ANÁLISE DE SINAIS E SISTEMAS AULA 4: SINAIS EXPONENCIAIS; SINAIS SENOIDAIS; SINAIS SENOIDAIS AMORTECIDOS; SINAIS EXPONENCIAIS COMPLEXOS:

Tamanho: px
Começar a partir da página:

Download "ANÁLISE DE SINAIS E SISTEMAS AULA 4: SINAIS EXPONENCIAIS; SINAIS SENOIDAIS; SINAIS SENOIDAIS AMORTECIDOS; SINAIS EXPONENCIAIS COMPLEXOS:"

Transcrição

1 ANÁLISE DE SINAIS E SISTEMAS AULA 4: SINAIS EXPONENCIAIS; SINAIS SENOIDAIS; SINAIS SENOIDAIS AMORTECIDOS; SINAIS EXPONENCIAIS COMPLEXOS: 1

2 SINAIS EXPONECIAIS São sinais da forma x() t Ae t em que A e são parâmetros reais. A é a amplitude do sinal exponencial medido em t=0. Se > 0, o sinal é exponencial crescente; Se < 0, o sinal é exponencial decrescente; x(t) x(t) > 0 A < 0 A t t 2

3 SINAIS EXPONECIAIS Para o tempo discreto o sinal exponencial é da forma n x[n] =B r, obtendo-se em que r pode ser escrito como r = e. n x[n] =B e. B é a amplitude do sinal exponencial medido em n=0 Neste caso as seguintes situações podem ocorrer: x(t) x(t) x(t) x(t) t t r > 1 t 0<r < 1 t r <-1-1<r < 0 3

4 SINAIS SENOIDAIS Para o tempo contínuo o sinal senoidal é da forma O período é dado por: x(t)= Acos( t + ), A é a amplitude do sinal senoidal; ω é a frequência angular em rad/s; ϕ é o ângulo de fase. em que: 2 2 T = = = 2 f T 4

5 SINAIS SENOIDAIS Podemos verificar a periodicidade do sinal senoidal utilizando a definição de função periódica. Se a função x(t) é periódica deve-se verificar que x(t)= x(t +T), Para a função senoidal tem-se que x(t)= Acos( t + ), x(t +T) = Acos[ ( t +T)+ ] x(t +T) = Acos[ t + T + ] x(t +T) = Acos[ t + 2 ] x(t +T) = Acos[ t + ] x(t +T) = x(t) 5

6 SINAIS SENOIDAIS Para o tempo discreto o sinal senoidal é da forma x[n] = Acos[ n+ ], Ω é a frequência angular dada por em que: 2, N sendo N o período medido em amostras por ciclo. Se o período é N, então pode-se escrever x[n] = x[n+ N] x[n+ N] = Acos[ n+ N)+ ] x[n+ N] = Acos[ n+ N + ] x[n+ N] = Acos[ n+ 2 m] x[n+ N] = Acos[ n+ ] N 2m, com m inteiro 6

7 Dessa forma, pode-se escrever SINAIS SENOIDAIS Assim tem-se que m 2 é um número racional. N 2 m 2 m ou k, N k N Se isto não ocorre, a senoide discreta não é periódica. Exercício Verificar a periodicidade dos seguintes sinais: a) x[n]=3cos[0,2πn] b) x[n]=2cos [5πn] c) x[n]=5cos[4n] 7

8 SINAIS SENOIDAIS EXPONENCIALMENTE AMORTECIDOS São sinais da forma: para o tempo contínuo e para o tempo discreto. -t x(t)= Ae cos( t + ), com > 0, n x(t)=br cos( n+ ), com 0 < r < 1. Observe que a senoide exponencialmente amortecida não é periódica: 8

9 RELAÇÃO ENTRE SINAIS SENOIDAIS E EXPONENCIAIS COMPLEXOS Seja o sinal exponencial complexo j t x(t)= Ae Da identidade de Euler, tem-se que e j cos + jsen Logo x(t) = Acos( t) + jasen( t) Para j( t+ ) x(t)= Ae pode-se escrever x(t)= Acos( t + ) + jasen( t + ) Assim, tem-se que: Re x(t) = Acos( t + ) Im x(t) = Asen( t + ) 9

10 RELAÇÃO ENTRE SINAIS SENOIDAIS E EXPONENCIAIS COMPLEXOS Analogamente para o tempo discreto pode-se escrever: j( n+ ) x[n] = Ae x[n] = Acos( n+ ) + jasen( n+ ) Re x[n] = Acos( n+ ) Im x[n] = Asen( n+ ) 10

11 SINAIS EXPONENCIAIS COMPLEXOS GERAIS É o sinal da forma at x(t)= Ce, em que C e a, em geral, são números complexos. Seja C = C e j e a = r + j, 0 então j (r+ j0) t rt j( 0t x(t)= C e e C e e ), que pode ser escrita como rt rt x(t)= C e cos( 0t + )+ j C e sen( 0t + ), 11

12 SINAIS EXPONENCIAIS COMPLEXOS GERAIS rt rt x(t)= C e cos( 0t + )+ j C e sen( 0t + ), Observe que: para r = 0 a parte real e imaginária são sinais senoidais; para r < 0 a parte real e imaginária são sinais senoidais amortecidas; para r > 0 a parte real e imaginária são sinais senoidais crescentes; Quando C é real e a é puramente imaginário, então j t x(t)= Ce 0. Para que x(t) seja periódica deve-se impor que x(t)= x(t +T), Assim tem-se que Ce Ce Ce e j t j (t+t) j t j T Para que a igualdade se verifique é necessário que j T e

13 SINAIS EXPONENCIAIS COMPLEXOS GERAIS Escrevendo os últimos resultados: j t j (t+t) j t j T j T x(t) = Ce Ce Ce e e Se ω 0 = 0 então x(t) = C, que é periódico para qualquer valor de T. Se ω 0 é diferente de zero, então, lembrando que j0t e cos( 0T)+ jsen( 0T) j0t e para que e 1, devemos ter 0T = 2k (sendo k inteiro), o período fundamental T 0 é tal que 0T 0=2, (k = 1) 2 o que resulta em T=

14 SINAIS EXPONENCIAIS COMPLEXOS GERAIS Um sinal senoidal pode ser escrito na forma de exponenciais complexas. Seja x(t) = Acos( t + ), Pela identidade de Euler tem-se que Somando-se esta duas expressões obtém-se e j 1 1 cos e + e 2 2 j -j Assim, x(t) pode ser escrito na seguinte forma: cos + jsen -j e cos - jsen Ou ainda, A A x(t) = e e 2 2 j( t+ ) -j( t+ ) 0 0 A A x(t) = e e e e 2 2 j j t -j -j t

15 SINAIS EXPONENCIAIS COMPLEXOS GERAIS A A x(t) = e e e e 2 2 j j t -j -j t 0 0 A A 2 2 j -j Fazendo: B = e e B e, obtém-se: x(t) = B e 1 2 B e j0t -j0t 1 2 Observe que B 1 e B 2 são números complexos conjugados. Obtenha a forma exponencial complexa do sinal -t x(t)= Ae cos( t + ) 15

16 SINAIS EXPONENCIAIS COMPLEXOS GERAIS n Para o tempo discreto tem-se: x[n] = C, sendo que, em geral, C e α são números complexos. j j Fazendo C C e e = e, tem-se que j n j n j( ) x[n] = C e e C e n n n ou ainda x[n] = C cos[ n+ ] + j C sen[ n+ ]. n para α =1 a parte real e imaginária são sequências senoidais; para α <1 a parte real e imaginária são senoides amortecidas; para α >1 a parte real e imaginária são senoides decrescentes; 16

17 SINAIS EXPONENCIAIS COMPLEXOS GERAIS Analogamente ao caso contínuo, um sinal senoidal de tempo discreto pode ser escrito na forma de exponenciais complexas. Seja x[n] = Acos( n+ ) Com o mesmo desenvolvimento utilizado para o caso contínuo, pode-se obter a forma exponencial complexa para a senoide discreta A A x[n] = e e e e 2 2 j jn -j -jn 17

18 PROPRIEDADES DE PERIODICIDADE DOS SINAIS EXPONENCIAIS COMPLEXOS DE TEMPO DISCRETO Seja x [n] = Ae e x [n] = Ae jn j( 2 ) n 1 2, Desenvolvendo a expressão de x 2 [n] obtemos: x [n] = Ae Ae e 2 j( n2) n jn j2n Observe que: Portanto: e j2n j2n e 1 x [n] = Ae cos(2n)+ j sen(2n) = 1 + j0 = x [n] jn 2 1 Isto significa que quando a frequência passou de Ω para Ω + 2π o sinal não se modificou. Sua frequência é a mesma! 18

19 PROPRIEDADES DE PERIODICIDADE DOS SINAIS EXPONENCIAIS COMPLEXOS DE TEMPO DISCRETO No tempo discreto, sinais com frequência Ω e Ω +2kπ (k inteiro), são idênticos. A frequência varia apenas num intervalo de 2π. Especificamente, se Ω =0 ou Ω = 2π tem-se j0 x 1[n] = Ae A constante j2 ou Ae n j jn Em = x 1[n] = e = e = -1,, que oscila a cada amostra. A partir de zero, a taxa de oscilação aumenta atingindo a seu valor máximo em π. A partir de π, a taxa de oscilação diminui e volta a zero em 2π. n 19

20 PROPRIEDADES DE PERIODICIDADE DOS SINAIS EXPONENCIAIS COMPLEXOS DE TEMPO DISCRETO 20

21 PROPRIEDADES DE PERIODICIDADE DOS SINAIS EXPONENCIAIS COMPLEXOS DE TEMPO DISCRETO Sinais harmonicamente relacionados são aqueles que possuem frequência múltipla da fundamental. Em tempo contínuo, todas as exponenciais complexas harmonicamente relacionadas são distintas. k jk 0 t jk(2 /T 0 (t)= Ae = Ae )t com k = 0, 1,

22 PROPRIEDADES DE PERIODICIDADE DOS SINAIS EXPONENCIAIS COMPLEXOS DE TEMPO DISCRETO Em tempo discreto, os sinais harmonicamente relacionados são aqueles que possuem frequência múltipla de Ω=2π/N. jk( ) n jk(2 / N ) n Seja k [n] =e = e, com k = 0, 1, j(k+n)(2 / N ) n jk(2 / N ) n j(2 ) n Observe que k+n [n] = e = e e = k [n] Isto implica que há somente N exponenciais periódicas jn distintas harmonicamente relacionadas com [n] =e, isto é 0 [n], 1 [n], 2 [n]... N-1 [n] 22

23 EXERCÍCIOS Livro do Haykin: 1.10; 1.11; 1.12 ; a, c; b, d, g, k; 1.19; 1.20; a, b, c, g, i; 1.22; Determine o período fundamental do sinal x(t)=2cos(10t +1) - sen(4t - 1), Resposta: π. Verifique quantas exponenciais complexas harmonicamente j(3 /4 relacionadas existem em x[n] = e ) n. Resposta: 8. 23

Sinais e Sistemas. Sinais e Sistemas Fundamentos. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros

Sinais e Sistemas. Sinais e Sistemas Fundamentos. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros Sinais e Sistemas Sinais e Sistemas Fundamentos Renato Dourado Maia Faculdade de Ciência e Tecnologia de Montes Claros Fundação Educacional Montes Claros Conjuntos de Números e Equações Números Inteiros

Leia mais

Sistemas Lineares. Aula 9 Transformada de Fourier

Sistemas Lineares. Aula 9 Transformada de Fourier Sistemas Lineares Aula 9 Transformada de Fourier Séries de Fourier A Série de Fourier representa um sinal periódico como uma combinação linear de exponenciais complexas harmonicamente relacionadas. Como

Leia mais

LINHAS DE TRANSMISSÃO DE ENERGIA LTE. Aula 4 Conceitos Básicos da Transmissão em Corrente Alternada

LINHAS DE TRANSMISSÃO DE ENERGIA LTE. Aula 4 Conceitos Básicos da Transmissão em Corrente Alternada LINHAS DE TRANSMISSÃO DE ENERGIA LTE Aula 4 Conceitos Básicos da Transmissão em Corrente Alternada Tópicos da Aula Tensões e Correntes Variantes no Tempo Sistema em Regime Permanente Senoidal Interpretação

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros Sinais e Sistemas Série de Fourier Renato Dourado Maia Faculdade de Ciência e Tecnologia de Montes Claros Fundação Educacional Montes Claros Lembremos da resposta de um sistema LTI discreto a uma exponencial

Leia mais

Sinais e Sistemas. A Transformada de Fourier de Tempo Contínuo. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Sinais e Sistemas. A Transformada de Fourier de Tempo Contínuo. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Sinais e Sistemas A Transformada de Fourier de Tempo Contínuo Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Introdução Nas últimas aulas, desenvolvemos a representação

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Sinais e Sistemas Série de Fourier Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Lembremos da resposta de um sistema LTI discreto a uma exponencial complexa: x[ n] z,

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 59070 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 6 00 Superposição de Movimentos Periódicos Há muitas situações em física que envolvem a ocorrência simultânea de duas ou mais

Leia mais

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA ELÉTRICA Princípios de Comunicações Aulas 7 e 8 Milton Luiz Neri Pereira (UNEMAT/FACET/DEE) 3. Série de Fourier

Leia mais

ELT032 - Introdução à Análise de Sinais

ELT032 - Introdução à Análise de Sinais ELT032 - Introdução à Análise de Universidade Federal de Itajubá - Campus Itajubá Engenharia Eletrônica Aula 01 Prof. Jeremias B. Machado jeremias@unifei.edu.br 24 de abril de 2015 1 / 42 Introdução Considere

Leia mais

ANÁLISE DE SINAIS DINÂMICOS

ANÁLISE DE SINAIS DINÂMICOS ANÁLISE DE SINAIS DINÂMICOS Paulo S. Varoto 7 . - Classificação de Sinais Sinais dinâmicos são geralmente classificados como deterministicos e aleatórios, como mostra a figura abaixo: Periódicos Determinísticos

Leia mais

ANÁLISE DE SINAIS E SISTEMAS

ANÁLISE DE SINAIS E SISTEMAS ANÁLISE DE SINAIS E SISTEMAS AULA 2: :. Sinais de Tempo Contínuo e Sinais de Tempo Discreto; 2. Sinais Analógicos e Digitais; 3. Sinais Determinísticos e Sinais Aleatórios; 4. Sinais Pares e Sinais Ímpares;

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 26 de março de 2018 Roteiro 1 Modelo geral Amortecimento supercrítico Amortecimento subcrítico

Leia mais

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA ELÉTRICA Princípios de Comunicações Slides 5 e 6 Milton Luiz Neri Pereira (UNEMAT/FACET/DEE) 1 2.1 Sinais Um

Leia mais

Fontes senoidais. Fontes senoidais podem ser expressar em funções de senos ou cossenos A função senoidal se repete periodicamente

Fontes senoidais. Fontes senoidais podem ser expressar em funções de senos ou cossenos A função senoidal se repete periodicamente Aula 23 Fasores I Fontes senoidais Exemplo de representações de fontes senoidais Fontes senoidais podem ser expressar em funções de senos ou cossenos A função senoidal se repete periodicamente v t = V

Leia mais

Tranformada de Fourier. Guillermo Cámara-Chávez

Tranformada de Fourier. Guillermo Cámara-Chávez Tranformada de Fourier Guillermo Cámara-Chávez O que é uma série de Fourier Todos conhecemos as funções trigonométricas: seno, cosseno, tangente, etc. O que é uma série de Fourier Essa função é periódica,

Leia mais

PSI-3214 Laboratório de Instrumentação Elétrica. Sinais Periódicos. Vítor H. Nascimento

PSI-3214 Laboratório de Instrumentação Elétrica. Sinais Periódicos. Vítor H. Nascimento PSI-34 Laboratório de Instrumentação Elétrica Introdução à Análise de Fourier Sinais Periódicos Vítor H. Nascimento Introdução Sinais periódicos (ou aproximadamente periódicos) aparecem em diversas situações

Leia mais

Teoria de Eletricidade Aplicada

Teoria de Eletricidade Aplicada 1/24 Teoria de Eletricidade Aplicada Representação Vetorial de Ondas Senoidais Prof. Jorge Cormane Engenharia de Energia 2/24 SUMÁRIO 1. Introdução 2. Números Complexos 3. Funções Exponenciais Complexas

Leia mais

QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma:

QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma: QUESTÕES-AULA 37 1. Considere a função f(x) = 4 x, 0 x < 3. 3 (a) Construa uma função periódica F (x) definida em todo o R, tal que F (x) = f(x) para todo x [0, 3). (b) Determine o período, a frequência

Leia mais

Capítulo 9. Circuitos de Segunda Ordem

Capítulo 9. Circuitos de Segunda Ordem EA-53 Circuitos Elétricos I Capítulo 9 Circuitos de Segunda Ordem EA-53 Circuitos Elétricos I 9. Circuitos com Dois Elementos Armazenadores Circuito com dois indutores, onde deseja-se obter a corrente

Leia mais

Prof. Daniel Hasse. Princípios de Comunicações

Prof. Daniel Hasse. Princípios de Comunicações Prof. Daniel Hasse Princípios de Comunicações AULA 3 Análise de Fourier Prof. Daniel Hasse Sinais e espectros Os sinais são compostos de várias componentes senoidais (Série de Fourier) Generalização ransformada

Leia mais

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry. Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores Correntes e Tensões Alternadas Senoidais Prof. Clóvis Antônio Petry. Florianópolis, julho de 2007. Bibliografia

Leia mais

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T. Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento

Leia mais

Introdução ao Processamento Digital de Imagens. Aula 6 Propriedades da Transformada de Fourier

Introdução ao Processamento Digital de Imagens. Aula 6 Propriedades da Transformada de Fourier Introdução ao Processamento Digital de Imagens Aula 6 Propriedades da Transformada de Fourier Prof. Dr. Marcelo Andrade da Costa Vieira mvieira@sc.usp.br Uma linha de uma imagem formada por uma sequência

Leia mais

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto

Leia mais

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009 Universidade de São Paulo Instituto de Física FEP11 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 9 Primeira Lista de Exercícios Oscilações 1) Duas molas idênticas, cada uma de constante, estão

Leia mais

, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas.

, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas. Oscilações Amortecidas O modelo do sistema massa-mola visto nas aulas passadas, que resultou nas equações do MHS, é apenas uma idealização das situações mais realistas existentes na prática. Sempre que

Leia mais

1 Números Complexos e Plano Complexo

1 Números Complexos e Plano Complexo UNIVERSIDADE FEDERAL DE SANTA CATARINA Centro de Ciências Físicas e Matemáticas Departamento de Matemática SEMESTRE CÓDIGO DISCIPLINA TURMA 09-1 MTM5327 Variável Complexa 0549 Professor Lista de Exercícios

Leia mais

Teoria de Eletricidade Aplicada

Teoria de Eletricidade Aplicada 1/34 Teoria de Eletricidade Aplicada Considerações sobre a Corrente Alternada (CA) Prof. Jorge Cormane Engenharia de Energia 2/34 SUMÁRIO 1. Introdução 2. Formas de Onda 3. Funções Senoidais 4. Valor Médio

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento

Leia mais

Resposta em Frequência de Sistemas LTI

Resposta em Frequência de Sistemas LTI Resposta em Frequência de Sistemas LTI Vimos que a resposta y(n) de um sistema LTI em estado zero é dada pela convolução linear do sinal de entrada x(n) com a sua resposta ao impulso h(n). Em particular,

Leia mais

Caderno de Exercícios

Caderno de Exercícios Caderno de Exercícios Orlando Ferreira Soares Índice Caracterização de Sinais... Caracterização de Sistemas...0 Sistemas LIT - Convolução...5 Série de Fourier para Sinais Periódicos Contínuos...0 Transformada

Leia mais

Experimento 7 Circuitos RC em corrente alternada

Experimento 7 Circuitos RC em corrente alternada 1. OBJETIVO Experimento 7 Circuitos RC em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RC em presença de uma fonte de alimentação de corrente alternada.. 2. MATERIAL

Leia mais

Experimento 10 Circuitos RLC em corrente alternada: ressonância

Experimento 10 Circuitos RLC em corrente alternada: ressonância Experimento 10 Circuitos RLC em corrente alternada: ressonância 1. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos RLC em presença de uma fonte de alimentação de corrente alternada.

Leia mais

Experimento 9 Circuitos RL em corrente alternada

Experimento 9 Circuitos RL em corrente alternada 1. OBJETIVO Experimento 9 Circuitos RL em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RL em presença de uma fonte de alimentação de corrente alternada. 2. MATERIAL UTILIZADO

Leia mais

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrer turbulência

Leia mais

Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações. Professor: Gustavo Silva

Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações. Professor: Gustavo Silva Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações Professor: Gustavo Silva 1 1.Movimentos Movimento oscilatório é qualquer movimento onde o sistema observado move-se em torno de uma certa

Leia mais

Prova P3 Física para Engenharia II, turma nov. 2014

Prova P3 Física para Engenharia II, turma nov. 2014 Questão 1 Imagine que você prenda um objeto de 5 g numa mola cuja constante elástica vale 4 N/m. Em seguida, você o puxa, esticando a mola, até 5 cm da sua posição de equilíbrio, quando então o joga com

Leia mais

FASORES E NÚMEROS COMPLEXOS

FASORES E NÚMEROS COMPLEXOS Capítulo FSORES E NÚMEROS COMPLEXOS. Introdução.1 Fasor.1.1 Representação Fasorial de uma Onda Senoidal e Co-senoidal.1. Diagramas Fasoriais. Sistema de Números Complexos..1 Plano Complexo.. Operador j.3

Leia mais

Fundamentos de sinais e sistemas em tempo discreto

Fundamentos de sinais e sistemas em tempo discreto Fundamentos de sinais e sistemas em tempo discreto ENGC33: Sinais e Sistemas II Departamento de Engenharia Elétrica - DEE Universidade Federal da Bahia - UFBA 21 de novembro de 2016 Prof. Tito Luís Maia

Leia mais

! " # $ % & ' # % ( # " # ) * # +

!  # $ % & ' # % ( #  # ) * # + a Aula 69 AMIV ' * + Fórmula de De Moivre Dado z = ρe e Concluímos por indução que = ρ cos θ + i sen θ C temos z = ρe ρe = ρ e z = zz = ρe ρ e = ρ e z = ρ e para qualquer n N e como ρ e ρ e = ρ e pôr n

Leia mais

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L.

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Esquema do problema Consideremos uma corda longa, fixa nas extremidades, por onde se

Leia mais

Física para Engenharia II (antiga FEP2196) Turma 09 Sala C2-09 3as 13h10 / 5as 9h20. Turma 10 Sala C2-10 3as 15h00 / 5as 7h30.

Física para Engenharia II (antiga FEP2196) Turma 09 Sala C2-09 3as 13h10 / 5as 9h20. Turma 10 Sala C2-10 3as 15h00 / 5as 7h30. Física para Engenharia II 4320196 (antiga FEP2196) Turma 09 Sala C2-09 3as 13h10 / 5as 9h20. Turma 10 Sala C2-10 3as 15h00 / 5as 7h30. Profa. Márcia Regina Dias Rodrigues Depto. Física Nuclear IF USP Ed.

Leia mais

Movimento harmônico. Prof. Juliano G. Iossaqui. Londrina, 2017

Movimento harmônico. Prof. Juliano G. Iossaqui. Londrina, 2017 Vibrações Movimento harmônico Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui (UTFPR) Aula 02 Londrina, 2017 1

Leia mais

Sinais Elementares e Operações Básicas

Sinais Elementares e Operações Básicas Exper. 2 Sinais Elementares e Operações Básicas Objetivo Esta prática descreve como utilizar o Matlab para representar e manipular alguns sinais elementares: Estudar os sinais elementares de tempo contínuo

Leia mais

UNIDADE 15 OSCILAÇÕES

UNIDADE 15 OSCILAÇÕES UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito

Leia mais

Processamento de Sinais Multimídia

Processamento de Sinais Multimídia Processamento de Sinais Multimídia Introdução Mylène Christine Queiroz de Farias Departamento de Ciência da Computação Universidade de Brasília (UnB) Brasília, DF 70910-900 mylene@unb.br 20 de Março de

Leia mais

Processamento de sinais digitais Aula 3: Transformada de Fourier (Parte 1)

Processamento de sinais digitais Aula 3: Transformada de Fourier (Parte 1) Processamento de sinais digitais Aula 3: Transformada de Fourier (Parte 1) silviavicter@iprj.uerj.br Tópicos Definição da Transformada de Fourier (TF) Propriedades importantes (ex: linearidade e periodicidade)

Leia mais

Aula 14. Transformada de Laplace IV

Aula 14. Transformada de Laplace IV Aula 14 Transformada de Laplace IV Matérias que serão discutidas Nilsson Circuitos Elétricos Capítulos 1, 13 e 14 LAPLACE Capítulo 8 Circuitos de Segunda ordem no domínio do tempo Circuitos de Segunda

Leia mais

= 0,7 m/s. F = m d 2 x d t 2

= 0,7 m/s. F = m d 2 x d t 2 Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 16,5 N/m e a um amortecedor de constante de amortecimento b = 0,5 N.s/m. O bloco é deslocado de sua posição de equilíbrio O até

Leia mais

Sinais e Sistemas - Lista 3 Gabarito

Sinais e Sistemas - Lista 3 Gabarito UNIVERSIDADE DE BRASÍLIA, FACULDADE GAMA Sinais e Sistemas - Lista Gabarito 7 de novembro de 05. Calcule a Transformada de Fourier dos seguintes sinais: a) x[n] = ( n ) u[n ] b) x[n] = ( ) n c) x[n] =

Leia mais

Circuitos RC com corrente alternada. 5.1 Material. resistor de 10 Ω; capacitor de 2,2 µf.

Circuitos RC com corrente alternada. 5.1 Material. resistor de 10 Ω; capacitor de 2,2 µf. Circuitos RC com corrente alternada 5 5.1 Material resistor de 1 Ω; capacitor de, µf. 5. Introdução Como vimos na aula sobre capacitores, a equação característica do capacitor ideal é dada por i(t) = C

Leia mais

Exercícios para Processamento Digital de Sinal. 1 Transformada e Série de Fourier

Exercícios para Processamento Digital de Sinal. 1 Transformada e Série de Fourier Exercícios para Processamento Digital de Sinal Transformada e Série de Fourier Exercício Considere o seguinte sinal x(t) = sin 2 (0πt). Encontre uma forma aditiva para este sinal e represente graficamente

Leia mais

Transformada de Fourier Discreta no Tempo (DTFT)

Transformada de Fourier Discreta no Tempo (DTFT) Transformada de Fourier Discreta no Tempo (DTFT) Transformada de Fourier de um sinal discreto no tempo x(n): X e jω = x(n)e jωn n= A DTFT é uma função complexa da variável real e contínua ω. A DTFT é uma

Leia mais

Capítulo 10. Excitação Senoidal e Fasores

Capítulo 10. Excitação Senoidal e Fasores Capítulo 0 Excitação Senoidal e Fasores 0. Propriedades das Senóides: Onda senoidal: ( t) sen( t) v ω Aplitude Freqüência angular ω [rad/s] - π/ω π/ω t Senóide é ua função periódica: Período: T π/ω Freqüência:

Leia mais

Operações Básicas em Sinais 1

Operações Básicas em Sinais 1 Operações Básicas em Sinais Operações realizadas em variáveis dependentes Mudança de escala de amplitude Adição Multiplicação Diferenciação Integração Operações Básicas em Sinais 1 Operações Realizadas

Leia mais

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 1

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 1 Introdução ao Soluções dos Exercícios Propostos Capítulo. Dados os sinais x c (t a seguir, encontre as amostras, a representação em somatórios de impulsos deslocados, e trace os gráficos de = x c (nt a

Leia mais

Parte A: Circuitos RC com corrente alternada

Parte A: Circuitos RC com corrente alternada Circuitos RC e RL com Corrente Alternada 6 Parte A: Circuitos RC com corrente alternada 6.1 Material osciloscópio; multímetro digital; gerador de sinais; resistor de 10 Ω; capacitor de 2,2 µf. 6.2 Introdução

Leia mais

Circuitos RC e RL com Corrente Alternada

Circuitos RC e RL com Corrente Alternada Experimento 6 Circuitos RC e RL com Corrente Alternada Parte A: Circuitos RC com corrente alternada 6.1 Material osciloscópio; multímetro digital; gerador de sinais; resistor de 10 Ω; capacitor de 2,2

Leia mais

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t).

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t). Análise Complexa e Equações Diferenciais 2 o Semestre 206/207 3 de junho de 207, às 9:00 Teste 2 versão A MEFT, MEC, MEBiom, LEGM, LMAC, MEAer, MEMec, LEAN, LEMat [,0 val Resolva os seguintes problemas

Leia mais

Portanto, = 4 1= 2. LETRA D

Portanto, = 4 1= 2. LETRA D TRIGONOMETRIA PARTE QUESTÃO 0 Maior valor (cos (0,0t) -) 585 r(t) 900 + 0,5.( ) Menor valor (cos(0,0t) ) 585 r(t) 500 + 0,5.() Somando, temos: 900 + 500 000 QUESTÃO 0 P QUESTÃO 0 Queremos calcular f()

Leia mais

Série de Fourier de tempo discreto

Série de Fourier de tempo discreto Série de Fourier de tempo discreto ENGC33: Sinais e Sistemas II Departamento de Engenharia Elétrica - DEE Universidade Federal da Bahia - UFBA 05 de dezembro de 2016 Prof. Tito Luís Maia Santos 1/ 22 Sumário

Leia mais

Vibrações de sistemas com um grau de liberdade 1

Vibrações de sistemas com um grau de liberdade 1 Vibrações de sistemas com um grau de liberdade 1 DEFINIÇÕES Vibração mecânica movimento de uma partícula ou de um corpo que oscila em torno de uma posição de equilíbrio. Período de vibração intervalo de

Leia mais

Aula 12: Oscilações Eletromagnéticas. Curso de Física Geral III F o semestre, 2014

Aula 12: Oscilações Eletromagnéticas. Curso de Física Geral III F o semestre, 2014 Aula : Oscilações Eletromagnéticas urso de Física Geral III F-38 o semestre, 4 Oscilações eletromagnéticas () Vimos: ircuitos R e R: q(t), i(t) e V(t): têm comportamento exponencial Veremos: ircuito :

Leia mais

Sistemas lineares. Aula 1 - Sinais

Sistemas lineares. Aula 1 - Sinais Sistemas lineares Aula 1 - Sinais Conceitos Sinais e sistemas Definições Descrições Representações matemáticas Classificações Sinais Elementares (básicos) Operações Sinais Definição: Um sinal é a representação

Leia mais

Calculando a Energia de Sinais Senoidais

Calculando a Energia de Sinais Senoidais Calculando a Energia de Sinais Senoidais Leonardo Santos Barbosa leonardosantos.inf@gmail.com 7 de janeiro de 5 Introdução A ideia do presente texto é complementar nosso texto anterior [] cuja intenção

Leia mais

Processamento de Sinais Multimídia

Processamento de Sinais Multimídia Processamento de Sinais Multimídia Introdução Mylène Christine Queiroz de Farias Departamento de Ciência da Computação Universidade de Brasília (UnB) Brasília, DF 70910-900 mylene@unb.br 22 de Março de

Leia mais

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 2

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 2 Introdução ao Soluções dos Exercícios Propostos Capítulo 2. Verifique se os sinais abaixo têm ou não transformada de Fourier. Em caso positivo, calcule a transformada correspondente: a) x[n] 2δ[n+2]+3δ[n]

Leia mais

Sinais e Sistemas - Lista 3

Sinais e Sistemas - Lista 3 UNIVERSIDADE DE BRASÍLIA, FACULDADE GAMA Sinais e Sistemas - Lista 3 7 de novembro de 0. Calcule a Transformada de Fourier dos seguintes sinais: a) x[n] = ( n ) u[n ] b) x[n] = ( ) n c) x[n] = u[n ] u[n

Leia mais

Aula do cap. 16 MHS e Oscilações

Aula do cap. 16 MHS e Oscilações Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento

Leia mais

Introdução. Faculdade Pitágoras Unidade Divinópolis. Márcio Júnior Nunes. O que é um Sinal? Sinal Unidimensional Sinal Multidimensional 24/08/2016

Introdução. Faculdade Pitágoras Unidade Divinópolis. Márcio Júnior Nunes. O que é um Sinal? Sinal Unidimensional Sinal Multidimensional 24/08/2016 Faculdade Pitágoras Unidade Divinópolis Introdução Márcio Júnior Nunes O que é um Sinal? Sinal Unidimensional Sinal Multidimensional 2 1 Nível de líquido 3 Eletrocardiograma 4 2 Pressão Arterial 5 Índice

Leia mais

A energia total do circuito é a soma da potencial elétrica e magnética

A energia total do circuito é a soma da potencial elétrica e magnética Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III - Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 35-, 35-4, 35-5, 35-6 S. 3-6, 3-7 T. 8-4 Aula 7 Circuitos

Leia mais

Lista 1 - Métodos Matemáticos II Respostas

Lista 1 - Métodos Matemáticos II Respostas Lista 1 - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele

Leia mais

Circuitos Trifásicos Aula 11 Cálculo de RMS, Potência e Distorção de uma Onda

Circuitos Trifásicos Aula 11 Cálculo de RMS, Potência e Distorção de uma Onda Circuitos Trifásicos Aula 11 Cálculo de RMS, Potência e Distorção de uma Onda Engenharia Elétrica Universidade Federal de Juiz de Fora tinyurl.com/profvariz (UFJF) CEL062 tinyurl.com/profvariz 1 / 30 Valor

Leia mais

BC 1519 Circuitos Elétricos e Fotônica

BC 1519 Circuitos Elétricos e Fotônica BC 1519 Circuitos Elétricos e Fotônica Circuitos em Corrente Alternada 013.1 1 Circuitos em Corrente Alternada (CA) Cálculos de tensão e corrente em regime permanente senoidal (RPS) Conceitos de fasor

Leia mais

FNT AULA 6 FUNÇÃO SENO E COSSENO

FNT AULA 6 FUNÇÃO SENO E COSSENO FNT AULA 6 FUNÇÃO SENO E COSSENO CIRCUNFERÊNCIA TRIGONOMÉTRICA Chama-se circunferência trigonométrica a circunferência de raio unitário (R=1), com centro na origem de um sistema cartesiano. +1 R = 1 360º

Leia mais

Integral. Queremos calcular a integral definida I = O valor de I será associado a uma área. Veremos dois métodos (por enquanto)

Integral. Queremos calcular a integral definida I = O valor de I será associado a uma área. Veremos dois métodos (por enquanto) Integral Queremos calcular a integral definida I = b a f(x)dx. O valor de I será associado a uma área. Veremos dois métodos (por enquanto) Método do Trapezóide Método de Simpson 1 Método do Trapezóide

Leia mais

Série de Fourier. Prof. Dr. Walter Ponge-Ferreira

Série de Fourier. Prof. Dr. Walter Ponge-Ferreira Resposta à Excitação Periódica Série de Fourier Prof. Dr. Walter Ponge-Ferreira E-mail: ponge@usp.br Escola Politécnica da Universidade de São Paulo Departamento de Engenharia Mecânica - PME Av. Prof.

Leia mais

Capítulo 12. Potência em Regime Permanente C.A.

Capítulo 12. Potência em Regime Permanente C.A. Capítulo Potência em Regime Permanente C.A. . Potência Média Em circuitos lineares cujas entradas são funções periódicas no tempo, as tensões e correntes em regime permanente produzidas são periódicas.

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. A operação multiplicar por i corresponde a fazer uma

Leia mais

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g.

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g. Um corpo, de massa m, está suspenso pela extremidade de uma mola, de constante elástica, a outra extremidade da mola está presa ao teto. Afasta-se o corpo da posição de equilíbrio e libera-se o corpo.

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. Como a multiplicação de um número complexo por i corresponde

Leia mais

AULA 45 O OSCILADOR HARMÔNICO FORÇADO

AULA 45 O OSCILADOR HARMÔNICO FORÇADO AULA 45 O OSCILADOR HARMÔNICO FORÇADO OBJETIVOS: ESTUDAR O MOVIMENTO HARMÔNICO FORÇADO 45.1 MOVIMENTO HARMÔNICO FORÇADO Este oscilador está na base de um grande número de fenômenos da Natureza e aplicações

Leia mais

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 1 N/m. O bloco é deslocado de sua posição de equilíbrio O até um ponto P a 0,5 m e solto a partir do repouso, determine: a) A

Leia mais

Espaço de Fourier. Processamento de Imagens Médicas. Prof. Luiz Otavio Murta Jr. Depto. de Física e Matemática (FFCLRP/USP)

Espaço de Fourier. Processamento de Imagens Médicas. Prof. Luiz Otavio Murta Jr. Depto. de Física e Matemática (FFCLRP/USP) Processamento de Imagens Médicas Espaço de Fourier Prof. Luiz Otavio Murta Jr. Depto. de Física e Matemática FFCLRP/USP Teorema da Amostragem quist. - O teorema da amostragem de quist diz que devemos amostrar

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE MAIO DE 2017

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE MAIO DE 2017 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 3 7 DE MAIO DE 27 A = 2 2 2 A matriz tem como valor próprio λ = 2 (triplo. Para os vectores próprios: { z = y + z = v = A matriz não é diagonalizável,

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 20 de março de 2013 Roteiro 1 Amortecidas forçadas Roteiro Amortecidas forçadas 1 Amortecidas

Leia mais

Sinais e Sistemas Exame Data: 11/6/2018. Duração: 3 horas

Sinais e Sistemas Exame Data: 11/6/2018. Duração: 3 horas Sinais e Sistemas Exame Data: /6/. Duração: 3 horas Número: Nome: Identique este enunciado e a folha de respostas com o seu número e os seus primeiro e último nomes. Para as questões a, indique as suas

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. A operação multiplicar por i corresponde a fazer uma

Leia mais

Experimento 4 Circuitos RLC com corrente alternada: ressonância

Experimento 4 Circuitos RLC com corrente alternada: ressonância Experimento 4 Circuitos RLC com corrente alternada: ressonância 1. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos RLC na presença de uma fonte de alimentação de corrente alternada.

Leia mais

Circuito RLC série FAP

Circuito RLC série FAP Circuito RLC série Vamos considerar um circuito com um indutor puro e um capacitor puro ligados em série, em que o capacitor está carregado no instante t. Como inicialmente o capacitor está com a carga

Leia mais

Seção 11: EDOLH com coeficientes constantes

Seção 11: EDOLH com coeficientes constantes Seção 11: EDOLH com coeficientes constantes Observação fundamental: Se L(y) = y + py + qy, com p, q constantes então L(e λt ) = ( λ + pλ + q ) e λt. Portanto a EDO L(y) = 0 pode ter solução da forma y

Leia mais

Introdução aos Circuitos Elétricos

Introdução aos Circuitos Elétricos 1 / 47 Introdução aos Circuitos Elétricos Séries e Transformadas de Fourier Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia 2 / 47 Séries e Transformadas

Leia mais

PSI.3031 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA EXPERIÊNCIA 10: REDES DE SEGUNDA ORDEM

PSI.3031 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA EXPERIÊNCIA 10: REDES DE SEGUNDA ORDEM ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI.3031 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA Edição 2017 E.Galeazzo / L.Yoshioka

Leia mais

Circuitos Elétricos I

Circuitos Elétricos I Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Circuitos Elétricos I Prof. Dr. José Luis Azcue Puma Excitação Senoidal e Fasores Impedância Admitância 1 Propriedades das Senóides

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A ESCOLA SECUNDÁRIA COM º CICLO D. DINIS 1º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Trigonometria e Números Complexos Tarefa nº 1 do plano de trabalho nº 11 1. Duas funções f e g do tipo y = sen( ax

Leia mais

Lista de exercícios. isso que o torque de amortecimento seja linearmente proporcional à velocidade angular.

Lista de exercícios. isso que o torque de amortecimento seja linearmente proporcional à velocidade angular. Oscilações amortecidas Lista de exercícios Exercício 1 harmônica? Qualitativamente, o que é que distingue uma oscilação amortecida de uma oscilação Exercício 2 um deles? Quais são os três possíveis regimes

Leia mais

Aula 13 mtm B TRIGONOMETRIA

Aula 13 mtm B TRIGONOMETRIA Aula 13 mtm B TRIGONOMETRIA Definição Função Seno: f(x) = a ± b.sen(mx + n) Função Cosseno: f(x) = a ± b.cos(mx + n) a - Parâmetro aditivo da função. b - Parâmetro multiplicativo da função. m Parâmetro

Leia mais

Controle. Transformada Laplace básico

Controle. Transformada Laplace básico Controle Transformada Laplace básico REQUISITOS Para perfeita compreensão do conteúdo desta aula é desejável o entendimento dos seguintes assuntos (eventualmente disponíveis em outros vídeos neste canal):

Leia mais

Sinais e Sistemas Introdução a Sinais

Sinais e Sistemas Introdução a Sinais Sinais e Sistemas Introdução a Sinais Profª Sandra Mara Torres Müller Aula 1 O que é um sinal? Função de uma ou mais variáveis, a qual veicula informações sobre a natureza de um fenômeno físico. O que

Leia mais