aula Professor Joselias 2010 LÓGICA

Apostila de Raciocínio Lógico Notas de Aula Professor Joselias 2010 LÓGICA LÓGICA eremos nas próximas linhas a definição do que vem a ser uma proposição, bem como o seu cálculo proposicional antes de chegarmos ao nosso objetivo maior que é estudar as estruturas dos argumentos,

Leia mais

Fundamentos de Matemática

Fundamentos de Matemática Fundamentos de Matemática Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 1 7 de janeiro de 2013 Aula 1 Fundamentos de Matemática 1 Apresentação Aula 1

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 9: Forma Normal Conjuntiva Departamento de Informática 21 de Março de 2011 O problema Como determinar eficazmente a validade de uma fórmula? Objectivo Determinar a validade de raciocínios

Leia mais

CAPÍTULO 4 - OPERADORES E EXPRESSÕES

CAPÍTULO 4 - OPERADORES E EXPRESSÕES CAPÍTULO 4 - OPERADORES E EXPRESSÕES 4.1 - OPERADORES ARITMÉTICOS Os operadores aritméticos nos permitem fazer as operações matemáticas básicas, usadas no cálculo de expressões aritméticas. A notação usada

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 13: Dedução Natural em Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de

Leia mais

Aula 2: Linguagem Proposicional

Aula 2: Linguagem Proposicional Lógica para Computação Primeiro Semestre, 2015 Aula 2: Linguagem Proposicional DAINF-UTFPR Prof. Ricardo Dutra da Silva Linguagens naturais, como o nosso Português, podem expressar ideias ambíguas ou imprecisas.

Leia mais

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula /

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula / 1 www.romulopassos.com.br / www.questoesnasaude.com.br GRATUITO RACIOCÍNIO LÓGICO - EBSERH Professor Paulo Henrique PH Aula 03 R A C I O C Í N I O L Ó G I C O E B S E R H a u l a 0 2 Página 1 2 www.romulopassos.com.br

Leia mais

Lógica de primeira ordem (Capítulo 8 - Russell) Inteligência Artificial

Lógica de primeira ordem (Capítulo 8 - Russell) Inteligência Artificial Lógica de primeira ordem (Capítulo 8 - Russell) Inteligência Artificial Estrutura 1- Contextualização 2- Definições 3- Lista de exercício 4- Prolog 5- Regras em Prolog - Mundo Wumpus 6- Aplicação do Mundo

Leia mais

(Questões de provas resolvidas e comentadas) Carlos R. Torrente

(Questões de provas resolvidas e comentadas) Carlos R. Torrente (Questões de provas resolvidas e comentadas) Carlos R. Torrente Dados Internacionais de Catalogação na Publicação (CIP) (Câmara Brasileira do Livro, SP, Brasil) Torrente, Carlos Roberto Raciocínio lógico

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

LÓGICA APLICADA A COMPUTAÇÃO

LÓGICA APLICADA A COMPUTAÇÃO LÓGICA APLICADA A COMPUTAÇÃO 2009.3 Aquiles Burlamaqui Ementa Unidade 2 Lógica de Predicados: Linguagem e Semântica Tradução do português para a Lógica Quantificadores e Tipos Quantificadores como Conjunções

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 8: Forma Normal Conjuntiva António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática, Faculdade

Leia mais

TESTES RESOLVIDOS. É uma sentença aberta. Nada podemos afirmar, não conhecemos o conteúdo da frase. Não é uma proposição.

TESTES RESOLVIDOS. É uma sentença aberta. Nada podemos afirmar, não conhecemos o conteúdo da frase. Não é uma proposição. LÓGICA PROPOSICIONAL 1. PROPOSIÇÃO CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas. Por exemplo: 2 é um número primo. Resposta: É uma

Leia mais

Matemática Discreta - 04

Matemática Discreta - 04 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 04 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

(Lógica) Negação de Proposições, Tautologia, Contingência e Contradição.

(Lógica) Negação de Proposições, Tautologia, Contingência e Contradição. aula 07 (Lógica) Negação de Proposições, Tautologia, Contingência e Contradição. Professor: Renê Furtado Felix E-mail: rffelix70@yahoo.com.br Site: http://www.renecomputer.net/pdflog.html Negação de Proposições

Leia mais

Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar. Noções de Lógica

Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar. Noções de Lógica Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar Noções de Lógica Proposição: É uma sentença declarativa, seja ela expressa de forma afirmativa

Leia mais

MAT I Solução dos Exercícios para os dias 20, 25 e 27/08/ Simbolize as sentenças a seguir, definindo as letras de proposição usadas.

MAT I Solução dos Exercícios para os dias 20, 25 e 27/08/ Simbolize as sentenças a seguir, definindo as letras de proposição usadas. MAT I 2004-2 Solução dos Exercícios para os dias 20, 25 e 27/08/04 1. Simbolize as sentenças a seguir, definindo as letras de proposição usadas. a. A B, onde A:= Alfredo gosta de dançar e B:= Alfredo gosta

Leia mais

Fundamentos de Lógica Matemática

Fundamentos de Lógica Matemática Webconferência 4-08/03/2012 Técnicas dedutivas Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Objetivos Maneiras

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 5: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 2015-2016 DISCIPLINA / ANO: Matemática A 10ºano de escolaridade MANUAL ADOTADO: NOVO ESPAÇO 10 GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

* Lógica Proposicional Formas de Argumento

* Lógica Proposicional Formas de Argumento * Lógica Proposicional Formas de Argumento Hoje é segunda-feira ou sexta-feira. Hoje não é segunda-feira. Hoje é sexta-feira. Lógica, Informática e Comunicação Elthon Allex da Silva Oliveira e-mail: el7hon@gmail.com

Leia mais

RACIOCÍNIO LOGICO- MATEMÁTICO. Prof. Josimar Padilha

RACIOCÍNIO LOGICO- MATEMÁTICO. Prof. Josimar Padilha RACIOCÍNIO LOGICO- MATEMÁTICO Prof. Josimar Padilha Um jogo é constituído de um tabuleiro com 4 filas (colunas) numeradas de 1 a 4 da esquerda para direita e de 12 pedras 4 de cor amarela, 4 de cor verde

Leia mais

INSS 2016 Técnico CESPE

INSS 2016 Técnico CESPE INSS 2016 Técnico CESPE Art. 21. A alíquota de contribuição dos segurados contribuinte individual e facultativo será de 20 por cento sobre o respectivo salário-de-contribuição. Considerando o art. 21 da

Leia mais

Planificação do 1º Período

Planificação do 1º Período Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro Planificação do 1º Período Disciplina: Matemática A Grupo: 500 Ano: 10º Número de blocos de 45 minutos previstos: 74 Ano

Leia mais

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Planificação Anual da Disciplina de Matemática 10.º ano Ano Letivo de 2015/2016 Manual adotado: Máximo 10 Matemática A 10.º ano Maria Augusta Ferreira

Leia mais

Lógica dos Conectivos: demonstrações indiretas

Lógica dos Conectivos: demonstrações indiretas Lógica dos Conectivos: demonstrações indiretas Renata de Freitas e Petrucio Viana IME, UFF 18 de junho de 2015 Sumário Olhe para as premissas Olhe para a conclusão Estratégias indiretas Principais exemplos

Leia mais

Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação. Sentenças Abertas

Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação. Sentenças Abertas Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Sentenças Abertas Lógica Computacional 1 Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com Sentença

Leia mais

Professor: Adriano Sales Matéria: Lógica e Conjunto

Professor: Adriano Sales Matéria: Lógica e Conjunto Professor: Adriano Sales Matéria: Lógica e Conjunto Lógica Qual é o significado de argumentação? Segundo o dicionário Houaiss é: ARGUMENTAÇÃO: Arte, ato ou efeito de argumentar; Troca de palavras em controvérsia

Leia mais