Representação De Modelos de Sistemas Dinâmicos:
|
|
|
- Eugénio Frade Olivares
- 8 Há anos
- Visualizações:
Transcrição
1 Representação de Modelos de Sisteas Dinâicos: Equação I/O; Função de Transferência 03 Representação De Modelos de Sisteas Dinâicos: - Equação Input-Output (I/O) - Função de Transferência INTRODUÇÃO Vereos, agora, dois outros tipos de representação do odelo ateático de u sistea dinâico: () Representação por Equação I/O (Input/Output = Entrada/Saída) () Representação por Função de Transferência REPRESENTAÇÃO POR EQUAÇÃO I/O Trata-se da representação do odelo ateático do sistea por ua só EDOL, na qual, no lado direito da equação aparece a entrada e suas derivadas teporais e, no lado esquerdo, a saída e suas derivadas teporais No caso ais geral, tereos: y (n) (n ) () ( ) + ay + + an y+ an y = b0u + bu + + b u+ b u n () onde a i (i =,,, n) e b k (k =,,,) são coeficientes constantes u(t) é a entrada y(t) é a saída Para u sistea co apenas u grau de liberdade, a obtenção da equação I/O é bastante natural Por exeplo, para o sistea -c-k padrão, o odelo ateático é dado pela EDOL de a orde x+ cx+ kx = f(t) () que, após divisão pela assa, constitui u caso particular bastante siplificado da eq () Entretanto, quando o sistea te vários graus de liberdade, torna-se bastante coplicado fundir todas as equações diferenciais e ua só equação, co a fora da eq () Isso se deve ao fato de que, na aioria dos casos, as coordenadas generalizadas estão acopladas, ou seja as próprias coordenadas e suas derivadas aparece siultaneaente e
2 Representação de Modelos de Sisteas Dinâicos: Equação I/O; Função de Transferência alguas das equações que constitue o odelo ateático Para suplantar essa dificuldade podeos usar u enfoque alternativo que usa a transforada de Laplace: Estratégia: () Toar a transforada de Laplace de cada ua das equações diferenciais, considerando condições iniciais nulas (sistea inicialente e repouso), obtendo, assi, u conjunto de equações algébricas e teros das transforadas das coordenadas; () Eliinar as variáveis que não representa a entrada e a saída, através de étodos algébricos, tais coo a Regra de Craer, de odo a obter ua só equação e teros das transforadas da entrada e da saída; (3) Finalente, levar essa equação para o doínio do tepo e interpretá-la coo ua equação diferencial na fora da eq () Exeplo : Obter a equação I/O correspondente ao odelo dado pela eq (), considerando f(t) coo entrada e o deslocaento x(t) coo saída Solução c k No caso, y = x e u = f(t), logo a equação I/O fica y+ c y+ ky = u(t), ou x+ x+ x = f(t) Portanto, n =, = 0, a = c/, a = k/ e b 0 = / Exeplo : Obter a equação I/O correspondente ao odelo de u sistea ecânico co GDL, dado pelas EDOL s abaixo, considerando coo entrada f(t) e coo saída o deslocaento x (t) x + c x c (x x ) + k x k (x x ) = 0 x + c (x x ) + k (x x ) = f(t) Solução Coo agora são GDL, deveos aplicar a estratégia acia: () Toando as transforadas de Laplace e organizando e fora atricial: s + (c c + c s k )s + k + k c s s k + c s + k X (s) 0 = X (s) F(s) () Coo a saída é x, aplicaos a regra de Craer para obter X (s):
3 Representação de Modelos de Sisteas Dinâicos: Equação I/O; Função de Transferência 3 X (s) = s + (c 0 F(s) + c )s + k c s k c s k s + + k c s + k c s + k + c s + k Calculando os deterinantes e após anipulações algébricas, obteos { s 4 + [ c + (c + c )]s 3 +[ k + c c + (k + k ) ]s + (c k + c k )s + k k } X (s) = = (c s + k )F(s) (3) Voltando ao doínio do tepo: (4) x + [ c + (c k + c k ) x + k k x + (c + c )]x + [ k + c c = c f+ k f + (k + k ) ]x + a qual está na fora de equação I/O dada pela eq () Portanto, obtiveos ua EDOL que relaciona apenas a entrada f(t) e a saída x (t) Entretanto, o sistea de duas equações diferenciais de a orde foi transforado e ua só EDOL de 4 a orde Veos que ua equação I/O fornece u relação entre ua entrada e ua saída, o que é o caso de sisteas SISO (Single Input Single Output = Siples Entrada Siples Saída) Contudo, para sisteas MIMO (Multi Input Multi Output = Múltiplas Entradas Múltiplas Saídas), existirá ua equação I/O para cada par de entrada e saída Assi, se no exeplo tivésseos ua entrada f(t) e duas saídas x (t) e x (t), teríaos então duas equações I/O, ua relacionando f(t) e x (t) e outra relacionando f(t) e x (t) E geral, portanto, se tiveros p entradas e q saídas, tereos p x q equações I/O 3 FUNÇÃO DE TRANSFERÊNCIA DO SISTEMA Considereos, novaente, a eq () Definios Função de Transferência do sistea, G(s), coo sendo a razão da Transforada de Laplace da saída (resposta) para a Transforada de Laplace da entrada (excitação), considerando condições iniciais nulas (sistea inicialente e repouso): G(s) = Y(s) ci nulas U(s) (3) Evidenteente, para deterinar funções de transferência de sisteas dinâicos teos que ter à ão tabelas co as transforadas de Laplace ais conhecidas Coo subsídio, podeos utilizar os quadros e, apresentados no final desta nota de aula Para o caso geral da eq (), podeos aplicar a transforada de Laplace na esa e obter a função de transferência do sistea: G(s) = Y(s) U(s) ci nulas + n b0s b s + + b = n s + a s + + a s + a n n (4)
4 Representação de Modelos de Sisteas Dinâicos: Equação I/O; Função de Transferência 4 Exeplo 3: O odelo ateático de sisteas ecânicos co GDL co apenas ua assa, ua ola k e u aortecedor c é dado pela EDOL x+ c x+ kx = f(t) onde x(t) é a resposta no tepo e f(t) é a excitação Achar a função de transferência Solução Transforada de Laplace da EDOL (usando a Tab ), para condições iniciais nulas: (s + cs + k)x(s) = F(s) Pela definição de Função de Transferência: Logo: G(s) = X(s) G(s) = F(s) s + cs + k ci nulas Podeos aplicar o étodo da Transforada de Laplace para resolver a eq (4), ou seja, para achar a resposta no tepo do sistea, calculando antes a função de transferência G(s) e colocando a eq (4) na fora Y(s) = G(s)U(s) (5) que pode ser ilustrada pelo diagraa de blocos da fig : Fig Diagraa de Blocos A resposta do sistea no doínio do tepo é obtida através da aplicação da transforação inversa de Laplace na eq (5): y(t) = L - [G(s)U(s)] (6) As transforadas inversas pode ser buscadas nas tabelas de transforadas de Laplace, coo as apresentadas a seguir E geral, antes de usar as tabelas, é necessário fazer o desenvolviento do ebro direito da eq (6) e frações parciais pelos étodos usuais
5 Representação de Modelos de Sisteas Dinâicos: Equação I/O; Função de Transferência 5
6 Representação de Modelos de Sisteas Dinâicos: Equação I/O; Função de Transferência 6
7 Representação de Modelos de Sisteas Dinâicos: Equação I/O; Função de Transferência 7 EXERCÍCIOS Considere u sistea ecânico rotacional cujo odelo ateático é dado pelas EDOL s J θ J θ + Kθ Kθ Kθ + Kθ = T(t) = 0 e que T(t) é a entrada e θ (t) é a saída Sendo J = kg, achar a equação I/O para esse sistea (4) 4 Resp: θ + K θ + 3K θ = KT(t) O odelo ateático do sistea ecânico da fig é dado por x+ c x+ kx = c y+ ky, onde x(t) é a resposta no tepo e y(t) é a excitação do tipo deslocaento da base Achar a função de transferência Resp: G(s) = s cs + k + cs + k 3 A fig representa u sistea ecânico co dois graus de liberdade, x (t) e x (t) O odelo ateático é dado pelo sistea de EDOL's x + c x c x + kx kx x c x + c x kx + kx = f (t) = f (t) onde f (t) = 0 Considerando f (t) coo entrada e x (t) e x (t) coo saídas, achar as funções de transferência X (s)/f (s) e X (s)/f (s) Resp: X(s) s + cs + k G (s) = = F (s) (s) X(s) cs + k G(s) = = F (s) (s) onde (s) = ( s + cs + k)( s + cs + k) (cs + k)
Representação De Modelos de Sistemas Dinâmicos:
Representação de Modelos de Sisteas Dinâios: Espaço de Estados Representação De Modelos de Sisteas Dinâios: - Espaço de Estados INTRODUÇÃO Confore já foi enionado, o odelo ateátio de u sistea dinâio é
Aula 04 Representação de Sistemas
Aula 04 Representação de Sistemas Relação entre: Função de Transferência Transformada Laplace da saída y(t) - Transformada Laplace da entrada x(t) considerando condições iniciais nulas. Pierre Simon Laplace,
Movimento oscilatório forçado
Moviento oscilatório forçado U otor vibra co ua frequência de ω ext 1 rad s 1 e está ontado nua platafora co u aortecedor. O otor te ua assa 5 kg e a ola do aortecedor te ua constante elástica k 1 4 N
Universidade Estadual do Sudoeste da Bahia
Universidade Estadual do Sudoeste da Bahia Departaento de Estudos Básicos e Instruentais 5 Oscilações Física II Ferreira 1 ÍNDICE 1. Alguas Oscilações;. Moviento Harônico Siples (MHS); 3. Pendulo Siples;
7. OSCILADOR HARMÓNICO COMPOSTO
7. OSCIDOR HRÓNICO COPOSTO 7. OSCIDOR HRÓNICO COPOSTO Renato P. dos Santos 7 CÁCUO TRICI. Introdução. aplicação dos étodos atriciais à ísica é variada. Podeos citar coo eeplos as transforações de orenz
TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS
TE0 DINÂMICA DE FENÔMENOS ONDULATÓRIOS Bibliografia: 1. Fundaentos de Física. Vol : Gravitação, Ondas e Terodinâica. 8 va edição. Halliday D., Resnick R. e Walker J. Editora LTC (008). Capítulos 15, 16
Física Geral I. 1º semestre /05. Indique na folha de teste o tipo de prova que está a realizar: A, B ou C
Física Geral I 1º seestre - 2004/05 EXAME - ÉPOCA NORMAL 2668 - ENSINO DE FÍSICA E QUÍMICA 1487 - OPTOMETRIA E OPTOTECNIA - FÍSICA APLICADA 26 de Janeiro 2005 Duração: 2 horas + 30 in tolerância Indique
Prof. A.F.Guimarães Questões Dinâmica 4 Impulso e Quantidade de Movimento Questão 1
Prof..F.Guiarães Questões Dinâica 4 Ipulso e Quantidade de Moiento Questão (FUVST) Ua pessoa dá u piparote (ipulso) e ua oeda de 6 g que se encontra sobre ua esa horizontal. oeda desliza,4 e,5 s, e para.
Modelagem Matemática de Sistemas Mecânicos Translacionais pela Mecânica Newtoniana
Modelage Mateátia de Sisteas Meânios Translaionais pela Meânia Newtoniana 5 Modelage Mateátia de Sisteas Meânios Translaionais pela Meânia Newtoniana INTRODUÇÃO Nesta apostila aprendereos oo obter o odelo
Física Geral I. 1º semestre /05. Indique na folha de teste o tipo de prova que está a realizar: A, B ou C
Física Geral I 1º seestre - 2004/05 1 TESTE DE AVALIAÇÃO 2668 - ENSINO DE FÍSICA E QUÍMICA 1487 - OPTOMETRIA E OPTOTÉCNIA - FÍSICA APLICADA 8 de Novebro, 2004 Duração: 2 horas + 30 in tolerância Indique
ANÁLISE DO LUGAR DAS RAÍZES
VII- &$3Ì78/ 9,, ANÁLISE DO LUGAR DAS RAÍZES 7.- INTRODUÇÃO O étodo de localização e análise do lugar das raízes é ua fora de se representar graficaente os pólos da função de transferência de u sistea
Questão 37. Questão 39. Questão 38. Questão 40. alternativa D. alternativa C. alternativa A. a) 20N. d) 5N. b) 15N. e) 2,5N. c) 10N.
Questão 37 a) 0N. d) 5N. b) 15N. e),5n. c) 10N. U corpo parte do repouso e oviento uniforeente acelerado. Sua posição e função do tepo é registrada e ua fita a cada segundo, a partir do prieiro ponto à
TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS
TE0 DINÂMICA DE FENÔMENOS ONDULATÓRIOS Bibliografia: 1. Fundaentos de Física. Vol : Gravitação, Ondas e Terodinâica. 8 va edição. Halliday D., Resnick R. e Walker J. Editora LTC (008). Capítulos 15, 16
FACULDADE DE CIÊNCIAS E TECNOLOGIA
FACULDADE DE CIÊNCIAS E TECNOLOGIA Fundaentos de Telecounicações Engª de Sisteas e Inforática EXERCÍCIOS DE APOIO SÉRIE I ) Considere o sinal AM s(t)=(+f(t))cos(πfct) e que a frequência da portadora fc=50
Resoluções dos exercícios propostos
1 P.380 Dados: t s; F 0 N Intensidade: I F t 0 I 40 N s Direção: a esa da força ertical Sentido: o eso da força de baixo para cia P.381 Dados: 0,6 kg; g 10 /s ; t 3 s P g 0,6 10 P 6 N Intensidade do ipulso:
Escoamento Cruzado sobre Cilindros e Tubos Circulares
Exeplo resolvido (Holan 5-7) Ar a 0 o C e 1 at escoa sobre ua placa plana a 35 /s. A placa te 75 c de copriento e é antida a 60ºC. Calcule o fluxo de calor transferido da placa. opriedades avaliadas à
Exp Movimento Harmônico Amortecido
Exp. 10 - Moviento Harônico Aortecido INTRODUÇÃO De acordo co a segunda lei de Newton, a equação de oviento de u corpo que oscila, e ua diensão, e torno de u ponto de equilíbrio estável, sujeito apenas
Transformadas de Laplace Engenharia Mecânica - FAENG. Prof. Josemar dos Santos
Engenharia Mecânica - FAENG SISTEMAS DE CONTROLE Prof. Josemar dos Santos Sumário Transformadas de Laplace Teorema do Valor Final; Teorema do Valor Inicial; Transformada Inversa de Laplace; Expansão em
Geometria Analítica e Álgebra Linear
Geoetria Analítica e Álgebra Linear Ale Nogueira Brasil Faculdade de Engenharia Mecânica Universidade de Itaúna http://www.alebrasil.eng.br [email protected] 0 de fevereiro de 00 Geoetria Analítica e Álgebra
Comecemos escrevendo a forma geral de uma equação diferencial de ordem n, 1 inear e invariante no tempo, , b i
3 6 ADL aula 2 Função de Transferência Comecemos escrevendo a forma geral de uma equação diferencial de ordem n, 1 inear e invariante no tempo, onde c(t) é a saída, r(t) é a entrada e os a i, b i e a forma
Modelagem Matemática de Sistemas Mecânicos Híbridos pela Mecânica Newtoniana
Modelage Mateátia de isteas Meânios Híbridos pela Meânia Newtoniana 1 7 Modelage Mateátia de isteas Meânios Híbridos pela Meânia Newtoniana 1 INTRODUÇÃO Nesta apostila aprendereos oo obter o odelo ateátio
Introdução aos Circuitos Elétricos
Introdução aos Circuitos Elétricos A Transformada de Laplace Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia A Transformada de Laplace História Pierri
Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.
Laboratório de Física 2
Prof. Sidney Alves Lourenço Curso: Engenharia de Materiais Laboratório de Física Grupo: --------------------------------------------------------------------------------------------------------- Sistea
O PROBLEMA DO MOVIMENTO
O PROBLEMA DO MOVIMENTO O problea do oiento pode se resuir na deterinação da elocidade e da direção de u objeto óel, nu deterinado instante. Você já está acostuado a deterinar a elocidade édia de u objeto
1. Diagrama de Blocos. 2. Gráfico de fluxo de sinais. Representação e Análise de Sistemas Dinâmicos Lineares
Representação e Análise de Sistemas Dinâmicos Lineares 1. Diagrama de Blocos 2. Gráfico de fluxo de sinais Fernando de Oliveira Souza pag.1 Engenharia de Controle Aula 3 Diagrama de Blocos U(s) G(s) Y
Unidade II 3. Ondas mecânicas e
Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE - UERN Pró-Reitoria de Ensino de Graduação PROEG Hoe Page: http://www.uern.br
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. Segunda Chamada (SC) 1/8/2016
UNIVESIDADE FEDEAL DO IO DE JANEIO INSTITUTO DE FÍSICA Fisica I 2016/1 Segunda Chaada (SC) 1/8/2016 VESÃO: SC As questões discursivas deve ser justificadas! Seja claro e organizado. Múltipla escolha (6
A equação de Henri-Michaelis-Menten
A equação de Henri-Michaelis-Menten Michaelis e Menten (93) refina a abordage de Henri e propõe u odelo uito seelhante: S cat E + A EA E + P passo lento considerando o prieiro passo suficienteente rápido
Geometria Analítica e Álgebra Linear
NOTAS DE AULA Geoetria Analítica e Álgebra Linear Reta e Plano Professor: Lui Fernando Nunes, Dr. Índice Geoetria Analítica e Álgebra Linear ii Estudo da Reta e do Plano... -. A Reta no Espaço... -.. Equação
Prof. A.F.Guimarães Questões Dinâmica 1 As Leis de Newton
uestão 1 Prof FGuiarães uestões Dinâica 1 s Leis de ewton (I) U físico acha se encerrado dentro de ua caixa hereticaente fechada, que é transportada para algu ponto do espaço cósico, se que ele saiba Então,
Reflexão e Refração da luz em superfícies planas
Nesta prática serão estudados os fenôenos de reflexão e refração da luz e superfícies planas, verificando as leis da óptica geoétrica, que governa tais processos. Serão abordados os princípios fundaentais
Unidade II 2. Oscilações
Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIERSIDDE DO ESDO DO RIO GRNDE DO NORE - UERN Pró-Reitoria de Ensino de Graduação PROEG Hoe Page: http://.uern.br
Capítulo 16. Ondas 1
Capítulo 6 Ondas Outline Tipo de Ondas Ondas Longitudinais e Transversais Copriento de Onda e Frequência A velocidade de ua Onda Progressiva Energia e Potencia de ua Onda Progressiva A equação de Onda
Aula 3. Circuitos Complexos via Método das Malhas. Função de transferência múltiplas malhas
2 Aula 3 Circuitos Complexos via Método das Malhas 1. Substituir todos os valores dos elementos passivos por suas impedâncias. 2. Substituir todas as fontes e todas as variáveis no domínio do tempo pelas
UMC/ACET/ Wilson Yamaguti/Edson Gusella Jr. 6.1 Lab. Telecomunicações 2010. EXPERIÊNCIA 6 MODULAÇÃO PWM e PCM
UMC/ACET/ Wilson Yaaguti/Edson Gusella Jr. 6.1 Lab. Telecounicações 21 1. Introdução EXPERIÊNCIA 6 MODULAÇÃO PWM e PCM Nesta experiência pretende-se conhecer a odulação PWM ou PDM couente usados no controle
Sistema Internacional de Unidades
TEXTO DE REVISÃO 01 Unidades de Medidas, Notação Científica e Análise Diensional. Caro aluno: No livro texto (Halliday) o cap.01 Medidas introduz alguns conceitos uito iportantes, que serão retoados ao
Sistemas de Controle
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle Resumo Espaço dos Estados Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle Prof. Dr. Marcos Lajovic Carneiro Resumo
Introdução ao Controle em Espaço de Estados - Escrevendo as Equações de Estado
Introdução ao Controle em Espaço de Estados - Escrevendo as Equações de Estado Eduardo M. A. M. Mendes DELT - UFMG Curso de Engenharia de Controle e Automação Universidade Federal de Minas Gerais [email protected]
Gabarito - Lista de Exercícios 2
Gabarito - Lista de Exercícios Teoria das Filas Modelos Adicionais. U escritório te 3 datilógrafas e cada ua pode datilografar e édia, 6 cartas por hora. As cartas chega para sere datilografadas co taxa
SISTEMAS BINÁRIOS ESTELARES
SISTEMAS BINÁRIOS ESTELARES A aioria das estrelas encontra-se e sisteas duplos ou últiplos, estando fisicaente associadas entre si, sob influência de ua ação gravitacional útua. Através do estudo dos sisteas
Oscilações e Ondas Oscilações forçadas
Oscilações e Ondas Oscilações forçadas Oscilações e Ondas» Oscilações forçadas 1 Oscilações livres e forçadas Exainaos até aqui a dinâica de osciladores harônicos e oviento a partir de ua condição inicial
Capítulo 3 Amperímetros e Voltímetros DC Prof. Fábio Bertequini Leão / Sérgio Kurokawa. Capítulo 3 Amperímetros e Voltímetros DC
Capítulo 3 Aperíetros e Voltíetros DC Prof. Fábio Bertequini Leão / Sérgio Kurokawa Capítulo 3 Aperíetros e Voltíetros DC 3.. Aperíetros DC U galvanôetro, cuja lei de Deflexão Estática (relação entre a
Propagação de erros. independentes e aleatórios
TLF 010/11 Capítulo V Propagação de erros independentes e aleatórios 5.1. Propagação da Incerteza na Soa ou Dierença. Liite superior do Erro. 50 5.. Propagação da Incerteza no Produto ou Diisão. Liite
PISM 3 QUESTÕES ABERTAS GABARITO
PISM 3 QUESTÕES ABERTAS GABARITO ) Deterine a equação da circunferência que passa pelos pontos A,5, B6, 3 e 0, Seja r a reta que passa pelos pontos A e B e s a reta que passa pelos pontos B e C. Coeficientes
EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012
EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0
Capítulo 3. Métodos Numéricos Iterativos
Métodos Nuéricos Iterativos Métodos Nuéricos Iterativos Capítulo 3. Métodos Nuéricos Iterativos 1. Métodos nuéricos Sepre que se pretende resolver u problea cuja solução é u valor nuérico, é habitual ter
Modelos Variáveis de Estado
Modelos Variáveis de Estado Introdução; Variáveis de Estados de Sistemas Dinâmicos; Equação Diferencial de Estado; Função de Transferência a partir das Equações de Estados; Resposta no Domínio do Tempo
III Introdução ao estudo do fluxo de carga
Análise de Sisteas de Potência (ASP) ntrodução ao estudo do fluxo de carga A avaliação do desepenho das redes de energia elétrica e condições de regie peranente senoidal é de grande iportância tanto na
Docente Marília Silva Soares Ano letivo 2012/2013 1
Ciências Físico-quíicas - 9º ano de Unidade 1 EM TRÂNSITO 1 Movientos e suas características 1.1. O que é o oviento 1.2. Grandezas físicas características do oviento 1.3. Tipos de Moviento COMPETÊNCIAS
Quantidade de movimento ou momento linear Sistemas materiais
Quantidade de oiento ou oento linear Sisteas ateriais Nota: s fotografias assinaladas co fora retiradas do liro. ello, C. Portela e H. Caldeira Ritos e Mudança, Porto editora. s restantes são retiradas
5 Transformadas de Laplace
5 Transformadas de Laplace 5.1 Introdução às Transformadas de Laplace 4 5.2 Transformadas de Laplace definição 5 5.2 Transformadas de Laplace de sinais conhecidos 6 Sinal exponencial 6 Exemplo 5.1 7 Sinal
CCI-22 CCI-22. 7) Integração Numérica. Matemática Computacional. Definição Fórmulas de Newton-Cotes. Definição Fórmulas de Newton-Cotes
CCI- CCI- Mateática Coputacional 7 Integração Nuérica Carlos Alberto Alonso Sances Fórulas de Newton-Cotes, Quadratura Adaptativa CCI- Fórulas de Newton-Cotes Regra de Sipson Fórula geral stiativas de
Física a Lista de Exercícios
ísica - 9 a Lista de Exercícios 1. (Ex. 5 do Cap. 17 - ísica esnic, Halliday e Krane - 5 a Edição) E u areador elétrico a lâina se ove para frente e para trás co u curso de,. O oviento é harônico siples,
INVESTIGAÇÃO OPERACIONAL. Programação Linear. Exercícios
INVESTIGÇÃO OPERIONL Prograação Linear Exercícios ap. VI nálise de Sensiilidade e Pós-Optiização ntónio arlos Morais da Silva Professor de I.O. INVESTIGÇÃO OPERIONL (MS edição de 6) i ap. VI nálise de
Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo http://www.cce.ufes.
PROBLEMAS RESOLVIDOS DE FÍSICA Prof. Anderson Coser Gaudio Departaento de Física Centro de Ciências Eatas Universidade Federal do Espírito Santo http://www.cce.ufes.br/anderson [email protected] Últia
Pontifícia Universidade Católica de Goiás. Engenharia de Controle e Automação. Prof: Marcos Lajovic Carneiro Aluno (a):
Pontifícia Universidade Católica de Goiás Departamento de Engenharia Laboratório ENG 3502 Controle de Processos 01 Prof: Marcos Lajovic Carneiro Aluno (a): Aula Prática 01 Polinômios, frações parciais,
2.1. Um consumidor possui a função de utilidade do tipo Cobb-Douglas Considere um consumidor que possui a seguinte função de utilidade:
Microeconoia I Ficha : Capítulos 5, 6 e 8 Exercícios propostos Capítulo 5.1. U consuidor possui a função de utilidade do tipo Cobb-Douglas U(x 1, x ) = x 1 1/3 x /3. a) Utilize o ultiplicador de Lagrange
Dinâmica de Estruturas
Dinâica de Estruturas Licenciatura e Engenharia Civi RAIMUNDO DELGADO ANTÓNIO ARÊDE FEU DEC - Estruturas FEU - Raiundo Degado & António Arêde 1 1. 1. INTRODUÇÃO À DINÂMICA DE DE ESTRUTURAS 1.1 INTRODUÇÃO
FÍSICA - 1 o ANO MÓDULO 32 COLISÕES REVISÃO
FÍSICA - 1 o ANO MÓDULO 32 COLISÕES REVISÃO Fixação 1) Duas partículas A e B, de assas A = 1,0 kg e B = 2,0 kg, ove-se inicialente sobre a esa reta, coo ilustra a figura, onde estão assinalados os sentidos
Para um sistema elétrico, com NB barras, as equações básicas do fluxo de carga para
Modelage e Análise de Sisteas Elétricos e Regie Peranente II Fluxo de carga não linear: algoritos básicos II. Forulação do problea básico Para u sistea elétrico, co NB barras, as equações básicas do fluxo
Revisões de análise modal e análise sísmica por espectros de resposta
Revisões de análise odal e análise sísica por espectros de resposta Apontaentos da Disciplina de Dinâica e Engenharia Sísica Mestrado e Engenharia de Estruturas Instituto Superior Técnico Luís Guerreiro
O Papel dos Pólos e Zeros
Departamento de Engenharia Mecatrônica - EPUSP 27 de setembro de 2007 1 Expansão em frações parciais 2 3 4 Suponha a seguinte função de transferência: m l=1 G(s) = (s + z l) q i=1(s + z i )(s + p m ),
Solução do exercício 36
Solução do exercício 36 Equação anoétrica de (A) até a superfície livre do fluido anoétrico. Adotando (A) coo orige, teos: p p ar ar 0,03 z água L sen30 0 0,03 0,5 9800 0,68 sen30 pat 0 p at Trabalhando
MANUAL OPERAÇÃO SIMULADOR DE BALANÇA DINÂMICA SÉRIE 1420
MANUAL DE OPERAÇÃO SIMULADOR DE BALANÇA DINÂMICA SÉRIE 1420 ENGELETRO COMERCIAL LTDA. Rua Gabriela de Melo, 484 Olhos d Água Norte 30390-080 Belo Horizonte MG Tel (31)3288-1366 Fax (31)3288-1099/1340 http://www.engeletro.ind.br
Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello [email protected] 1
Carlos Alexandre Mello 1 Modelagem no Domínio da Frequência A equação diferencial de um sistema é convertida em função de transferência, gerando um modelo matemático de um sistema que algebricamente relaciona
SISTEMAS REALIMENTADOS
SISTEMAS REALIMENTADOS Prof.: Helder Roberto de O. Rocha Engenheiro Eletricista Doutorado em Computação Representação no Espaço de Estados É apropriada para sistemas que possuem várias entradas e várias
Teorema Chinês dos Restos
Teorea Chinês dos Restos Sauel Barbosa 22 de arço de 2006 Teorea 1. (Bézout) Seja a e b inteiros não nulos e d seu dc. Então existe inteiros x e y tais que d = ax + by. Se a e b são positivos podeos escolher
Escala na Biologia. Na natureza, há uma grande variação dos tamanhos dos seres vivos.
Escala na Biologia Na natureza há ua grande variação dos taanhos dos seres vivos O copriento característico de u ser vivo é definido coo qualquer copriento conveniente para cálculos aproxiados Exeplos:
REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS
REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS. Espaço dos estados Representação da dinâmica de um sistema de ordem n usando n equações diferenciais de primeira ordem. Sistema é escrito
Sistemas de Equações Diferenciais Lineares
Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x
1ā lista de exercícios de Sistemas de Controle II
ā lista de exercícios de Sistemas de Controle II Obtenha uma representação em espaço de estados para o sistema da figura R(s) + E(s) s + z U(s) K Y (s) s + p s(s + a) Figura : Diagrama de blocos do exercício
Física. Resolução das atividades complementares. F10 Movimento harmônico simples
Resolução das atividades copleentares Física F0 Moviento harônico siples p. 8 E questões coo a, a resposta é dada pela soa dos núeros que identifica as alternativas corretas. (UEM-PR) Toando-se coo base
1ª LISTA DE DINÂMICA E ESTÁTICA. está inicialmente em repouso nas coordenadas 2,00 m, 4,00 m. (a) Quais são as componentes da
Universidade do Estado da Bahia UNEB Departaento de Ciências Exatas e da Terra DCET I Curso de Engenharia de Produção Civil Disciplina: Física Geral e Experiental I Prof.: Paulo Raos 1 1ª LISTA DE DINÂMICA
1ºAula Cap. 09 Sistemas de partículas
ºAula Cap. 09 Sisteas de partículas Introdução Deterinação do Centro de Massa, Centro de assa e sietrias, a Lei de Newton/sistea de partículas. Velocidade/Aceleração do centro de assa Referência: Halliday,
5 Descrição entrada-saída
Teoria de Controle (sinopse) 5 Descrição entrada-saída J. A. M. Felippe de Souza Descrição de Sistemas Conforme a notação introduzida no capítulo 1, a função u( ) representa a entrada (ou as entradas)
INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE
INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE Preliminares No estudo de sistemas de controle, e comum usar-se diagramas de blocos, como o da figura 1. Diagramas de blocos podem ser utilizados
FATO Medicina. Lista Complementar Física ( Prof.º Elizeu)
FATO Medicina Lista Copleentar Física ( Prof.º Elizeu) 0. (Uerj 07) Pela seção de u condutor etálico subetido a ua tensão elétrica, atravessa 4,0 x 0 8 elétrons e 0 segundos. A intensidade édia da corrente
UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO. Professor Leonardo Gonsioroski
UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO Funções de Transferência Funções de Transferência A Função de Transferência é definida como a relação da Transformada de
Objetivo: converter um comando de posição de entrada em uma resposta de posição de saída.
Prof. Celso Módulo 0 83 SISTEMAS DE CONTOLE DE POSIÇÃO Objetivo: converter u coando de posição de entrada e ua resposta de posição de saída. Aplicações: - antenas - braços robóticos - acionadores de disco
2 AÇÕES E SEGURANÇA 2.1 INTRODUÇÃO 2.2 CONCEITOS GERAIS 2.3 ESTADOS LIMITES
2 AÇÕES E SEGURANÇA 2.1 INTRODUÇÃO Historicaente as noras referentes ao projeto de estruturas etálicas estabelecia critérios de segurança específicos diferenciados das deais soluções estruturais, atualente
Trabalho, Energia e Quantidade de Movimento. Movimento de um corpo rígido.
Trabalho, Energia e Quantidade de Moiento. Moiento de u corpo rígido. Nota: s fotografias assinaladas co () fora retiradas do liro (). ello, C. Portela e H. Caldeira Ritos e Mudança, Porto editora. s restantes
Modelagem Matemática de Sistemas Mecânicos Rotacionais pela Mecânica Newtoniana
Modelagem Matemática de Sistemas Mecânicos ranslacionais pela Mecânica ewtoniana 6 Modelagem Matemática de Sistemas Mecânicos Rotacionais pela Mecânica ewtoniana IRODUÇÃO esta apostila aprenderemos como
Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre (Parte II)
Instituto Superior Técnico Sinais e Sistemas o teste 4 de Novembro de 0 Nome: Número: Duração da prova: horas Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre
Exercícios complementares às notas de aulas de estradas (parte 10)
1 Exercícios copleentares às notas de aulas de estradas (parte 10) Helio Marcos Fernandes Viana Tea: Curvas verticais 1. o ) Sendo os seguintes dados para o projeto de ua curva vertical: a) Distância de
Aula 1a As Leis de Kepler e a Gravitação Newtoniana
Aula a As Leis de Kepler e a Gravitação Newtoniana Profa. Jane Gregorio-Hete & Prof. Annibal Hete AGA05 Manobras Orbitais AGA05 - Aula a: As Leis de Kepler e gravitação Dinâica: As Três Leis de Newton
Análise Dinâmica de Sistemas Mecânicos e Controle
Análise Dinâmica de Sistemas Mecânicos e Controle Unidade 2 Representação de sistemas Através de Diagramas e Espaço de Estados Prof. Thiago da Silva Castro [email protected] 1. Representação
