Alfabeto da Lógica Proposicional

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Alfabeto da Lógica Proposicional"

Transcrição

1 Ciência da Computação Alfabeto da Lógica Sintaxe e Semântica da Lógica Parte I Prof. Sergio Ribeiro Definição 1.1 (alfabeto) - O alfabeto da é constituído por: símbolos de pontuação: (, ;, ) símbolos de verdade: V, F símbolos proposicionais: P, Q, R, S, P 1, Q 1, R 1, S 1, α, β,...; conectivos proposicionais: ~,,,, Material adaptado do livro-texto de João Nunes de Souza 2 Definição 1.2 (fórmula) - As fórmulas da linguagem da são construídas, de forma indutiva, a partir dos símbolos do alfabeto conforme as regras a seguir. O conjunto das fórmulas é o menor conjunto que satisfaz as regras: todo símbolo de verdade é uma fórmula; todo símbolo proposicional é uma fórmula; se H é uma fórmula, (~H), a negação de H, é uma fórmula; 3 se He G são fórmulas, a conjunção de He G, dada por: (H G), é uma fórmula; se He G são fórmulas, a disjunção de He G, dada por: (H G), é uma fórmula; se He G são fórmulas, a implicação de Hem G, dada por: (H G), é uma fórmula. Nesse caso, H é o antecedente e G o conseqüenteda fórmula (H G); se He G são fórmulas, a bi-implicaçãode He G, dada por: (H G), é uma fórmula. Nesse caso, H é o lado esquerdo e G o lado direito da fórmula (H G). 4 Definição 1.3 (subfórmula) - Seja H uma fórmula da, : H é uma subfórmulade H; se H é uma fórmula do tipo (~G), G é uma subfórmulade H; se H é uma fórmula do tipo: (G E), (G E), (G E) ou (G E) G e E são subfórmulasde H; se G é subfórmulade H, toda subfórmula de G é subfórmulade H. 5 da Definição 1.4 (propriedades semânticas básicas da ) - Sejam H, G, H 1, H 2,...,H n, fórmulas da Lógica. As propriedades semânticas básicas da são definidas a seguir. 6 1

2 da H é uma tautologia, para toda interpretação I, I[H]= V H é satisfatível, existe uma interpretação I, tal que I[H]= V H é uma contingência, existem duas interpretações I 1 e I 2, tais que I 1 [H] = V e I 2 [H] = F 7 da H é contraditória, para toda interpretação I, I[H] = F H implica semanticamente G, ou G é uma conseqüência lógica semântica de H, para toda interpretação I, se I[H] = V, I[G] = V H equivale semanticamente a G, se e somente se, para toda interpretação I, I[H] = I[G] 8 A fórmula H = P ~P é uma tautologia. Interpretações P ~P P ~P I 1 F V V I 2 V F V A fórmula H = P Q é satisfatível e contingente. Interpretações P Q P Q I 1 F F F I 2 F V V I 3 V F V I 4 V V V A fórmula H = P ~P é contraditória. Interpretações P ~P P ~P I 1 F V F I 2 V F F Seja E = ((P Q) Q), H = (P Q) e G = (P Q) Interpretações P Q E H G I 1 F F F F V I 2 F V V F V I 3 V F F F F I 4 V V V V V E implica G? sim Logo, E G E implica H? não Por que? 9 10 da As fórmulas H = (~P ~Q) e G = ~(P Q) são equivalentes. Dada uma interpretação I, I satisfaz H, se I[H] = V Interpretações P Q ~P ~Q H P v Q G I 1 F F V V V F V I 2 F V V F F V F I 3 V F F V F V F I 4 V V F F F V F 11 O conjunto β = {H 1,H 2,...,H n,...} é satisfatível, existe ao menos uma interpretação I, tal que I[H 1 ] = V, I[H 2 ] = V,... = I[H n ] = V,... Nesse caso, I satisfaz o conjunto de fórmulas. Caso não haja tal interpretação, o conjunto β é insatisfatível. 12 2

3 da Dado um conjunto de fórmulas vazio, toda interpretação I satisfaz esse conjunto. O conjunto β = {H 1,H 2,...,H n,...}, implica semanticamente uma fórmula H, se para toda interpretação I; se I[β]= V, I[H]= V Nesse caso, também dizemos que H é uma conseqüência lógica semântica de β. 13 da Notação. Se um conjunto de fórmulas β implica semanticamente H, ou seja, H é conseqüência lógica semântica de β, tal fato é indicado por β H. No caso em que β é vazio, é utilizada a notação H. Neste caso, dizemos que H é uma tautologia ou que H é um teorema. 14 da O símbolo é, portanto, utilizado para denotar a implicação semântica ou conseqüência semântica, que relaciona interpretações de fórmulas. No caso em que β não implica semanticamente H, isto é, H não é conseqüência lógica semântica de β, é utilizada a notação: β H. da Nota. "implicação semântica" significa o mesmo que "conseqüência lógica semântica". Notação. Se uma interpretação I satisfaz o conjunto de fórmulas β, esse fato é indicado por I[β] = V O seguinte conjunto de fórmulas é satisfatível ou insatisfatível? β = {P, ~P, Q} Interpretações P ~P Q I 1 F V F I 2 V F V O seguinte conjunto de fórmulas é satisfatível ou insatisfatível? β = {(P Q), (Q R) e (R P)} Int. P Q R P Q Q R R P I 1 F F F V V V I 2 F F V V V F I 3 F V F V F V I 4 F V V V V F I 5 V F F F V V I 6 V F V F V V I 7 V V F V F V I 8 V V V V V V

4 Proposição 1.1 (tautologia e contradição) Dada uma fórmula H, : H é tautologia, ~H é contraditória Proposição 1.2 (tautologia e satisfatibilidade) Dada uma fórmula H, se H é tautologia H é satisfatível Proposição 1.3 (tautologia e contradição) Dada uma fórmula H, : H é tautologia, H é contraditória H não é satisfatível, H é contraditória 21 Proposição 1.4 (implicação semântica e o conectivo ) Dadas duas fórmulas H e G, H G, (H G) é tautologia 22 Proposição 1.5 (equivalência semântica e o conectivo ) Dadas as fórmulas H e G, H equivale a G, (H G) é tautologia 23 Proposição 1.6 (transitividade da equivalência semântica) Dadas as fórmulas E, H e G, se E equivale a H e H equivale a G, E equivale a G 24 4

5 1. Comente, do ponto de vista lógico: a) a diferença entre sintaxe e semântica b) a diferença entre veracidade e validade c) a diferença entre falsidade e contradição 2. Seja I uma interpretação tal que: I[P Q] = V. O que se pode deduzir sobre a interpretação: I[~P Q] e I[P ~Q]? Dadas as fórmulas H e G, demonstre que: a) H é contraditória (H G) é válida. b) H é tautologia e G é contraditória (H G) é contraditória. 4. Sejam H e G duas fórmulas tais que H implica G. A partir deste fato, é possível concluir que para toda interpretação I, I[H] = V e I[G] = V? Justifique sua resposta Classifique as afirmações a seguir em verdadeiras e falsas. Justifique sua respostas. a) Dada uma fórmula contraditória H, é possível encontrar uma interpretação I tal que I[H] = V. b) Se H é uma tautologia, não existe interpretação I tal que I[~H] = V. c) Se [H 1,H 2,...,H n ] é um conjunto satisfatível de fórmulas, para toda interpretação I, I[H i ] = V. 6. Verifique se o conjunto de argumentos abaixo é satisfatível. Marcos não está feliz ou se Silvia foi ao baile, Marcos também foi ao baile. Se Marcos está feliz, Silvia não foi ao baile. Se Marcos foi ao baile, Silvia também foi ao baile

Propriedades Semânticas da Lógica Proposicional(Capítulo 3)

Propriedades Semânticas da Lógica Proposicional(Capítulo 3) Propriedades Semânticas da Lógica Proposicional(Capítulo 3) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Tautologia 2. Satisfatível 3. Contingência 4. Contraditória

Leia mais

Lógica Proposicional Semântica e Tabelas Verdade

Lógica Proposicional Semântica e Tabelas Verdade Lógica Proposicional Semântica e Tabelas Verdade Prof. Marcos A. Schreiner Disciplina de Introdução à Lógica 30 de março de 2015 Prof. Marcos A. Schreiner (UFPR) 30 de março de 2015 1 / 20 1 Introdução

Leia mais

JOÃO NUNES de SOUZA. LÓGICA para CIÊNCIA da COMPUTAÇÃO. Uma introdução concisa

JOÃO NUNES de SOUZA. LÓGICA para CIÊNCIA da COMPUTAÇÃO. Uma introdução concisa JOÃO NUNES de SOUZA LÓGICA para CIÊNCIA da COMPUTAÇÃO Uma introdução concisa 21 de maio de 2008 1 A linguagem da Lógica Proposicional Introdução Alfabeto da Lógica Proposicional Definição 1.1 (alfabeto)

Leia mais

Lógica para computação

Lógica para computação Lógica para computação PROPRIEDADES SEMÂNTICAS DA LÓGICA PROPOSICIONAL Professor Marlon Marcon Introdução Esta seção considera a análise de algumas propriedades semânticas da LP que relacionam os resultados

Leia mais

Dedução Natural e Sistema Axiomático Pa(Capítulo 6)

Dedução Natural e Sistema Axiomático Pa(Capítulo 6) Dedução Natural e Sistema Axiomático Pa(Capítulo 6) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Sistemas axiomático Pa 4. Lista

Leia mais

LÓGICA APLICADA A COMPUTAÇÃO

LÓGICA APLICADA A COMPUTAÇÃO LÓGICA APLICADA A COMPUTAÇÃO 2009.3 Aquiles Burlamaqui Conteúdo Programático Unidade I Linguagens Formais Linguagens Formais Sigma Álgebras Relação entre Linguagens Formais e Sigma Álgebras Sigma Domínios

Leia mais

Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO

Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO Inteligência Artificial IA Prof. João Luís Garcia Rosa II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO 2004 Representação do conhecimento Para representar o conhecimento do mundo que um sistema

Leia mais

Lógica para Computação

Lógica para Computação Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br Linguagem informal x linguagem formal; Linguagem proposicional: envolve proposições e conectivos,

Leia mais

Relações semânticas entre os conectivos da Lógica Proposicional(Capítulo 5)

Relações semânticas entre os conectivos da Lógica Proposicional(Capítulo 5) Relações semânticas entre os conectivos da Lógica Proposicional(Capítulo 5) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Conjunto de conectivos completo 2. na

Leia mais

Lógica Proposicional

Lógica Proposicional Slides da disciplina Lógica para Computação, ministrada pelo Prof. Celso Antônio Alves Kaestner, Dr. Eng. (kaestner@dainf.ct.utfpr.edu.br) entre 2007 e 2008. Alterações feitas em 2009 pelo Prof. Adolfo

Leia mais

LÓGICA para CIÊNCIA da COMPUTAÇÃO

LÓGICA para CIÊNCIA da COMPUTAÇÃO JOÃO NUNES de SOUZA ATENÇÃO. Versão preliminar de solução de exercícios preparada por alunos do mestrado em Ciência da Computação, turma 02/2009 LÓGICA para CIÊNCIA da COMPUTAÇÃO Uma introdução concisa

Leia mais

Campos Sales (CE),

Campos Sales (CE), UNIERSIDADE REGIONAL DO CARIRI URCA PRÓ-REITORIA DE ENSINO E GRADUAÇÃO PROGRAD UNIDADE DESCENTRALIZADA DE CAMPOS SALES CAMPI CARIRI OESTE DEPARTAMENTO DE MATEMÁTICA DISCIPLINA: Tópicos de Matemática SEMESTRE:

Leia mais

Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo

Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo Lógica Proposicional Prof. Dr. Silvio do Lago Pereira Departamento de Tecnologia da Informação aculdade de Tecnologia de São Paulo Motivação IA IA estuda estuda como como simular simular comportamento

Leia mais

Lógica e Metodologia Jurídica

Lógica e Metodologia Jurídica Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão julianomaranhao@gmail.com Puzzle 2 pessoas A e B fazem uma oferta um ao outro. O problema é identificar

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial INF 1771 Inteligência Artificial Aula 06 Lógica Proposicional Edirlei Soares de Lima Lógica Proposicional Lógica muito simplificada. A sentenças são formadas por conectivos como:

Leia mais

Aula 4: Consequência Lógica e Equivalência Lógica

Aula 4: Consequência Lógica e Equivalência Lógica Lógica para Computação Segundo Semestre, 2014 Aula 4: Consequência Lógica e Equivalência Lógica DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 4.1. Em lógica proposicional dizemos que uma fórmula B

Leia mais

Lógica e Metodologia Jurídica

Lógica e Metodologia Jurídica Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão julianomaranhao@gmail.com Quais sentenças abaixo são argumentos? 1. Bruxas são feitas de madeira.

Leia mais

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios...

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios... Lógica para Ciência da Computação I Lógica Matemática Texto 11 Tautologias Sumário 1 Comportamento de um enunciado 2 1.1 Observações................................ 4 2 Classificação dos enunciados 4 2.1

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 2: Sintaxe da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural. Lista de exercícios 1

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural. Lista de exercícios 1 UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural Disciplina: Lógica Computacional I Professora: Juliana Pinheiro Campos Data: 25/08/2011 Lista

Leia mais

LÓGICA APLICADA A COMPUTAÇÃO

LÓGICA APLICADA A COMPUTAÇÃO LÓGICA APLICADA A COMPUTAÇÃO 2009.3 Aquiles Burlamaqui Ementa Unidade 2 Lógica de Predicados: Linguagem e Semântica Tradução do português para a Lógica Quantificadores e Tipos Quantificadores como Conjunções

Leia mais

Lógica e Raciocínio. Lógica Proposicional. Universidade da Madeira.

Lógica e Raciocínio. Lógica Proposicional. Universidade da Madeira. Lógica e Raciocínio Universidade da Madeira http://dme.uma.pt/edu/ler/ Lógica Proposicional 1 Proposição Uma rase é uma proposição apenas quando admite um dos dois valores lógicos: Falso (F) ou Verdadeiro

Leia mais

Lógica Proposicional Fórmulas e Precedência de Operadores

Lógica Proposicional Fórmulas e Precedência de Operadores Lógica Proposicional Fórmulas e Precedência de Operadores Prof. Marcos A. Schreiner Disciplina de Introdução à Lógica 23 de março de 2015 Prof. Marcos A. Schreiner (UFPR) 23 de março de 2015 1 / 18 1 Introdução

Leia mais

Lógica Computacional

Lógica Computacional Lógica Computacional Aula Teórica 6: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Marco Giunti Departamento de Informática, Faculdade de Ciências e Tecnologia, NOVA LINCS, Universidade

Leia mais

Matemática Régis Cortes. Lógica matemática

Matemática Régis Cortes. Lógica matemática Lógica matemática 1 INTRODUÇÃO Neste roteiro, o principal objetivo será a investigação da validade de ARGUMENTOS: conjunto de enunciados dos quais um é a CONCLUSÃO e os demais PREMISSAS. Os argumentos

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 5: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,

Leia mais

Lógica para computação - Propriedades Semânticas da Lógica Proposicional (parte 2/2) Alfabeto Simplificado e Formas Normais

Lógica para computação - Propriedades Semânticas da Lógica Proposicional (parte 2/2) Alfabeto Simplificado e Formas Normais DAINF - Departamento de Informática Lógica para computação - Propriedades Semânticas da Lógica Proposicional (parte 2/2) Alfabeto Simplificado e Formas Normais Prof. Alex Kutzke (http://alex.kutzke.com.br/courses)

Leia mais

Aula 2: Linguagem Proposicional

Aula 2: Linguagem Proposicional Lógica para Computação Primeiro Semestre, 2015 Aula 2: Linguagem Proposicional DAINF-UTFPR Prof. Ricardo Dutra da Silva Linguagens naturais, como o nosso Português, podem expressar ideias ambíguas ou imprecisas.

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 13: Dedução Natural em Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de

Leia mais

A linguagem da Lógica Proposicional (Capítulo 1)

A linguagem da Lógica Proposicional (Capítulo 1) A linguagem da Lógica Proposicional (Capítulo 1) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Alfabeto 3. Fórmulas bem formadas (FBF) 4. Exemplos

Leia mais

UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA UESB DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNÓLOGICAS DCET CURSO DE LICENCIATURA EM MATEMÁTICA

UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA UESB DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNÓLOGICAS DCET CURSO DE LICENCIATURA EM MATEMÁTICA UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA UESB DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNÓLOGICAS DCET CURSO DE LICENCIATURA EM MATEMÁTICA JÉFFERSON DOS SANTOS RIBEIRO ALGUNS MÉTODOS DE PROVAS EM LÓGICA VITÓRIA

Leia mais

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Newton José Vieira 21 de agosto de 2007 SUMÁRIO Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova 1 CONJUNTOS A NOÇÃO

Leia mais

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE 1 1. LÓGICA SETENCIAL E DE PRIMEIRA Conceito de proposição ORDEM Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo, seja este verdadeiro ou falso.

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 4: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL FACULDADE PITÁGORAS Curso Superior em Tecnologia Redes de Computadores e Banco de dados Matemática Computacional Prof. Ulisses Cotta Cavalca LÓGICA PROPOSICIONAL Belo Horizonte/MG

Leia mais

Para provar uma implicação se p, então q, é suficiente fazer o seguinte:

Para provar uma implicação se p, então q, é suficiente fazer o seguinte: Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que

Leia mais

Fórmulas da lógica proposicional

Fórmulas da lógica proposicional Fórmulas da lógica proposicional As variáveis proposicionais p, q, são fórmulas (V P rop ) é fórmula (falso) α e β são fórmulas, então são fórmulas (α β), (α β), (α β) e ( α) DCC-FCUP -TAI -Sistemas Dedutivos

Leia mais

Lógica para computação - Linguagem da Lógica de Predicados

Lógica para computação - Linguagem da Lógica de Predicados DAINF - Departamento de Informática Lógica para computação - Linguagem da Lógica de Predicados Prof. Alex Kutzke ( http://alex.kutzke.com.br/courses ) 13 de Outubro de 2015 Razões para uma nova linguagem

Leia mais

MAC425/5739 Inteligência Artificial 6. Agentes lógicos

MAC425/5739 Inteligência Artificial 6. Agentes lógicos MAC425/5739 Inteligência Artificial 6. Agentes lógicos Denis Deratani Mauá (largamente baseado no material de aula dos Profs. Edileri de Lima e Leliane de Barros) REPRESENTAÇÃO DE CONHECIMENTO Busca (cega,

Leia mais

Lógica Proposicional

Lógica Proposicional Lógica Proposicional Lógica Computacional Carlos Bacelar Almeida Departmento de Informática Universidade do Minho 2007/2008 Carlos Bacelar Almeida, DIUM LÓGICA PROPOSICIONAL- LÓGICA COMPUTACIONAL 1/28

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 9: Forma Normal Conjuntiva Departamento de Informática 21 de Março de 2011 O problema Como determinar eficazmente a validade de uma fórmula? Objectivo Determinar a validade de raciocínios

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 6: Semântica da Lógica Proposicional Departamento de Informática 3 de Março de 2011 Motivação Expressividade Os conectivos são independentes? Definiu-se a Lógica Proposicional com os símbolos

Leia mais

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico.

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico. CENTRO UNVERSITÁRIO UNA NOÇÕES DE RACIOCÍNIO LÓGICO Professor: Rodrigo Eustáquio Borges A disciplina Lógica Matemática tem como objetivo capacitar o aluno a reconhecer e aplicar os conceitos fundamentais

Leia mais

Departamento de Engenharia Informática da Universidade de Coimbra

Departamento de Engenharia Informática da Universidade de Coimbra Departamento de Engenharia Informática da Universidade de Coimbra Estruturas Discretas 2013/14 Folha 1 - TP Lógica proposicional 1. Quais das seguintes frases são proposições? (a) Isto é verdade? (b) João

Leia mais

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues As respostas encontram-se em itálico. 1. Quais das frases a seguir são sentenças? a. A lua é feita de queijo verde. erdadeira, pois é uma

Leia mais

INTRODUÇÃO À LÓGICA MATEMÁTICA

INTRODUÇÃO À LÓGICA MATEMÁTICA INTRODUÇÃO À LÓGICA MATEMÁTICA Matemática Aplicada a Computação rofessor Rossini A M Bezerra Lógica é o estudo dos princípios e métodos usados para distinguir sentenças verdadeiras de falsas. Definição

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

2 AULA. Conectivos e Quantificadores. lógicas. LIVRO. META: Introduzir os conectivos e quantificadores

2 AULA. Conectivos e Quantificadores. lógicas. LIVRO. META: Introduzir os conectivos e quantificadores 1 LIVRO Conectivos e Quantificadores Lógicos META: Introduzir os conectivos e quantificadores lógicos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Compreender a semântica dos conectivos

Leia mais

Elementos de Lógica Matemática p. 1/2

Elementos de Lógica Matemática p. 1/2 Elementos de Lógica Matemática Uma Breve Iniciação Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Elementos de Lógica Matemática p. 1/2 Vamos aprender a falar aramaico? ǫ > 0 ( δ

Leia mais

Raciocínio lógico matemático

Raciocínio lógico matemático Raciocínio lógico matemático Unidade 2: Introdução à lógica Seção 2.3 Equivalências, contradições e tautologias 1 Proposições compostas Composta de duas ou mais proposições simples Tanto a primeira como

Leia mais

Unidade II LÓGICA. Profa. Adriane Paulieli Colossetti

Unidade II LÓGICA. Profa. Adriane Paulieli Colossetti Unidade II LÓGICA Profa. Adriane Paulieli Colossetti Relações de implicação e equivalência Implicação lógica Dadas as proposições compostas p e q, diz-se que ocorre uma implicação lógica entre p e q quando

Leia mais

RECEITA FEDERAL ANALISTA

RECEITA FEDERAL ANALISTA SENTENÇAS OU PROPOSIÇÕES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (V), ou só como

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 8: Forma Normal Conjuntiva António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática, Faculdade

Leia mais

Aula 1 Aula 2. Ana Carolina Boero. Página:

Aula 1 Aula 2. Ana Carolina Boero.   Página: Elementos de lógica e linguagem matemática E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Linguagem matemática A linguagem matemática

Leia mais

Lógica Fuzzy. Conectivos e Inferência. Professor: Mário Benevides. Monitores: Bianca Munaro Diogo Borges Jonas Arêas Renan Iglesias Vanius Farias

Lógica Fuzzy. Conectivos e Inferência. Professor: Mário Benevides. Monitores: Bianca Munaro Diogo Borges Jonas Arêas Renan Iglesias Vanius Farias Lógica Fuzzy Conectivos e Inferência Professor: Mário Benevides Monitores: Bianca Munaro Diogo Borges Jonas Arêas Renan Iglesias Vanius Farias Conectivos O que são conectivos? São operadores que conectam

Leia mais

1 TEORIA DOS CONJUNTOS

1 TEORIA DOS CONJUNTOS 1 TEORIA DOS CONJUNTOS Definição de Conjunto: um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada. Em outras palavras,

Leia mais

LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014

LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 1) Determinar o valor verdade da proposição (p q) r, sabendo-se que AL (p) =, AL (q) = e AL (r) =. Proposições são afirmações que podem ser julgadas como verdadeira

Leia mais

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO LÓGICAS MODAIS: FUNDAMENTOS E APLICAÇÕES

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO LÓGICAS MODAIS: FUNDAMENTOS E APLICAÇÕES UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO LÓGICAS MODAIS: FUNDAMENTOS E APLICAÇÕES ALINE VIEIRA MALANOVICZ Projeto de Diplomação Prof. Dr.

Leia mais

A linguagem da Lógica de Predicados. (Capítulo 8) LÓGICA APLICADA A COMPUTAÇÃO. Professor: Rosalvo Ferreira de Oliveira Neto

A linguagem da Lógica de Predicados. (Capítulo 8) LÓGICA APLICADA A COMPUTAÇÃO. Professor: Rosalvo Ferreira de Oliveira Neto A linguagem da Lógica de Predicados (Capítulo 8) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Contextualização 2. Definições 3. Exemplos 4. Lista 3 O que não é

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Fundamentos de Lógica No nosso dia a dia, usamos todo o tipo de frases: Cinco é menor

Leia mais

LÓGICA I. André Pontes

LÓGICA I. André Pontes LÓGICA I André Pontes 1. Conceitos fundamentais O que é a Lógica? A LÓGICA ENQUANTO DISCIPLINA Estudo das leis de preservação da verdade. [Frege; O Pensamento] Estudo das formas válidas de argumentos.

Leia mais

Lógica Proposicional. LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08. c Inês Lynce c Luísa Coheur

Lógica Proposicional. LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08. c Inês Lynce c Luísa Coheur Capítulo 2 Lógica Proposicional Lógica para Programação LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08 c Inês Lynce c Luísa Coheur Programa Apresentação Conceitos Básicos Lógica Proposicional ou Cálculo

Leia mais

A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA

A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA MAT1513 - Laboratório de Matemática - Diurno Professor David Pires Dias - 2017 Texto sobre Lógica (de autoria da Professora Iole de Freitas Druck) A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA Iniciemos

Leia mais

Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3

Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3 Proposições Lógicas Proposições O principal conceito usado nos estudos da lógica matemática é o de uma proposição. Uma proposição é essencialmente uma afirmação, transmite pensamentos completos, afirmando

Leia mais

Prof. Jorge Cavalcanti

Prof. Jorge Cavalcanti Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

4 AULA. Regras de Inferência e Regras de Equivalência LIVRO. META: Introduzir algumas regras de inferência e algumas regras de equivalência.

4 AULA. Regras de Inferência e Regras de Equivalência LIVRO. META: Introduzir algumas regras de inferência e algumas regras de equivalência. 1 LIVRO Regras de Inferência e Regras de Equivalência 4 AULA META: Introduzir algumas regras de inferência e algumas regras de equivalência. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de:

Leia mais

IME, UFF 5 de novembro de 2013

IME, UFF 5 de novembro de 2013 Lógica IME, UFF 5 de novembro de 2013 . em LS. Método das.. Sumário. Simbolização não é determinística Dependendo de o entendemos o significado de uma sentença, ela pode ser simbolizada de mais de uma

Leia mais

Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade

Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade Resumo de Filosofia Capítulo I Argumentação e Lógica Formal Validade e Verdade O que é um argumento? Um argumento é um conjunto de proposições em que se pretende justificar ou defender uma delas, a conclusão,

Leia mais

Noções básicas de Lógica

Noções básicas de Lógica Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a uma sequências de símbolos. Uma expressão pode ser uma expressão com significado expressão sem significado

Leia mais

CAPÍTULO I. Lógica Proposicional

CAPÍTULO I. Lógica Proposicional Lógica Proposicional CAPÍTULO I Lógica Proposicional Sumário: 1. Lógica proposicional 2. Proposição 2.1. Negação da proposição 2.2. Dupla negação 2.3. Proposição simples e composta 3. Princípios 4. Classificação

Leia mais

Lógica dos Quantificadores: sintaxe

Lógica dos Quantificadores: sintaxe Lógica dos Quantificadores: sintaxe Renata de Freitas e Petrucio Viana IME, UFF 18 de junho de 2015 Sumário 1. Princípios sintáticos 2. Alfabeto de LQ 3. Fórmulas de LQ 4. Variáveis livres, variáveis ligadas

Leia mais

Álgebra das Proposições. Prof. Guilherme Tomaschewski Netto

Álgebra das Proposições. Prof. Guilherme Tomaschewski Netto Álgebra das Proposições Prof. Guilherme Tomaschewski Netto guilherme.netto@gmail.com Roteiro! Lógica Matemática clássica! Proposições! alores lógicos! Conectivos! Fórmulas Lógicas! Exemplos de aplicações

Leia mais

Fundamentos de Lógica Matemática

Fundamentos de Lógica Matemática Webconferência 3-01/03/2012 Inferência Lógica Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Objetivos Análise

Leia mais

2014/1S EP33D Matemática Discreta

2014/1S EP33D Matemática Discreta 014/1S EP33D Matemática Discreta Avaliação Substitutiva 01 Data: 1/05/014 Início: 13h00min Duração:,5 horas (3 aulas) INFORMAÇÕES: (i) a prova é individual; (ii) qualquer forma de consulta ou auxílio à

Leia mais

lógica e teoria de conjuntos

lógica e teoria de conjuntos aula 01 lógica e teoria de conjuntos A noção matemática mais fundamental é certamente a noção de conjunto. Adoptaremos a concepção cantoriana, segundo a qual um conjunto é uma colecção X de objectos, produto

Leia mais

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior Lógica Formal Matemática Discreta Prof. Vilson Heck Junior vilson.junior@ifsc.edu.br Objetivos Utilizar símbolos da lógica proposicional; Encontrar o valor lógico de uma expressão em lógica proposicional;

Leia mais

COLÉGIO SHALOM ENSINO MEDIO 1 ANO - filosofia. Profº: TONHÃO Disciplina: FILOSOFIA Aluno (a):. No.

COLÉGIO SHALOM ENSINO MEDIO 1 ANO - filosofia. Profº: TONHÃO Disciplina: FILOSOFIA Aluno (a):. No. COLÉGIO SHALOM ENSINO MEDIO 1 ANO - filosofia 65 Profº: TONHÃO Disciplina: FILOSOFIA Aluno (a):. No. ROTEIRO DE RECUERAÇÃO ANUAL 2016 Data: / / FILOSOFIA 1º Ano do Ensino Médio 1º. O recuperando deverá

Leia mais

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa.

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa. Tema 1 Lógica e Teoria dos Conjuntos 1. Proposições e valores lógicos. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira

Leia mais

18/01/2016 LÓGICA MATEMÁTICA. Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA

18/01/2016 LÓGICA MATEMÁTICA. Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi fabianotaguchi@gmail.com http://fabianotaguchi.wordpress.com Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA A lógica está

Leia mais

PCS 2428 / PCS 2059 lnteligência Artificial. Lógica Proposicional. Agentes Baseados em Conhecimento. Agentes Baseados em Conhecimento

PCS 2428 / PCS 2059 lnteligência Artificial. Lógica Proposicional. Agentes Baseados em Conhecimento. Agentes Baseados em Conhecimento gentes aseados em Conhecimento PCS 8 / PCS 059 lnteligência rtificial Prof. Dr. Jaime Simão Sichman Prof. Dra. nna Helena Reali Costa Lógica Proposicional Como representar conhecimento e como utilizar

Leia mais

LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q :

LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q : LÓGICA - 2 Proposições: 1) Recíproca 2) Contrária 3) Contra positiva 1) Proposição recíproca de p q : q p 2) Proposição contrária de p q : ~ p 3) Proposição contra positiva de p q : ~ p ex. Determinar:

Leia mais

Matemática Discreta - Exercícios de Lógica. 1. Diga que relações lógicas existem entre as seguintes proposições:

Matemática Discreta - Exercícios de Lógica. 1. Diga que relações lógicas existem entre as seguintes proposições: 1. Diga que relações lógicas existem entre as seguintes proposições: (a) Todos os marcianos falam inglês. (b) Todos os marcianos não falam inglês. (c) Nenhum marciano fala inglês. (d) Alguns marcianos

Leia mais

Lógica formal. A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação IV) Simbolização 1. Simples 2.

Lógica formal. A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação IV) Simbolização 1. Simples 2. Lógica formal A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação I) Simbolização 1. Simples 2. Composta B)Leis do pensamento I) Princípio da Identidade II) Principio do não-contraditório

Leia mais

1. = F; Q = V; R = V.

1. = F; Q = V; R = V. ENADE 2005 e 2008 Nas opções abaixo, representa o condicional material (se...então...), v representa a disjunção (ou um, ou outro, ou ambos) e ~ representa a negação (não). Com o auxílio de tabelas veritativas,

Leia mais

QUESTÕES REVISÃO DE VÉSPERA FUNAI

QUESTÕES REVISÃO DE VÉSPERA FUNAI QUESTÕES REVISÃO DE VÉSPERA FUNAI RACIOCÍNIO LÓGICO Prof. Josimar Padilha EDITAL: RACIOCÍNIO LÓGICO E QUANTITATIVO: 1. Lógica e raciocínio lógico: problemas envolvendo lógica e raciocínio lógico. 2. Proposições:

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial INF 1771 Inteligência Artificial Aula 07 Agentes Lógicos Edirlei Soares de Lima Introdução Humanos possuem conhecimento e raciocinam sobre este conhecimento. Exemplo: João jogou

Leia mais

O TRATAMENTO MATERIAL DA LPC Valorações como interpretações para a linguagem.

O TRATAMENTO MATERIAL DA LPC Valorações como interpretações para a linguagem. COMPLEMENTO DO ARQUIVO ANTERIOR Texto Outras noções sintáticas que desempenharão um papel importante no futuro são as de esquema de fórmulas e de instância de um esquema. Um esquema de fórmula é uma expressão

Leia mais

Apostilas OBJETIVA Ano X - Concurso Público Conteúdo

Apostilas OBJETIVA Ano X - Concurso Público Conteúdo Conteúdo Introdução Estruturas lógicas. 2 Lógica de argumentação: analogias, inferências, deduções e conclusões. 3 Lógica sentencial (ou proposicional). 3.1 Proposições simples e compostas. 3.2 Tabelas-verdade.

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A 10. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número

Leia mais

Fundamentos de Lógica e Algoritmos

Fundamentos de Lógica e Algoritmos INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CAMPUS SÃO GONÇALO DO AMARANTE Fundamentos de Lógica e Algoritmos #EquivalênciaLógica Eliezio Soares elieziosoares@ifrn.edu.br

Leia mais

Matemática Discreta - 04

Matemática Discreta - 04 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 04 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 15 Agentes que Raciocinam Logicamente

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 15 Agentes que Raciocinam Logicamente Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 15 Agentes que Raciocinam Logicamente 1 Bem-vindos ao Mundo do Wumpus Wumpus Agente caçador de tesouros 2 Codificação do Mundo do Wumpus 4 3 fedor

Leia mais

Aula 12: Lógica de Predicados

Aula 12: Lógica de Predicados Lógica para Computação Primeiro Semestre, 2015 Aula 12: Lógica de Predicados DAINF-UTFPR Prof. Ricardo Dutra da Silva Vamos estender a lógica proposicional para torná-la mais expressiva. Na lógica proposicional,

Leia mais

Cálculo de Predicados

Cálculo de Predicados Matemática Discreta - Departamento de Matemática - EST-IPV - 2003/2004 - II Cálculo de Predicados 1. Predicados e quantificadores Consideremos as afirmações seguintes: x é par (1) x é tão alto como y (2)

Leia mais

IME, UFF 10 de dezembro de 2013

IME, UFF 10 de dezembro de 2013 Lógica IME, UFF 10 de dezembro de 2013 Sumário.... Considere o seguinte argumento Um problema de validade (1) p q q r r s s t p t (1) é válido ou não? A resposta é sim... Uma demonstração Uma demonstração

Leia mais

Raciocínio Lógico Matemático Cap. 3 Tautologias, Contradições e Contingências

Raciocínio Lógico Matemático Cap. 3 Tautologias, Contradições e Contingências Raciocínio Lógico Matemático Cap. 3 Tautologias, Contradições e Contingências Capítulo3 Tautologias, Contradições e Contingências No capítulo anterior discutimos alguns aspectos da lógica matemática, destacando

Leia mais

Lógica dos Conectivos: demonstrações indiretas

Lógica dos Conectivos: demonstrações indiretas Lógica dos Conectivos: demonstrações indiretas Renata de Freitas e Petrucio Viana IME, UFF 18 de junho de 2015 Sumário Olhe para as premissas Olhe para a conclusão Estratégias indiretas Principais exemplos

Leia mais

GGM /11/2010 Dirce Uesu Pesco Geometria Espacial

GGM /11/2010 Dirce Uesu Pesco Geometria Espacial GGM00161-06/11/2010 Turma M2 Dirce Uesu Pesco Geometria Espacial Postulados : - Por dois pontos distintos passa uma e somente uma reta - Três pontos não colineares determinam um único plano. - Qualquer

Leia mais

Lógica: Quadrado lógico:

Lógica: Quadrado lógico: Lógica: 1. Silogismo aristotélico: Podemos encara um conceito de dois pontos de vista: Extensão a extensão é um conjunto de objectos que o conceito considerado pode designar ou aos quais ele se pode aplicar

Leia mais