Aula 04 Representação de Sistemas
|
|
|
- Beatriz Olivares Brezinski
- 9 Há anos
- Visualizações:
Transcrição
1 Aula 04 Representação de Sistemas
2 Relação entre: Função de Transferência Transformada Laplace da saída y(t) - Transformada Laplace da entrada x(t) considerando condições iniciais nulas.
3 Pierre Simon Laplace, X(s) Transformada Laplace de x(t) Y(s) Transformada Laplace de y(t)
4 entrada (input) saída (output) saída (output) X(s) Transformada Laplace de x(t) Y(s) Transformada Laplace de y(t) entrada (input)
5 carro / massa / mola
6 carro / massa / mola
7 carro / massa / mola entrada (input) saída (output) F.T. X(s) U(s) U(s) Transformada Laplace de u(t) X(s) Transformada Laplace de x(t) saída (output) entrada (input)
8 carro / massa / mola m x µ x kx u, ou d 2 dt x m 2 µ dx dt k x u,
9 carro / massa / mola 2 d x dx µ dt dt x (0) 0, m 2 k x mx x(0) 0 µ x kx u, logo, m s 2 X(s) µ s X(s) k X(s) U(s),
10 carro / massa / mola e portanto, a Função de Transferência (F.T.) é dada por X(s) F.T. U(s) ms 2 1 µ s k
11 movimento translacional mecânico
12 movimento translacional mecânico
13 movimento translacional mecânico entrada (input) saída (output) F.T. X(s) U(s) U(s) Transformada Laplace de u(t) X(s) Transformada Laplace de x(t) saída (output) entrada (input)
14 movimento translacional mecânico m x µ x kx u, ou d 2 dt x m 2 µ dx dt k x u,
15 movimento translacional mecânico logo, 2 d x dx µ dt dt x (0) 0, m 2 k x mx x(0) 0 µ x kx u, m s 2 X(s) µ s X(s) k X(s) U(s),
16 movimento translacional mecânico e portanto, a Função de Transferência (F.T.) torna-se X(s) F.T. U(s) ms 2 1 µ s k
17 movimento translacional mecânico m 1 kg µ 4 N s/m k 3 N/m
18 carro / massa / mola m 1 kg µ 4 N s/m k 3 N/m
19 carro / massa / mola ou movimento translacional mecânico Já vimos que estes 2 sistemas são descritos pela mesma equação diferencial (de 2ª ordem) e têm o mesmo modelo.
20 carro / massa / mola Representação de Sistemas ou movimento translacional mecânico d 2 dt x 2 x (0) 4 dx dt 0, 3 x x(0) x 0 4x 3x u,
21 carro / massa / mola Representação de Sistemas ou movimento translacional mecânico Logo, a Função de Transferência (F.T.) é dada por X(s) 1 F.T. 2 U(s) s 4s 3
22 carro / massa / mola Representação de Sistemas ou movimento translacional mecânico Função de Transferência (F.T.) do sistema
23 circuito RLC série
24 circuito RLC série tensão na entrada tensão na saída
25 circuito RLC série entrada (input) saída (output) F.T. V o (s) V (s) V i (s) Transformada Laplace de v i (t) V o (s) Transformada Laplace de v o (t) i saída (output) entrada (input)
26 circuito RLC série LC v RC v v o o o v i, ou LC d 2 dt v o 2 RC dv dt o v o v i,
27 circuito RLC série 2 d v LC 2 dt v o(0) o RC 0, dvo dt v o v o (0) 0 LCv o RCv o v o v i, logo, LC s 2 V o (s) RC s V o (s) V o (s) V (s), i
28 circuito RLC série e portanto, a Função de Transferência (F.T.) do sistema é dada por V (s) F.T. o V (s) LCs 2 i 1 RCs 1
29 circuito RLC série R 1000 Ω L 250 H C 1,333 x 10-3 F
30 circuito RLC série d 2 dt v v o o 2 (0) 4 dv 0, dt o 3v v o o v (0) 0 o 4v o 3 v o 3v i,
31 circuito RLC série e neste caso a Função de Transferência (F.T.) será: V (s) F.T. o 2 3 V (s) i s 4s 3
32 circuito RLC série Função de Transferência (F.T.) do sistema
33 movimento rotacional mecânico
34 movimento rotacional mecânico momento (ou torque) aplicado velocidade angular
35 movimento rotacional mecânico momento (ou torque) aplicado velocidade angular entrada (input) F.T. Ω(s) X(s) Ω(s) Transformada Laplace de ω(t) X(s) Transformada Laplace de x(t) saída (output) saída (output) entrada (input)
36 movimento rotacional mecânico J ω µ ω x, ou dω J µ ω(t) dt x,
37 movimento rotacional mecânico dω J dt ω(0) 0 µ ω Jω µω x logo, J s Ω(s) µ Ω(s) X(s),
38 movimento rotacional mecânico e portanto, a Função de Transferência (F.T.) do sistema é dada por F.T. Ω(s) 1 X(s) Js µ
39 movimento rotacional mecânico J 0,5 kg/m 2 µ 2 N m /rad/s dω dt ω(0) 4 ω a ω 4 ω 2 x,
40 movimento rotacional mecânico e neste caso, a Função de Transferência (F.T.) Ω(s) 2 F.T. X(s) s 4
41 movimento rotacional mecânico Função de Transferência (F.T.) do sistema
42 sismógrafo
43 sismógrafo
44 sismógrafo deslocamento da caixa deslocamento da massa m entrada (input) F.T. Y(s) X i (s) X i (s) Transformada Laplace de x i (t) Y(s) Transformada Laplace de y(t) saída (output) saída (output) entrada (input)
45 sismógrafo m y µ y k y m x i, ou 2 2 d y dy d x m µ k y m 2 2 dt dt dt i,
46 sismógrafo m d 2 dt y 2 y(0) 0 µ, dy dt y (0) ky 0 m y µ y k y m x i, logo, m s 2 Y(s) µ s Y(s) k Y(s) m s 2 X i (s),
47 sismógrafo e portanto, a Função de Transferência (F.T.) do sistema é dada por Y(s) ms F.T. X (s) ms 2 µ s i 2 k
48 sismógrafo Função de Transferência (F.T.) do sistema
49 Função de Transferência (F.T.)
50 Observe que depois de calculada a Função de Transferência (F.T.) tem a forma de polinómio/polinómio, ou seja q(s)/p(s).
51 As raízes de q(s) são chamadas de zeros do sistema. As raízes de p(s) são chamadas de polos do sistema.
52 O polinómio p(s) é chamado de polinómio característico do sistema. A equação p(s) 0 é chamada de equação característica do sistema.
53 entrada (input) saída (output) Função de Transferência (F.T.) do sistema
54 ou simplesmente, entrada (input) saída (output) Função de Transferência (F.T.) do sistema Caixa preta ou Bloco simples
55 Diagramas de Blocos
56 Com a F.T. pode-se representar sistemas em Diagramas de Blocos: Bloco simples ou caixa-preta (black box) Função de Transferência (F.T.) do bloco
57 Diagramas de Blocos é o tema do próximo capítulo. Há diversos tipos de ligações possíveis nos blocos, como por exemplo, blocos em cascata : Blocos em cascata
58 Blocos com realimentação: (feedback) Bloco G(s) com realimentação unitária
59 Blocos com realimentação: (feedback) Bloco G(s) com realimentação não unitária H(s)
60 Obrigado! Felippe de Souza
Aula 05 Transformadas de Laplace
Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número
Aula 05 Transformadas de Laplace
Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número
Aula 6 Transformada de Laplace
Aula 6 Transformada de Laplace Introdução Propriedades da Transformada de Laplace Tabela Transformada ade Laplace Transformada Inversa de Laplace Função de transferência Definição: X s = L x t = s é uma
Aula 03 Modelização de Sistemas
Aula 03 Mdelizaçã de Sistemas Mdelizaçã de Sistemas entrada (input) saída (utput) carr / massa / mla Mdelizaçã de Sistemas carr / massa / mla Mdelizaçã de Sistemas carr / massa / mla frça aplicada deslcament
B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil
Função de Transferência Relação Entrada-Saída Desejamos obter a expressão M(s) = Y(s) R(s) Para obter essa expressão, devemos realizar uma analise de algebra de blocos. Perceba que a relação entre o sinal
Modelos Matematicos de Sistemas
Modelos Matematicos de Sistemas Introdução; Equações Diferenciais de Sistemas Físicos; Aproximações Lineares de Sistemas Físicos; Transformada de Laplace; Função de Transferência de Sistemas Lineares;
B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil
Função de Transferência Relação Entrada-Saída Desejamos obter a expressão M(s) = Y(s) R(s) Para obter essa expressão, devemos realizar uma analise de algebra de blocos. Perceba que a relação entre o sinal
Sistemas lineares. Aula 7 Transformada Inversa de Laplace
Sistemas lineares Aula 7 Transformada Inversa de Laplace Transformada Inversa de Laplace Transformada Inversa de Laplace e RDC x(t) única Metódos Inversão pela Definição Inversão pela Expansão em Frações
Instrumentação e Controle Aula 7. Estabilidade. Prof. Renato Watanabe ESTO004-17
Instrumentação e Controle Aula 7 Estabilidade Prof. Renato Watanabe ESTO004-17 Onde estamos no curso Sistema Obtenção das Equações Diferenciais que descrevem o comportamento do sistema Representação no
EES-20: Sistemas de Controle II. 31 Julho 2017
EES-20: Sistemas de Controle II 31 Julho 2017 1 / 41 Folha de informações sobre o curso 2 / 41 O que é Controle? Controlar: Atuar sobre um sistema físico de modo a obter um comportamento desejado. 3 /
5 Descrição entrada-saída
Teoria de Controle (sinopse) 5 Descrição entrada-saída J. A. M. Felippe de Souza Descrição de Sistemas Conforme a notação introduzida no capítulo 1, a função u( ) representa a entrada (ou as entradas)
1ā lista de exercícios de Sistemas de Controle II
ā lista de exercícios de Sistemas de Controle II Obtenha uma representação em espaço de estados para o sistema da figura R(s) + E(s) s + z U(s) K Y (s) s + p s(s + a) Figura : Diagrama de blocos do exercício
INSTITUTO FEDERAL DO ESPÍRITO SANTO - CAMPUS SERRA. Sistemas
INSTITUTO FEDERAL DO ESPÍRITO SANTO - CAMPUS SERRA Sistemas Dinâmicos Para controlar é preciso conhecer Sistemas dinâmicos Modificam-se no decorrer do tempo Modelos matemáticos Método analítico (Leis físicas)
Modelagem Matemática de Sistemas
Modelagem Matemática de Sistemas 1. Descrição Matemática de Sistemas 2. Descrição Entrada-Saída 3. Exemplos pag.1 Teoria de Sistemas Lineares Aula 3 Descrição Matemática de Sistemas u(t) Sistema y(t) Para
Aula 11. Revisão de Fasores e Introdução a Laplace
Aula Revisão de Fasores e Introdução a Laplace Revisão - Fasor Definição: Fasor é a representação complexa da magnitude e fase de uma senoide. V = V m e jφ = V m φ v t = V m cos(wt + φ) = R(V e jwt ) Impedância
EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012
EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0
Aula 9. Diagrama de Bode
Aula 9 Diagrama de Bode Hendrik Wade Bode (americano,905-98 Os diagramas de Bode (de módulo e de fase são uma das formas de caracterizar sinais no domínio da frequência. Função de Transferência Os sinais
Representação e Análise de Sistemas Dinâmicos Lineares Componentes Básicos de um Sistema de Controle
Representação e Análise de Sistemas Dinâmicos Lineares 1 Introdução 11 Componentes Básicos de um Sistema de Controle Fundamentos matemáticos 1 Singularidades: Pólos e zeros Equações diferencias ordinárias
1 Controlabilidade, observabilidade e estabilidade de sistemas em tempo contínuo
Rio de Janeiro, 24 de março de 2006. 1 a Lista de Exercícios de Controle e Servomecanismos II Tópicos: autovalores, estabilidade, controlabilidade, observabilidade, realimentação de estado e observadores
R + b) Determine a função de transferência de malha fechada, Y (s)
FUP IC Teoria do Controlo xercícios Análise de Sistemas ealimentados Teoria do Controlo xercícios Análise de Sistemas ealimentados AS Considere o sistema da figura ao lado: a) Determine a função de transferência
Aula 12. Transformada de Laplace II
Aula 12 Transformada de Laplace II Matérias que serão discutidas Nilsson Circuitos Elétricos Capítulos 12, 13 e 14 LAPLACE Capítulo 8 Circuitos de Segunda ordem no domínio do tempo Revisão A transformada
Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos
107484 Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016
Transformadas de Laplace Engenharia Mecânica - FAENG. Prof. Josemar dos Santos
Engenharia Mecânica - FAENG SISTEMAS DE CONTROLE Prof. Josemar dos Santos Sumário Transformadas de Laplace Teorema do Valor Final; Teorema do Valor Inicial; Transformada Inversa de Laplace; Expansão em
Fundamentos de Controle
Fundamentos de Controle Modelagem matemática de sistemas de controle Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui
II. REVISÃO DE FUNDAMENTOS
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE II. REVISÃO DE FUNDAMENTOS Prof. Davi Antônio dos Santos ([email protected]) Departamento de Mecatrônica
EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 2 quadrimestre 2011
EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares quadrimestre 0 (P-0003D) (HAYKIN, 00, p 9) Use a equação de definição da TF para obter a representação no domínio da
Instrumentação e Controle Aula 14. Prof. Renato Watanabe ESTO004-17
Instrumentação e Controle Aula 14 Finalização Prof. Renato Watanabe ESTO004-17 Onde estamos no curso Sistema Realimentação Sensores Obtenção das Equações Diferenciais que descrevem o comportamento do sistema
SISTEMAS DE CONTROLO I
Departamento de Electrónica e Informática SISTEMAS DE CONTROLO I PROBLEMAS Licenciatura em: Engenharia de Sistemas e Informática Ano lectivo de 005006 (º Semestre) Engº João Lima Prof. Dr. António Ruano
Instrumentação e Controle Aula 12. Controle PID. Prof. Renato Watanabe ESTO004-17
Instrumentação e Controle Aula 12 Controle PID Prof. Renato Watanabe ESTO004-17 Onde estamos no curso Sistema Realimentação Sensores Obtenção das Equações Diferenciais que descrevem o comportamento do
5 a LISTA DE EXERCÍCIOS
5 a LITA DE EXERCÍCIO ) A ação de controle proporcionalderivativo só apresenta influência durante o regime permanente não tendo nenhum efeito durante os transitórios do sistema. Responda se a afirmação
Introdução aos Circuitos Elétricos
Introdução aos Circuitos Elétricos A Transformada de Laplace Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia A Transformada de Laplace História Pierri
Analise sistemas LCIT usando a Transformada de Laplace
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO
Circuitos Elétricos II
Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Ganho e Deslocamento de Fase Função de Rede (ou de Transferência) Estabilidade 1 Definições
ET66C - Processos em Engenharia, UTFPR
ET66C - Processos em Engenharia, UTFPR Prof. Alessandro Vargas 1o. sem. 2019 Plano de Curso Objetivo Proporcionar a aquisição de conhecimentos básicos sobre modelagem e simulação de processos físicos.
Teoria de Controle. Helio Voltolini
Teoria de Controle Helio Voltolini Conteúdo programático Introdução aos sistemas de controle; Modelagem matemática de sistemas dinâmicos; Resposta transitória de sistemas de controle; Estabilidade dos
Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros
107484 Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 2 o Semestre
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap2 - Modelagem no Domínio de Frequência Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos
FEP Física para Engenharia II
FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.
Aula 3. Carlos Amaral Fonte: Cristiano Quevedo Andrea
Aula 3 Carlos Amaral Fonte: Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Marco de 2012. Resumo 1 Introdução 2 3
Aula 05 Diagramas de blocos & erro
Aula 05 Diagrama de bloco & erro input output Bloco imple Caixa preta Black box Caixa preta ou Black box: G() input output Função de Tranferência: ou: G () Y() X() Y() G() X() ou eja, SAÍDA F.T. X ENTRADA
Sistemas de Controle
Sistemas de Controle Adriano Almeida Gonçalves Siqueira Aula 2 - Transformada de Laplace e Função Transferência Sistemas de Controle p. 1/27 Função Impulso Unitário Função pulso com área unitária: f(t)
Análise no Domínio do Tempo de Sistemas em Tempo Contínuo
Análise no Domínio do Tempo de Sistemas em Tempo Contínuo Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco
Roteiro-Relatório da Experiência N o 07 CIRCUITO RLC CC TRANSITÓRIO
Roteiro-Relatório da Experiência N o 7 CIRCUITO RLC CC TRANSITÓRIO. COMPONENTES DA EQUIPE: ALUNOS NOTA 3 Data: / / : hs. OBJETIVOS:.. Esta experiência tem por objetivo verificar as características de resposta
Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.
UNIVERSIDADE DO ALGARVE
UNIVERSIDADE DO ALGARVE FACULDADE DE CIÊNCIAS E TECNOLOGIA Departamento de Engenharia Electrónica e Informática SISTEMAS DE CONTROLO Problemas Ano lectivo de 20062007 Licenciatura em Engenharia de Sistemas
Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.
INSTITUTO SUPERIOR TÉCNICO CONTROLO. As questões assinaladas com * serão abordadas na correspondente aula de apoio.
INSTITUTO SUPERIOR TÉCNICO ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES CONTROLO 2 a Série (resposta no tempo, diagrama de blocos, erro estático) As questões assinaladas com * serão abordadas na correspondente
Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.
Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento
Fundamentos de Controlo
Fundamentos de Controlo a Série Resposta no Tempo de Sistemas Causais. S.1 Exercícios Resolvidos P.1 Seja H(s) = s (s + ) a função de transferência de um SLIT contínuo causal. Qual dos sinais da Figura
DESCRIÇÃO MATEMÁTICA DE SISTEMAS PARTE 1
DESRIÇÃO MATEMÁTIA DE SISTEMAS PARTE 1 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Agenda Modelagem de sistemas dinâmicos Descrição Entrada-Saída
Curso de Complementos de Física
Aula 2 Curso de Engenharia Civil Faculdade Campo Grande 27 de Agosto de 2015 Plano de Aula 1 Exemplo 1 Um bloco, preso firmemente a uma mola, oscila verticalmente uma frequência de 4 Hertz e uma amplitude
Sistemas lineares. Aula 3 Sistemas Lineares Invariantes no Tempo
Sistemas lineares Aula 3 Sistemas Lineares Invariantes no Tempo SLIT Introdução Resposta de um SLIT Resposta de Entrada Nula Resposta de Estado Nulo Resposta ao Impulso Unitária Introdução Sistemas: Modelo
TRANSFORMADA DE LAPLACE E OPERADORES LINEARES
TRANSFORMADA DE LAPLACE E OPERADORES LINEARES O DOMÍNIO DE LAPLACE Usualmente trabalhamos com situações que variam no tempo (t), ou seja, trabalhamos no domínio do tempo. O domínio de Laplace é um domínio
Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.
O Papel dos Pólos e Zeros
Departamento de Engenharia Mecatrônica - EPUSP 27 de setembro de 2007 1 Expansão em frações parciais 2 3 4 Suponha a seguinte função de transferência: m l=1 G(s) = (s + z l) q i=1(s + z i )(s + p m ),
SEM Sistemas de Controle Aula 1 - Introdução
SEM 5928 - Sistemas de Controle Universidade de São Paulo O que é controle? Dicionário Houaiss: Controle:... 3. Dispositivo ou mecanismo destinado a comandar ou regular o funcionamento de máquina, aparelho
UNIVERSIDADE ESTADUAL DO MARANHÃO CENTRO DE CIÊNCIAS TECNOLÓGICAS CURSO DE ENGENHARIA DA COMPUTAÇÃO. Professor Leonardo Gonsioroski
UNIVERSIDADE ESTADUAL DO MARANHÃO CENTRO DE CIÊNCIAS TECNOLÓGICAS CURSO DE ENGENHARIA DA COMPUTAÇÃO O que veremos na aula de hoje Transformadas Direta e Inversa de Laplace Técnicas de Frações Parciais
Controle de Processos Aula: Estabilidade e Critério de Routh
107484 Controle de Processos Aula: Estabilidade e Critério de Routh Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB)
Sistemas lineares. Aula 4 Respostas de um SLIT
Sistemas lineares Aula 4 Respostas de um SLIT Cronograma Introdução Características de um SLIT Resposta ao degrau unitário Resposta a entrada nula Resposta total Introdução A convolução entre dois sinais
Modelagem no Domínio do Tempo
CAPÍTULO TRÊS Modelagem no Domínio do Tempo SOLUÇÕES DE DESAFIOS DOS ESTUDOS DE CASO Controle de Antena: Representação no Espaço de Estados Para o amplificador de potência, E s a() V () s 150. Usando a
Capítulo 2. Modelagem no Domínio de Freqüência
Capítulo 2 Modelagem no Domínio de Freqüência Fig. 2.1 a. Representação em diagrama de blocos de um sistema; b. representação em diagrama de blocos de uma interconexão de subsistemas Entrada Entrada Sistema
Aula 4 Respostas de um SLIT
Aula 4 Respostas de um SLIT Introdução Características de um SLIT Resposta ao degrau unitário Resposta a entrada nula Resposta total A convolução entre dois sinais de tempo contínuo x(t) e h(t) é dada
Modelagem Matemática de Sistemas
Modelagem Matemática de Sistemas 1. de modelagem com Circuitos Elétricos 2. Sistemática para Obtenção de Equações de Estado pag.1 Teoria de Sistemas Lineares Aula 4 Descrição Matemática de Sistemas Exemplo
Modelagem de Sistemas de Controle por Espaço de Estados
Modelagem de Sistemas de Controle por Espaço de Estados A modelagem por espaço de estados possui diversas vantagens. Introduz a teoria conhecida como Controle Moderno ; Adequada para sistemas de múltiplas
Capítulo 2 Dinâmica de Sistemas Lineares
Capítulo 2 Dinâmica de Sistemas Lineares Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Dinâmica de Sistemas Lineares 1/57
Capítulo 2: Modelos Matemáticos de Sistemas -Sinais e Sistemas 1 -
Modelos Matemáticos de Sistemas -Sinais e Sistemas 1 - Objetivos Sinais Sistemas 1 Sistemas Eletro Entender o que significa fisicamente e matematicamente a transformada de Laplace Encontrar a transformada
Transformada de Laplace
Transformada de aplace Nas aulas anteriores foi visto que as ferramentas matemáticas de Fourier (série e transformadas) são de extrema importância na análise de sinais e de sistemas IT. Isto deve-se ao
5 Transformadas de Laplace
5 Transformadas de Laplace 5.1 Introdução às Transformadas de Laplace 4 5.2 Transformadas de Laplace definição 5 5.2 Transformadas de Laplace de sinais conhecidos 6 Sinal exponencial 6 Exemplo 5.1 7 Sinal
PMR3404 Controle I Aula 3
PMR3404 Controle I Aula 3 Resposta estática Ações de controle PID Newton Maruyama 23 de março de 2017 PMR-EPUSP Classificação de sistemas de acordo com o seu desempenho em regime estático Seja o seguinte
Faculdade de Engenharia da UERJ - Departamento de Engenharia Elétrica Controle & Servomecanismo I - Prof.: Paulo Almeida Exercícios Sugeridos
Faculdade de Engenharia da UERJ Departamento de Engenharia Elétrica Controle & Servomecanismo I Prof.: Paulo Almeida Exercícios Sugeridos Estabilidade, Resposta Transitória e Erro Estacionário Exercícios
Sistemas lineares. Aula 6 Transformada de Laplace
Sistemas lineares Aula 6 Transformada de Laplace Introdução Transformada de Laplace Convergência da transformada de laplace Exemplos Região de Convergência Introdução Transformações matemáticas: Logaritmo:
UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO. Professor Leonardo Gonsioroski
UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO Funções de Transferência Funções de Transferência A Função de Transferência é definida como a relação da Transformada de
Controle de Processos Aula: Sistemas de 1ª e 2ª ordem
107484 Controle de Processos Aula: Sistemas de 1ª e 2ª ordem Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB) Controle
PNV3324 FUNDAMENTOS DE CONTROLE EM ENGENHARIA
DEPARTAMENTO DE ENGENHARIA NAVAL E OCEÂNICA ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PNV3324 FUNDAMENTOS DE CONTROLE EM ENGENHARIA NOTAS DE AULA* Prof. Helio Mitio Morishita * Este texto é um mero
Representação De Modelos de Sistemas Dinâmicos:
Representação de Modelos de Sisteas Dinâicos: Equação I/O; Função de Transferência 03 Representação De Modelos de Sisteas Dinâicos: - Equação Input-Output (I/O) - Função de Transferência INTRODUÇÃO Vereos,
1. Diagrama de Blocos. 2. Gráfico de fluxo de sinais. Representação e Análise de Sistemas Dinâmicos Lineares
Representação e Análise de Sistemas Dinâmicos Lineares 1. Diagrama de Blocos 2. Gráfico de fluxo de sinais Fernando de Oliveira Souza pag.1 Engenharia de Controle Aula 3 Diagrama de Blocos U(s) G(s) Y
Análise Dinâmica de Sistemas Mecânicos e Controle
Análise Dinâmica de Sistemas Mecânicos e Controle Unidade 2 Representação de sistemas Através de Diagramas e Espaço de Estados Prof. Thiago da Silva Castro [email protected] 1. Representação
Introdução ao Sistema de Controle
Introdução ao Sistema de Controle 0.1 Introdução Controle 1 Prof. Paulo Roberto Brero de Campos Controle é o ato de exercer comando sobre uma variável de um sistema para que esta variável siga um determinado
Circuitos Elétricos II
Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Introdução Definição da Transformada de aplace Propriedades da Transformada de aplace
Sistemas a Tempo Discreto
Sistemas a Tempo Discreto 1. Caracterização de sistemas dinâmicos a tempo discreto 2. Transformada-Z 3. FT discreta, estabilidade e analogia com domínio-s 4. Sistemas amostrados 4.1 Amostragem e retenção
Análise de Laplace. Prof. André E. Lazzaretti
Análise de Laplace Prof. André E. Lazzaretti [email protected] Introdução Objetivo principal: resolução de equações diferenciais; Similar à análise fasorial: transformação para o domínio da frequência;
Aula 6. Carlos Amaral Fonte: Cristiano Quevedo Andrea
Aula 6 Carlos Amaral Fonte: Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Março de 2012. Resumo 1 Introdução Espaço
Pontifícia Universidade Católica de Goiás. Engenharia de Controle e Automação. Prof: Marcos Lajovic Carneiro Aluno (a):
Pontifícia Universidade Católica de Goiás Departamento de Engenharia Laboratório ENG 3502 Controle de Processos 01 Prof: Marcos Lajovic Carneiro Aluno (a): Aula Prática 01 Polinômios, frações parciais,
Sistemas de Controle (CON) Modelagem de Sistemas de Rotação e Eletromecânicos
Universidade do Estado de Santa Catarina UDESC Centro de Ciências Tecnológicas CCT Departamento de Engenharia Mecânica DEM Sistemas de Controle (CON) Modelagem de Sistemas de Rotação e Eletromecânicos
Aula 18: Projeto de controladores no domínio da frequência
Aula 18: Projeto de controladores no domínio da frequência prof. Dr. Eduardo Bento Pereira Universidade Federal de São João del-rei [email protected] 26 de outubro de 2017. prof. Dr. Eduardo Bento Pereira
