Portanto, os valores da taxa de crescimento geométrico R e da taxa finita de crescimento λ são, respectivamente,

Tamanho: px
Começar a partir da página:

Download "Portanto, os valores da taxa de crescimento geométrico R e da taxa finita de crescimento λ são, respectivamente,"

Transcrição

1 Modelo Malhusiano: exemplo genérico no Excel Agora que você já eve uma inrodução ao Excel, vamos fazer um exercício em que você vai implemenar as equações do modelo malhusiano nele. Você vai fazer um gráfico da variação do amanho da população com o empo e verificar como esse gráfico muda quando se aleram parâmeros do modelo. Vamos considerar uma siuação em que o número inicial de indivíduos na população, N 0, é igual a 100. Vamos supor que a axa de fecundidade per capia é b = 1,25 e que a axa de moralidade per capia é d = 0,50. Isso nos dá a seguine equação para o nosso modelo malhusiano: ( 1+ b d ) N = ( 1+ 1,25 0,50) N 1,75 N. N = = + 1 Porano, os valores da axa de crescimeno geomérico R e da axa finia de crescimeno λ são, respecivamene, R = b d = 0,75 e λ = 1 + R= 1,75.

2 Vamos fazer um gráfico no Excel de maneira que você possa visualizar e alerar os valores dos parâmeros b, d e R ou λ para ver o efeio sobre a curva de crescimeno da população. Como sempre, não se esqueça de salvar sempre o seu rabalho. Abra uma planilha nova do Excel. Na célula A1 digie Modelo Malhusiano. Depois, selecione o número de células necessárias para cobrir odo o exo e, clicando sobre o boão formaar, selecione células e, depois, selecione mesclar células. Escreva na célula A2 Considera que as axas de naalidade e de moralidade per capia são consanes. Depois, repia o que você fez acima para deixar odo o exo em uma única célula. Vá agora para a célula B3 e escreva Variáveis. Selecione as células de B3 a E3 e formae as células para que esse exo eseja cenralizado nelas. Vá para a célula F3 e escreva Consanes. Selecione as células de F3 a I3 e formae-as para que o exo fique cenralizado nelas.

3 Vá agora para a célula A4 e escreva. Na célula B4 escreva N. Na célula C4 escreva Toal de nascimenos B. Na célula D4 escreva Toal de mores D. Na célula E4 escreva DelaN. Na célula F4 escreva b. Na célula G4 escreva d. Na célula H4 escreva R. Finalmene, na célula I4 escreva lambda. Na célula A5 escreva 0. Na célula A6 escreva =A5+1. Selecione a célula A6, clique no seu cano inferior direio e arrase aé a célula A25. Assim, você gerou inervalos de empo indo de = 0 aé = 20. Na célula B5 digie 100. Na célula F5 digie 1,25 e na célula G5 digie 0,50. Na célula H5 digie =F5-G5. Na célula I5 digie =1+H5. Na célula C5 digie =$F$5*B5. Na célula D5 digie =$G$5*B5. Na célula E5 digie =$H$5*B5. Na célula B5 digie $I$5*B5.

4 O que você acabou de fazer foi inserir as variáveis, parâmeros e fórmulas para os cálculos do modelo. Noe que quando as fórmulas fazem referência aos parâmeros b, d e R foram usados endereços absoluos (do ipo $F$5). Para gerar os resulados do modelo, selecione a célula B6, clique sobre o seu cano inferior direio e arrase aé a célula B25. Selecione agora as células de C5 a E5. Clique sobre o cano inferior direio de E5 e arrase udo aé a célula E25. Como você esá rabalhando com populações cujos valores são números ineiros, selecione as células de C5 a E25 e formae os seus valores para que sejam números sem casas decimais (arredonde os números). Se você fez odas as eapas conforme descrio acima, a sua planilha do Excel deverá esar parecida com a mosrada abaixo.

5 Modelo Malhusiano Considera que as axas de naalidade e de moralidade per capia são consanes Variáveis Consanes N Toal de nascimenos B Toal de mores D DelaN b d R lambda ,25 0,5 0,75 1, , , , , , , , , , , , , , , , Para fazer um gráfico das variáveis do modelo, selecione as células de A5 a E25 e siga os passos ensinados na aula 4. O seu gráfico deverá ficar parecido com o dado abaixo. Modelo Malhusiano Tamanho da População (N) Tempo () N Toal de nascimenos B Toal de mores D DelaN

6 Esriamene falando, o gráfico acima não esá correo, pois ele implica que o amanho da população cresce coninuamene enre passos de empo. Na verdade, para ese modelo de equações de diferenças finias, o amanho da população permanece consane durane odo um passo de empo e, insananeamene, pula para um ouro valor no passo de empo seguine + 1. Porano, o gráfico deveria se parecer com uma escadinha que vai ficando mais e mais inclinada à medida que o empo passa. Porém, isso iria ornar a visualização do crescimeno da população difícil e vamos aceiar o gráfico do jeio em que esá como uma boa represenação do crescimeno da população. Agora que você implemenou o modelo, pode começar a explorá-lo. Por exemplo, alere os valore dos parâmeros b e d e veja o seu efeio sobre o crescimeno da população (você vai precisar alerar a escala do eixo-y adequadamene para poder visualizar o que ocorre).

7 Aumene a axa de fecundidade per capia b, manendo a axa de moralidade d consane, e veja o que ocorre. Faça o conrário, aumenando d enquano b fica consane e veja o que ocorre. Alere b e d de maneira que a sua diferença permaneça consane e veja o efeio. Exercícios: Nos exercícios a seguir, reirados do livro de Allman e Rhodes, vamos usar o programa genérico que acabamos de desenvolver. 1. Nos eságios iniciais de desenvolvimeno de um embrião de sapo, a divisão celular ocorre a uma axa aproximadamene consane. Suponha que as observações indiquem que o número de células dobra a cada meia-hora (30 min). a. Escreva uma equação modelando esa siuação, deixando claro quano vale um incremeno na unidade de empo ;

8 b. Gere uma abela e um gráfico dando o número de células em função do empo para as primeiras 10 horas de desenvolvimeno do embrião; c. Observações indicam que, após 10 horas, o embrião em aproximadamene células. Ese valor é consisene com a previsão do modelo malhusiano? Resposas: a. Se o número de embriões dobra a cada meia-hora, devemos er: N +1 = 2N, onde = 30 minuos; b. Da equação acima, emos que λ = 2. Usando ese valor no nosso modelo genérico e fazendo apenas o gráfico de N versus, emos (noe que o número inicial de células deve ser 1): N

9 Crescimeno do embrião de sapo (mode lo malhusiano) Número de células Tem po (0,5 h) Crescimeno do embrião de sapo (mode lo malhusiano) Zoom para as primeiras 5 hs 1000 Número de células Tem po (0,5 h) Crescimeno do embrião de sapo (modelo malhusiano) Gráfico semi-log Número de células Tempo (0,5 h)

10 c. De acordo com o modelo malhusiano, após 10 horas (ou 20 inervalos de empo) o número de células deve ser igual a Porém, as observações indicam que o número de células é da ordem de Iso indica que o modelo só consegue reproduzir o que é observado durane os primeiros insanes da divisão celular e que ao longo das primeiras 10 horas a axa de divisão celular sofre uma redução em relação ao seu valor inicial. Esse fenômeno indica que a premissa básica do modelo a de que a axa de divisão celular é consane não deve ser válida para odo o empo e que um maior enendimeno de problema biológico deve ser conseguido para que um novo modelo maemáico possa ser implemenado. 2. Considere o seguine modelo: N +1 = 1,3N, N 0 = 1. Quanas unidades de empo devem passar para que o amanho da população exceda 10? Exceda 100? Exceda 1000? Responda às pergunas usando o Excel para

11 calcular N em função de e depois ene respondê-las analiicamene usando logarimos. Resposas: Usando o Excel, emos que os números de passos de empo necessários para que a população ulrapasse 10, 100 e 1000 são, respecivamene, 9, 18 e 27. Para responder de forma analíica, lembremos que, segundo o modelo malhusiano, N = λ N 0. No nosso caso, Porano, quando N = 10, 10 = 1,3 = log10 log1,3 N 3 8,8. = 1,. ( ) log10 = log 1,3 = log1,3 Como deve ser um ineiro, o primeiro número ineiro depois de 8,8 é 9, de maneira que = 9. Repeindo os mesmos passos para N = 100 e N = 1000, emos:

12 100 = 1,3 = log100 log1,3 17,6 ( ) log100 = log 1,3 = 18. = log1,3 e 1000 = 1,3 = log1000 log1,3 26,3 ( ) log1000 = log 1,3 = 27. = log1,3 Os rês empos obidos analiicamene (9, 18 e 27) são iguais aos obidos pelo Excel. Noe que os inervalos de empo são igualmene espaçados (por 9 unidades). Essa é uma caracerísica de uma variável que cresce geomericamene: o empo necessário para que haja um crescimeno por um faor m é sempre o mesmo. Aqui, o empo necessário para que a população cresça por um faor 10 é igual a 9 unidades. 3. Suponha que um experimeno com uma população de inseos em laboraório resulou nos seguines dados: N

13 Esses dados são consisenes com um modelo geomérico, durane odo o empo ou apenas para alguma faixa de empo? Resposa: Para saber se os dados podem ser modelados por um modelo geomérico, podemos calcular as razões N +1 /N. Se elas forem consanes, ou aproximadamene consanes, por odo o empo, os dados poderão ser aproximados por um modelo geomérico com λ = N +1 /N, caso conrário não. Os resulados (faça um programa no Excel para calcular as razões) mosram que N +1 /N começa valendo 1,52, mas decai coninuamene em direção a 1. Porano, os dados não podem ser modelados por um modelo malhusiano. Isso ambém pode ser viso com um gráfico de N versus gerado pelo Excel (veja abaixo).

14 Crescimeno da população de inseos Tamanho da população Tempo No enano, para os primeiros passos de empo ( = 0, 1, 2, 3), a razão N +1 /N é aproximadamene igual a 1,5. Sendo assim, para esses insanes iniciais os dados podem ser bem aproximados por um modelo malhusiano com λ = 1,5. Isso pode ser viso pelo gráfico abaixo. População Real x Modelo 6000 Tamanho da população N+1=1,5N Nreal Te mpo

15 4. Como os limnologisas e oceanógrafos sabem muio bem, a quanidade de luz solar que penera aé diferenes profundidades denro da água pode afear enormemene as comunidades que vivem ali. Assumindo que a água em urbidez uniforme (iso é, em o mesmo valor de urbidez em odos os ponos), a quanidade de luz que passa aravés de uma coluna de água de 1 mero de profundidade é proporcional à quanidade de luz que enra na coluna. a. Explique como essa hipóese leva a um modelo do ipo L d+1 = kl d, onde L d denoa a quanidade de luz que penerou aé uma profundidade de d meros; b. O parâmero k em que esar denro de que faixa de valores para que o modelo faça senido? c. Para k = 0,25 e L 0 = 1, faça um gráfico de L d para d = 0, 1,..., 10; d. Você acha que um modelo similar poderia ser aplicado para a peneração da luz solar aravés do dossel de uma floresa? Uma hipóese do ipo urbidez uniforme seria aplicável nesse caso?

16 Resposas: a. Suponha que a quanidade de luz que chega à superfície da coluna de água seja L 0. Enão, pela hipóese, a quanidade de luz que penera aé uma profundidade de 1 mero é proporcional a L 0, L d = kl 0. Agora, pela mesma hipóese, a quanidade de luz que penera por mais um mero, L d+1, é proporcional à quanidade de luz que esá passando pela profundidade d (a consane de proporcionalidade é a mesma). Porano, L = kl d+ 1 d b. A consane de proporcionalidade k não pode ser maior que 1, pois a quanidade luz que penera por 1 mero não pode ser maior do que a quanidade de luz que enra. Ela ambém não pode ser negaiva, o que implicaria uma quanidade de luz negaiva (o que é impossível!). Porano, 0 k 1..

17 O valor k = 0 implica que a quanidade de luz que chega a d + 1 é zero, ou seja, um meio com urbidez máxima. Já o valor k = 1 implica que a quanidade de luz que chega a d + 1 é igual à quanidade de enra por d, o que implica um meio com urbidez zero. Isso sugere que a consane k deve ser uma consane que dependa das propriedades do meio (água) cujo valor caraceriza o seu índice de urbidez (procure em livros e na Inerne alguma informação sobre isso). c. O gráfico esá dado abaixo, mosrando um decaimeno exponencial basane pronunciado (após 3 m a quanidade de luz cai a aproximadamene zero). Quanidade de luz que penera aé uma profundidade d 1 0,8 0,6 L 0,4 0, d

18 d. No caso do dossel de uma floresa provavelmene o modelo não seria ão bom, pois não seria muio realisa supor que o equivalene à urbidez para a floresa seria uniforme ao longo da alura das árvores. Mas isso iria depender do ipo de floresa. Poderia haver uma floresa com um dossel ão denso e uniforme, composo de folhas e galhos, por alguns meros (ou alguma oura unidade de comprimeno) que o modelo poderia ser usado. Mas, de qualquer modo, à medida que se passa do opo de uma floresa para o chão, a densidade de folhas e galhos vai ficando cada vez menor e a hipóese de uniformidade não seria uma boa aproximação.

19 5. A abela abaixo mosra o crescimeno da população dos Esados Unidos enre 1920 e Ano População (em milhares) a. Faça um gráfico desses dados. Você acha que o crescimeno da população pode ser modelado por um modelo malhusiano? Explique por que; b. Usando apenas os dados dos anos de 1920 e 1925, esime um valor para a axa finia de crescimeno λ e veja quão bem um modelo malhusiano com essa axa consegue fiar os dados; 1 Os dados foram reirados de Keyfiz, N. e Flieger, W., World Populaion: an analysis of vial daa. Universiy of Chicago Press, Chicago, IL, 1968 (segundo ciação no livro de Allman e Rhodes).

20 c. Ao invés de esimar λ usando apenas os dados de 1920 e 1925, use a média das axas de crescimeno a cada 5 anos. Um modelo com esse novo valor de λ fia melhor os dados do que o modelo do iem (b)? Resposas: a. O gráfico dos dados esá dado abaixo. População dos EUA População (x1000) Ano Claramene, esse gráfico não pode ser bem fiado por um modelo geomérico ou exponencial. A população cresce durane odo o período, mas a axa de crescimeno vai diminuindo (noe que a curva esá se virando para baixo) aé mais ou menos Depois, ela passa a crescer rapidamene. Provavelmene, as

21 causas da redução na axa de crescimeno aé 1945 foram a grande depressão da década de 1930 e a II Guerra Mundial. Em paricular, o crescimeno praicamene nulo enre 1940 e 1945 é ceramene devido à guerra. O rápido crescimeno após 1945 é conhecido como baby boom. b. e c. A axa de crescimeno enre 1920 e 1925 é λ 1 = ( )/( ) = 1,086. Porano, um modelo baseado nesse valor seria N +1 = 1,086N. Já a média das axas de crescimeno de 5 em 5 anos enre 1920 e 1960 é λ 2 = 1,068, de maneira que um modelo baseado nessa axa seria N +1 = 1,068N. O gráfico abaixo mosra como os dois modelos se comparam com os dados reais. O primeiro modelo é uma aproximação muio pobre, superesimando grosseiramene o valor da população. O segundo modelo é um pouco melhor, mas ele não capura as variações no crescimeno. Em paricular, ele fia muio mal os dados do período da guerra. Não é possível enconrar um modelo mahusiano que fie bem esses dados.

22 Tenaivas de modelagem do crescimeno da população dos EUA População Ano População (x 1000) Modelo 1 Modelo 2

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

Modelos Não-Lineares

Modelos Não-Lineares Modelos ão-lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico.

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico. O modelo malusiano para empo conínuo: uma inrodução não rigorosa ao cálculo A dinâmica de populações ambém pode ser modelada usando-se empo conínuo, o que é mais realisa para populações que se reproduzem

Leia mais

MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA

MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA Nesa abordagem paramérica, para esimar as funções básicas da análise de sobrevida, assume-se que o empo de falha T segue uma disribuição conhecida

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

DISCIPLINA SÉRIE CAMPO CONCEITO

DISCIPLINA SÉRIE CAMPO CONCEITO Log Soluções Reforço escolar M ae máica Dinâmica 4 2ª Série 1º Bimesre DISCIPLINA SÉRIE CAMPO CONCEITO Maemáica 2ª do Ensino Médio Algébrico simbólico Função Logarímica Primeira Eapa Comparilhar Ideias

Leia mais

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL Movimeno unidimensional Prof. DSc. Anderson Corines IFF campus Cabo Frio MECÂNICA GERAL 218.1 Objeivos Ter uma noção inicial sobre: Referencial Movimeno e repouso Pono maerial e corpo exenso Posição Diferença

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Para Newton, conforme o tempo passa, a velocidade da partícula aumenta indefinidamente. ( )

Para Newton, conforme o tempo passa, a velocidade da partícula aumenta indefinidamente. ( ) Avaliação 1 8/0/010 1) A Primeira Lei do Movimeno de Newon e a Teoria da elaividade esria de Einsein diferem quano ao comporameno de uma parícula quando sua velocidade se aproxima da velocidade da luz

Leia mais

GABARITO CURSO DE FÉRIAS MATEMÁTICA Professor: Alexandrino Diógenes

GABARITO CURSO DE FÉRIAS MATEMÁTICA Professor: Alexandrino Diógenes Professor: Alexandrino Diógenes EXERCÍCIOS DE SALA 4 5 6 7 8 9 0 E C D D A D E D A D 4 5 6 7 8 9 0 C E D B A B D C B A QUESTÃO Seja a função N : R R, definida por N(n) = an + b, em que N(n) é o número

Leia mais

Função Exponencial 2013

Função Exponencial 2013 Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares Modelos Não-Lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

Introdução às Medidas em Física

Introdução às Medidas em Física Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura emaeus@if.usp.br Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS

MATEMÁTICA E SUAS TECNOLOGIAS 1º SIMULADO ENEM 017 Resposa da quesão 1: MATEMÁTICA E SUAS TECNOLOGIAS Basa aplicar a combinação de see espores agrupados dois a dois, logo: 7! C7,!(7 )! 7 6 5! C7,!5! 7 6 5! C7, 1!5! Resposa da quesão

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

Teoremas Básicos de Equações a Diferenças Lineares

Teoremas Básicos de Equações a Diferenças Lineares Teoremas Básicos de Equações a Diferenças Lineares (Chiang e Wainwrigh Capíulos 17 e 18) Caracerização Geral de Equações a diferenças Lineares: Seja a seguine especificação geral de uma equação a diferença

Leia mais

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1)

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1) Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pino 1 2 o semesre de 2017 Aulas 11/12 derivadas de ordem superior/regra da cadeia gradiene e derivada direcional Derivadas direcionais

Leia mais

Problema de controle ótimo com equações de estado P-fuzzy: Programação dinâmica

Problema de controle ótimo com equações de estado P-fuzzy: Programação dinâmica Problema de conrole óimo com equações de esado P-fuzzy: Programação dinâmica Michael Macedo Diniz, Rodney Carlos Bassanezi, Depo de Maemáica Aplicada, IMECC, UNICAMP, 1383-859, Campinas, SP diniz@ime.unicamp.br,

Leia mais

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade

Leia mais

Notas de aula - profa Marlene - função logarítmica 1

Notas de aula - profa Marlene - função logarítmica 1 Noas de aula - profa Marlene - função logarímica Inrodução U - eparameno de Maemáica Aplicada (GMA) NOTAS E AULA - CÁLCULO APLICAO I - PROESSORA MARLENE unção Logarímica e unção Eponencial No Ensino Médio

Leia mais

Séries de Tempo. José Fajardo. Agosto EBAPE- Fundação Getulio Vargas

Séries de Tempo. José Fajardo. Agosto EBAPE- Fundação Getulio Vargas Séries de Tempo Inrodução José Faardo EBAPE- Fundação Geulio Vargas Agoso 0 José Faardo Séries de Tempo . Por quê o esudo de séries de empo é imporane? Primeiro, porque muios dados econômicos e financeiros

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 206 Macroeconomia I 1º Semesre de 2017 Professor Fernando Rugisky Lisa de Exercícios 3 [1] Considere

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F-18 semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno em 1-D Enender o moimeno é uma das meas das leis da Física. A Mecânica

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

Lista de exercícios 3. September 15, 2016

Lista de exercícios 3. September 15, 2016 ELE-3 Inrodução a Comunicações Lisa de exercícios 3 Sepember 5, 6. Enconre a ransformada de Hilber x() da onda quadrada abaixo. Esboce o especro de x() j x(). [ ] x() = Π ( n). n=. Um sinal em banda passane

Leia mais

Voo Nivelado - Avião a Hélice

Voo Nivelado - Avião a Hélice - Avião a Hélice 763 º Ano da icenciaura em ngenharia Aeronáuica edro. Gamboa - 008. oo de ruzeiro De modo a prosseguir o esudo analíico do desempenho, é conveniene separar as aeronaves por ipo de moor

Leia mais

FATO Medicina. Lista Complementar Física - MRU / MRUV( Prof.º Elizeu) 5,0 m s, e a maior. 5 km e 10 km, sua velocidade foi 30 km h. 10 km totais.

FATO Medicina. Lista Complementar Física - MRU / MRUV( Prof.º Elizeu) 5,0 m s, e a maior. 5 km e 10 km, sua velocidade foi 30 km h. 10 km totais. FATO Medicina Lisa Complemenar Física - MRU / MRUV( Prof.º Elizeu) 0. (Efomm 07) Um rem deve parir de uma esação A e parar na esação B, disane 4 km de A. A aceleração e a desaceleração podem ser, no máximo,

Leia mais

4 Análise de Sensibilidade

4 Análise de Sensibilidade 4 Análise de Sensibilidade 4.1 Considerações Gerais Conforme viso no Capíulo 2, os algorimos uilizados nese rabalho necessiam das derivadas da função objeivo e das resrições em relação às variáveis de

Leia mais

5 0,5. d d ,6 3. v Δt 0,03s Δt 30ms. 3. Gabarito: Lista 01. Resposta da questão 1: [D]

5 0,5. d d ,6 3. v Δt 0,03s Δt 30ms. 3. Gabarito: Lista 01. Resposta da questão 1: [D] Gabario: Lisa 01 Resposa da quesão 1: [D] Seja v 1 a velocidade média desenvolvida por Juliana nos reinos: ΔS1 5 v 1 v1 10 km h. Δ1 0,5 Para a corrida, a velocidade deverá ser reduzida em 40%. Enão a velocidade

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas.

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas. Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais

Experiência IV (aulas 06 e 07) Queda livre

Experiência IV (aulas 06 e 07) Queda livre Experiência IV (aulas 06 e 07) Queda livre 1. Objeivos. Inrodução 3. Procedimeno experimenal 4. Análise de dados 5. Quesões 6. Referências 1. Objeivos Nesa experiência, esudaremos o movimeno da queda de

Leia mais

5 de fevereiro de x 2 y

5 de fevereiro de x 2 y P 2 - Gabario 5 de fevereiro de 2018 Quesão 1 (1.5). Considere x 2 y g(x, y) = (x, y + x 2 ) e f (x, y) = x 4, se (x, y) = (0, 0) + y2. 0, se (x, y) = (0, 0) Mosre que: (a) f e g admiem odas as derivadas

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente Assuno: Derivada direcional UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20 Palavras-chaves: derivada,derivada direcional, gradiene Derivada Direcional Sejam z = fx, y) uma função e x

Leia mais

1 Modelo de crescimento neoclássico, unisectorial com PT e com taxa de poupança exógena 1.1 Hipóteses Função de Produção Cobb-Douglas: α (1.

1 Modelo de crescimento neoclássico, unisectorial com PT e com taxa de poupança exógena 1.1 Hipóteses Função de Produção Cobb-Douglas: α (1. 1 Modelo de crescimeno neoclássico, unisecorial com PT e com axa de poupança exógena 1.1 Hipóeses Função de Produção Cobb-Douglas: (, ) ( ) 1 Y = F K AL = K AL (1.1) FK > 0, FKK < 0 FL > 0, FLL < 0 Função

Leia mais

CAPÍTULO 10 DERIVADAS DIRECIONAIS

CAPÍTULO 10 DERIVADAS DIRECIONAIS CAPÍTULO 0 DERIVADAS DIRECIONAIS 0. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X

Leia mais

Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo

Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo Processos de Markov Processos sem memória : probabilidade de X assumir um valor fuuro depende apenas do esado aual (desconsidera esados passados). P(X n =x n X =x,x 2 =x 2,...,X n- =x n- ) = P(X n =x n

Leia mais

Porto Alegre, 14 de novembro de 2002

Porto Alegre, 14 de novembro de 2002 Poro Alegre, 14 de novembro de 2002 Aula 6 de Relaividade e Cosmologia Horácio Doori 1.12- O paradoo dos gêmeos 1.12.1- Sisemas Inerciais (observadores) com velocidades diversas vêem a disância emporal

Leia mais

AULA 8 CONDUÇÃO DE CALOR EM REGIME TRANSITÓRIO SISTEMA CONCENTRADO

AULA 8 CONDUÇÃO DE CALOR EM REGIME TRANSITÓRIO SISTEMA CONCENTRADO Noas de aula de PME 3361 Processos de Transferência de Calor 57 AULA 8 CONDUÇÃO DE CALOR EM REGIME TRANSITÓRIO SISTEMA CONCENTRADO Inrodução Quando um corpo ou sisema a uma dada emperaura é bruscamene

Leia mais

*UiILFRGH&RQWUROH(:0$

*UiILFRGH&RQWUROH(:0$ *UiILFRGH&RQWUROH(:$ A EWMA (de ([SRQHQWLDOO\:HLJKWHGRYLQJ$YHUDJH) é uma esaísica usada para vários fins: é largamene usada em méodos de esimação e previsão de séries emporais, e é uilizada em gráficos

Leia mais

3 Modelos de Markov Ocultos

3 Modelos de Markov Ocultos 23 3 Modelos de Markov Oculos 3.. Processos Esocásicos Um processo esocásico é definido como uma família de variáveis aleaórias X(), sendo geralmene a variável empo. X() represena uma caracerísica mensurável

Leia mais

DVD do professor. banco De questões. 3. (Mackenzie-SP) f 1. I. O período de f 1. II. O maior valor que f 2. III. O conjunto imagem de f 1

DVD do professor. banco De questões. 3. (Mackenzie-SP) f 1. I. O período de f 1. II. O maior valor que f 2. III. O conjunto imagem de f 1 coneões com a maemáica banco De quesões Capíulo Funções rigonoméricas banco De quesões capíulo. (FEI-SP) O gráfico da função 5 f() 5 senh H no inervalo [, ] é: Funções rigonoméricas Grau de dificuldade

Leia mais

4. Selecionando modelos de Projeção com. AIC e SIC. Primeiro, vamos falar do erro quadrático médio

4. Selecionando modelos de Projeção com. AIC e SIC. Primeiro, vamos falar do erro quadrático médio 4. Selecionando modelos de Projeção com AIC e SIC Os criérios de seleção de modelos ipicamene requerem que o erro quadráico médio da previsão de um período a frene seja o menor possível. A diferença enre

Leia mais

Física 1. 2 a prova 21/10/2017. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 2 a prova 21/10/2017. Atenção: Leia as recomendações antes de fazer a prova. Física 1 2 a prova 21/1/217 Aenção: Leia as recomendações anes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do carão de resposas. 2- Leia os enunciados com aenção. 3- Analise sua resposa.

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

Problemas de vestibular funções exponenciais e logaritmos

Problemas de vestibular funções exponenciais e logaritmos Problemas de vesibular funções exponenciais e logarimos Professor Fiore Segue lisa com problemas envolvendo funções exponenciais reirados de vesibulares e concursos. Para resolvê-los pode ser necessário

Leia mais

2.7 Derivadas e Taxas de Variação

2.7 Derivadas e Taxas de Variação LIMITES E DERIVADAS 131 2.7 Derivadas e Taas de Variação O problema de enconrar a rea angene a uma curva e o problema de enconrar a velocidade de um objeo envolvem deerminar o mesmo ipo de limie, como

Leia mais

Motivação. Prof. Lorí Viali, Dr.

Motivação. Prof. Lorí Viali, Dr. Moivação rof. Lorí Viali, Dr. vialli@ma.ufrgs.br hp://www.ma.ufrgs.br/~vialli/ Na práica, não exise muio ineresse na comparação de preços e quanidades de um único arigo, como é o caso dos relaivos, mas

Leia mais

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque:

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque: DEMOGRAFIA Fone: Ferreira, J. Anunes Demografia, CESUR, Lisboa Inrodução A imporância da demografia no planeameno regional e urbano O processo de planeameno em como fim úlimo fomenar uma organização das

Leia mais

35ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

35ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase ª Olimpíada rasileira de Maemáica GRITO Segunda Fase Soluções Nível Segunda Fase Pare PRTE Na pare serão aribuídos ponos para cada resposa correa e a ponuação máxima para essa pare será. NENHUM PONTO deverá

Leia mais

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III UNIVERSIDADE DA BEIRA INTERIOR FACUDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III icenciaura de Economia (ºAno/1ºS) Ano ecivo 007/008 Caderno de Exercícios Nº 1

Leia mais

2 Reforma Previdenciária e Impactos sobre a Poupança dos Funcionários Públicos

2 Reforma Previdenciária e Impactos sobre a Poupança dos Funcionários Públicos Reforma Previdenciária e Impacos sobre a Poupança dos Funcionários Públicos Em dezembro de 998 foi sancionada a Emenda Consiucional número 0, que modificou as regras exisenes no sisema de Previdência Social.

Leia mais

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v Dispara-se, segundo um ângulo de 6 com o horizone, um projéil que explode ao aingir o solo e oue-se o ruído da explosão, no pono de parida do projéil, 8 segundos após o disparo. Deerminar a elocidade inicial

Leia mais

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH Cálculo do valor em risco dos aivos financeiros da Perobrás e da Vale via modelos ARMA-GARCH Bruno Dias de Casro 1 Thiago R. dos Sanos 23 1 Inrodução Os aivos financeiros das companhias Perobrás e Vale

Leia mais

MECÂNICA DE PRECISÃO - ELETRÔNICA I - Prof. NELSON M. KANASHIRO FILTRO CAPACITIVO

MECÂNICA DE PRECISÃO - ELETRÔNICA I - Prof. NELSON M. KANASHIRO FILTRO CAPACITIVO . INTRODUÇÃO Na saída dos circuios reificadores, viso na aula anerior, emos ensão pulsane que não adequada para o funcionameno da maioria dos aparelhos elerônicos. Esa ensão deve ser conínua, semelhane

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

Tabela: Variáveis reais e nominais

Tabela: Variáveis reais e nominais Capíulo 1 Soluções: Inrodução à Macroeconomia Exercício 12 (Variáveis reais e nominais) Na abela seguine enconram se os dados iniciais do exercício (colunas 1, 2, 3) bem como as soluções relaivas a odas

Leia mais

3 O Modelo SAGA de Gestão de Estoques

3 O Modelo SAGA de Gestão de Estoques 3 O Modelo SG de Gesão de Esoques O Sisema SG, Sisema uomaizado de Gerência e poio, consise de um sofware conendo um modelo maemáico que permie fazer a previsão de iens no fuuro com base nos consumos regisrados

Leia mais

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Funções exponencial e logarítmica

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Funções exponencial e logarítmica Escola Secundária da Sé-Lamego Ficha de Trabalho de Maemáica Ano Lecivo de 003/04 Funções eponencial e logarímica - º Ano Nome: Nº: Turma: 4 A função P( ) = 500, 0, é usada para deerminar o valor de um

Leia mais

5.1. Filtragem dos Estados de um Sistema Não-Linear Unidimensional. Considere-se o seguinte MEE [20] expresso por: t t

5.1. Filtragem dos Estados de um Sistema Não-Linear Unidimensional. Considere-se o seguinte MEE [20] expresso por: t t 5 Esudo de Casos Para a avaliação dos algorimos online/bach evolucionários proposos nese rabalho, foram desenvolvidas aplicações em problemas de filragem dos esados de um sisema não-linear unidimensional,

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 3 a série do Ensino Médio

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 3 a série do Ensino Médio AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Maemáica a série do Ensino Médio Turma EM GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimesre de 6 Daa / / Escola Aluno A B C D E 6 7 9 A B C D E Avaliação

Leia mais

Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística

Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais

Modelos de Crescimento Endógeno de 1ªgeração

Modelos de Crescimento Endógeno de 1ªgeração Teorias do Crescimeno Económico Mesrado de Economia Modelos de Crescimeno Endógeno de 1ªgeração Inrodução A primeira geração de modelos de crescimeno endógeno ena endogeneiar a axa de crescimeno de SSG

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

11 Introdução aos modelos matriciais A Matriz de Leslie

11 Introdução aos modelos matriciais A Matriz de Leslie Modelos mariciais Inrodução aos modelos mariciais A Mariz de Leslie Quando esudámos o crescimeno populacional, quer em ermos discreos ( =f( - )) quer em ermos conínuos (d/d=f()), não disinguimos enre os

Leia mais

Crescimento com regulação. Módulo 13

Crescimento com regulação. Módulo 13 Crescimeno com regulação Módulo 13 O crescimeno exponencial não é susenavel 7 6 5 2, 4 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 Tempo População humana Facores de regulação Feedback negaivo Dependenes

Leia mais

4 O Fenômeno da Estabilidade de Tensão [6]

4 O Fenômeno da Estabilidade de Tensão [6] 4 O Fenômeno da Esabilidade de Tensão [6] 4.1. Inrodução Esabilidade de ensão é a capacidade de um sisema elérico em maner ensões aceiáveis em odas as barras da rede sob condições normais e após ser submeido

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXI OLIMPÍ RSILEIR E MTEMÁTI PRIMEIR FSE NÍVEL Ensino Médio RITO RITO NÍVEL 6 E 6 7 7 E 9 9 5 0 E 5 0 E 5 ada quesão da Primeira Fase vale pono. Toal de ponos no Nível 5 ponos. guarde a pulicação da Noa

Leia mais

Física. Física Módulo 1

Física. Física Módulo 1 Física Módulo 1 Nesa aula... Movimeno em uma dimensão Aceleração e ouras coisinhas O cálculo de x() a parir de v() v( ) = dx( ) d e x( ) x v( ) d = A velocidade é obida derivando-se a posição em relação

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

4. SINAL E CONDICIONAMENTO DE SINAL

4. SINAL E CONDICIONAMENTO DE SINAL 4. SINAL E CONDICIONAMENO DE SINAL Sumário 4. SINAL E CONDICIONAMENO DE SINAL 4. CARACERÍSICAS DOS SINAIS 4.. Período e frequência 4..2 alor médio, valor eficaz e valor máximo 4.2 FILRAGEM 4.2. Circuio

Leia mais

MINISTÉRIO DA EDUCAÇÃO

MINISTÉRIO DA EDUCAÇÃO MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONA E TECNOÓGICA INSTITUTO FEDERA DE EDUCAÇÃO, CIÊNCIA E TECNOOGIA DE SANTA CATARINA CURSO TÉCNICO EM TEECOMUNICAÇÕES Disciplina: Elericidade e Insrumenação

Leia mais

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov Insiuo de Tecnologia de Massachuses Deparameno de Engenharia Elérica e Ciência da Compuação 6.345 Reconhecimeno Auomáico da Voz Primavera, 23 Publicado: 7/3/3 Devolução: 9/3/3 Tarefa 5 Inrodução aos Modelos

Leia mais

SOLUÇÃO PRATIQUE EM CASA

SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PC1. [C] No eixo horizonal, o movimeno é uniforme com velocidade consane o empo, podemos calculá-la. Δs 60 m vh vh vh 15 m s Δ 4 s Com o auxílio da rionomeria e com a velocidade

Leia mais

A entropia de uma tabela de vida em previdência social *

A entropia de uma tabela de vida em previdência social * A enropia de uma abela de vida em previdência social Renao Marins Assunção Leícia Gonijo Diniz Vicorino Palavras-chave: Enropia; Curva de sobrevivência; Anuidades; Previdência Resumo A enropia de uma abela

Leia mais

dr = ( t ) k. Portanto,

dr = ( t ) k. Portanto, Aplicações das Equações Diferenciais de ordem (Evaporação de uma goa) Suponha que uma goa de chuva esférica evapore numa aa proporcional à sua área de superfície Se o raio original era de mm e depois de

Leia mais

PARTE 12 DERIVADAS DIRECIONAIS

PARTE 12 DERIVADAS DIRECIONAIS PARTE DERIVADAS DIRECIONAIS. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X 0 ),

Leia mais

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo Decaimeno Radioaivo RÁPIDA ITRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Couinho Cardoso & Mara Feijó Barroso Objeivos: discuir o que é decaimeno radioaivo e escrever uma equação que a descreva UIDADE 3 Sumário

Leia mais

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP São Paulo, dezembro de 2015. 1) a. Deerminar a dimensão a de modo a se er a mesma ensão de cisalhameno máxima nos rechos B-C e C-D. b. Com al dimensão pede-se a máxima ensão de cisalhameno no recho A-B.

Leia mais

Cap. 5 - Tiristores 1

Cap. 5 - Tiristores 1 Cap. 5 - Tirisores 1 Tirisor é a designação genérica para disposiivos que êm a caracerísica esacionária ensão- -correne com duas zonas no 1º quadrane. Numa primeira zona (zona 1) as correnes são baixas,

Leia mais

Instituto de Física USP. Física Moderna. Aula 23. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna. Aula 23. Professora: Mazé Bechara Insiuo de Física USP Física Moderna Aula 3 Professora: Mazé Bechara Aula 3 Bases da Mecânica quânica e equações de Schroedinger: para odos os esados e para esados esacionários. Aplicação e inerpreações.

Leia mais

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

Função Logarítmica - Questões Extras

Função Logarítmica - Questões Extras Função Logarímica - uesões Exras Exercícios 1. (Unifor 01) Após acionar um flash de uma câmera, a baeria imediaamene começa a recarregar o capacior do flash, o qual armazena uma carga elérica dada por

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Expectativas, consumo e investimento CAPÍTULO 16. Olivier Blanchard Pearson Education Pearson Education Macroeconomia, 4/e Olivier Blanchard

Expectativas, consumo e investimento CAPÍTULO 16. Olivier Blanchard Pearson Education Pearson Education Macroeconomia, 4/e Olivier Blanchard Expecaivas, consumo e Olivier Blanchard Pearson Educaion CAPÍTULO 16 16.1 Consumo A eoria do consumo foi desenvolvida na década de 1950 por Milon Friedman, que a chamou de eoria do consumo da renda permanene,

Leia mais

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC)

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC) Deparameno de Engenharia Elérica Tópicos Especiais em Energia Elérica () ula 2.2 Projeo do Induor Prof. João mérico Vilela Projeo de Induores Definição do úcleo a Fig.1 pode ser observado o modelo de um

Leia mais

Lista de Exercícios nº 3 - Parte IV

Lista de Exercícios nº 3 - Parte IV DISCIPLINA: SE503 TEORIA MACROECONOMIA 01/09/011 Prof. João Basilio Pereima Neo E-mail: joaobasilio@ufpr.com.br Lisa de Exercícios nº 3 - Pare IV 1ª Quesão (...) ª Quesão Considere um modelo algébrico

Leia mais

3. Números índice Média aritmética simples Média aritmética simples. Sumário

3. Números índice Média aritmética simples Média aritmética simples. Sumário 1 2 Sumário 3. Números índice 3.2. Índice agregado (sinéico ou de sínese) 3.2.2 Média ariméica ponderada 3.2.3 Mudança de base 3.2.4 Índices sinéicos de várias variáveis esaísicas 3.2.2 Média ariméica

Leia mais

3 LTC Load Tap Change

3 LTC Load Tap Change 54 3 LTC Load Tap Change 3. Inrodução Taps ou apes (ermo em poruguês) de ransformadores são recursos largamene uilizados na operação do sisema elérico, sejam eles de ransmissão, subransmissão e disribuição.

Leia mais