Instrumentação e Controle Aula 14. Prof. Renato Watanabe ESTO004-17
|
|
|
- Isabela Frade Moreira
- 8 Há anos
- Visualizações:
Transcrição
1 Instrumentação e Controle Aula 14 Finalização Prof. Renato Watanabe ESTO004-17
2 Onde estamos no curso Sistema Realimentação Sensores Obtenção das Equações Diferenciais que descrevem o comportamento do sistema Comportamento dinâmico dos transdutores Características de Sensores Controle PID Representação no Espaço de Estados Transformada de Laplace Requisitos de Projeto Transdução de medidas Resposta natural Condicionamento do sinal Resposta forçada Análise de Estabilidade
3 Onde estamos no curso - Controlador Sistema ou Planta
4 Controle PID ( u(t) = K p (r(t) y(t)) K i }{{} P r(t) } {{ } I ) ( dr y(t) K d dy ) }{{} D
5 Controle de nı vel de uma caixa d a gua
6 Regulador de Watt Velocidade angular desejada Válvula Regulador de de Watt combustível - Motor de combustão Mudança na carga Velocidade angular Sistema de transmissão
7 Controle de velocidade de esteira Velocidade desejada Computador Motor - Peso do corredor Esteira Velocidade da esteira Tacômetro
8 Controle de inflação Meta de in ação COPOM do BC - taxa de juros Escassez de produto, instabilidade política, etc Sistema nanceiro In ação IPCA
9 Controle da postura ereta Posição do centro de massa ideal Sistema Músculos Nervoso do corpo Central - Empurrão Sistema esquelético Posição do centro de massa Sistemas vestibular, visual, proprioceptivo
10 Outros exemplos
11 Pêndulo Invertido u(t) = T a (t) x 1 = y(t) g = π 2 m/s y(t) = θ(t) x 2 = dy h b = 0.85 m m = 70 kg J = mh2 b 3 kg Diagrama de Blocos Equação diferencial d 2 y(t) 2 = mgh b J y(t) u(t) Espaço de Estados ẋ1 0 1 = mgh b ẋ 2 J 0 x1 y(t) = 1 0. x1. x 2 x u(t) 1
12 Caixa d a gua u(t) = Qe (t) y(t) = h(t) x1 = y(t) d(t) = Qs (t) Diagrama de Blocos dy(t) = A1 d(t) 1 A u(t) Espac o de Estados x 1 = 0.x1 y(t) = 1.x1 1 A.u(t) 1 A d(t) 1
13 Pêndulo d 2 y(t) 2 = 3g 2l y(t) 3 2ml 2 u(t) Comprimento da barra: Massa da barra: Momento de inércia da barra: g = π 2 m/s l = 2 m m = 100 kg u(t) = M(t) x 1 = y(t) y(t) = θ(t) Diagrama de Blocos x 2 = dy Espaço de Estados ẋ1 0 1 x1 = ẋ 2 3g. 2l 0 x 2 y(t) = 1 0 x1. x ml 2.u(t) 1
14 Controle de atitude de satélite u(t) = F (t) y(t) = θ(t) x 1 = y(t) x 2 = dy Diagrama de Blocos Equação diferencial d 2 y(t) = 2d 2 J u(t) Espaço de Estados ẋ1 ẋ 2 = x1 x 2 y(t)= 1 0 x1. x u(t) 2ml 2 1
15 Pêndulo com amortecimento d 2 y(t) 2 Comprimento da barra: Massa da barra: Momento de inércia da barra: b = 3π Ns/m 2 g = π 2 m/s 2 l = 2 m m = 100 kg = 3b dy(t) ml 2 3g 2l y(t) 3 u(t) 2ml 2 u(t) = M(t) x 1 = y(t) y(t) = θ(t) Diagrama de Blocos x 2 = dy 1 Espaço de Estados ẋ1 0 1 = ẋ 2 3g 2l 3b ml 2 y(t) = 1 0. x1. x 2 x1 x ml 2.u(t)
16 Pedidos em um servidor u(t) = λ(t) Tempo T para a executar uma solicitação. y(t) = Q(t) x 1 = y(t) dy(t) = 1 T y(t) u(t) Diagrama de Blocos Espaço de Estados 1 ẋ 1 = 1 T x 1 1.u(t) y(t) = 1.x 1
17 Motor DC u(t) = e a (t) x 1 = i a (t) y(t) = ω(t) x 2 = y(t) b = 0, 03 Ns/m 2 J = 0, 01 kg.m 2 R a = 0, 5Ω L a = 0, 05 H K = 0, 05 N.m/A K b = 0, 05 V.s/rad Equações diferenciais: di a(t) = Ra L a i a (t) K b L a y(t) 1 L a u(t) Diagrama de Blocos dy(t) = b J y(t) K J i a(t) 1 Espaço de Estados ẋ1 R a = L a ẋ 2 K J y(t) = 0 1. K b L a b J x1 x1. x 2 x 2 1 L a 0.u(t)
18 Circuito diferenciador u(t) = v(t) y(t) = v R (t) x 1 = i(t) di(t) = 1 RC i(t) 1 du(t) R y(t) = Ri(t) Diagrama de Blocos Espaço de Estados ẋ 1 = 1 RC x 1 1.u(t) y(t) = 1 RC.x 1 1.u
19 Sistema massa-mola-amortecedor Equação diferencial: d 2 y(t) 2 = k m y(t) b dy(t) m k m u(t) b du(t) m Espaço de Estados ẋ1 0 1 = ẋ 2 K m y(t) = K m b m b m x1.. x1 x 2 x u(t) = x i (t) y(t) = x o (t).u(t) x 1 = y(t) x 2 = dy Diagrama de Blocos Utilizar k = 25 N/m, b = 300 Ns/m e m = 1000 kg
20 Circuito integrador u(t) = v(t) y(t) = v c (t) x 1 = y(t) Equação Diferencial di(t) = 1 RC i(t) 1 R y(t) = 1 t C i(t) du(t) Diagrama de Blocos Espaço de Estados ẋ 1 = 1 RC x 1 1 RC u(t) y(t) = 1.x 1 1
21 Linha de montagem Linha de montagem recebe ordem de taxa de produção de carros. O interesse é saber como o estoque de carros se comporta. Equações diferenciais: dy(t) dp (t) = KP (t) d(t) = KP (t) u(t) u(t) = o(t) x 1 = y(t) y(t) = S(t) x 2 = P (t) d(t) = v(t) Diagrama de Blocos Espaço de Estados ẋ1 0 K x1 =. ẋ 2 0 K x 2 x1 y(t) = 1 0. x u(t).d(t) 1 0
22 Imunização Uma fração α de uma população saudável é infectada por uma doença por dia. Entre a população infectada, uma fração γ se recupera e se torna imune e uma outra fração β falece. Parte da população saudável é imunizada a uma taxa v. O interesse é saber como a população infectada evolui ao longo do tempo. u(t) = v(t) y(t) = I(t) x 1 = S(t) Equações Diferenciais x 2 = y(t) ds(t) = αs(t) u(t) x 3 = Im(t) = αs(t) (γ β)y(t) x 4 = M(t) = u(t) γy(t) dy(t) dim(t) dm(t) = βy(t) Espaço de Estados ẋ 1 ẋ 2 ẋ 3 ẋ 4 α α (γ β) γ 0 0 =. 0 β 0x 1 0 y(t)= x 2 x 3 x 4 x 1 x 2 x 3 x u(t) -1 Diagrama de Blocos
23 Requisitos de projeto Estabilidade Principal requisito, presente em todos os projetos de controle. Em sistemas lineares, deve-se garantir que as raízes do polinômio característico esteja no lado esquerdo do plano imaginário.
24 Requisitos de projeto Constante de tempo As constantes de tempo de um sistema são o inverso da parte real das raízes do polinômio característico (ou autovalores da matriz A). Deve-se garantir que a constante de tempo mais lenta do sistema realimentado satisfaça a necessidade.
25 Requisitos de projeto Tempo de acomodação O tempo de acomodação é tempo que a saída do sistema leva para atingir entre 5 % a 2 % do valor final. É o tempo que o sistema leva para atingir o regime permanente. Se considerar 5 %, t s = 3T. Se considerar 2 %, t s = 4T.
26 Requisitos de projeto Erro estacionário A diferença entre o valor de referência e o valor final da saída no regime permanente.
Instrumentação e Controle Aula 12. Controle PID. Prof. Renato Watanabe ESTO004-17
Instrumentação e Controle Aula 12 Controle PID Prof. Renato Watanabe ESTO004-17 Onde estamos no curso Sistema Realimentação Sensores Obtenção das Equações Diferenciais que descrevem o comportamento do
Instrumentação e Controle Aula 7. Estabilidade. Prof. Renato Watanabe ESTO004-17
Instrumentação e Controle Aula 7 Estabilidade Prof. Renato Watanabe ESTO004-17 Onde estamos no curso Sistema Obtenção das Equações Diferenciais que descrevem o comportamento do sistema Representação no
Representação no espaço de estados
Instrumentação e Controle Aula 4 Representação no espaço de estados Prof. Renato Watanabe ESTO004-17 Onde estamos no curso Sistema Obtenção das Equações Diferenciais que descrevem o comportamento do sistema
Instrumentação e Controle Aula 1. Prof. Renato Watanabe ESTO004-17
Instrumentação e Controle Aula 1 Apresentação Prof. Renato Watanabe ESTO004-17 Calendário Quarta-Feira Sexta-Feira Data Tema Data Tema 31/mai AULA 1: Apresentação 02/jun AULA 2: Classificação de sistemas
Aula 04 Representação de Sistemas
Aula 04 Representação de Sistemas Relação entre: Função de Transferência Transformada Laplace da saída y(t) - Transformada Laplace da entrada x(t) considerando condições iniciais nulas. Pierre Simon Laplace,
Representação e Análise de Sistemas Dinâmicos Lineares Componentes Básicos de um Sistema de Controle
Representação e Análise de Sistemas Dinâmicos Lineares 1 Introdução 11 Componentes Básicos de um Sistema de Controle Fundamentos matemáticos 1 Singularidades: Pólos e zeros Equações diferencias ordinárias
Aula 6 Transformada de Laplace
Aula 6 Transformada de Laplace Introdução Propriedades da Transformada de Laplace Tabela Transformada ade Laplace Transformada Inversa de Laplace Função de transferência Definição: X s = L x t = s é uma
Sistemas lineares. Aula 7 Transformada Inversa de Laplace
Sistemas lineares Aula 7 Transformada Inversa de Laplace Transformada Inversa de Laplace Transformada Inversa de Laplace e RDC x(t) única Metódos Inversão pela Definição Inversão pela Expansão em Frações
EES-20: Sistemas de Controle II. 31 Julho 2017
EES-20: Sistemas de Controle II 31 Julho 2017 1 / 41 Folha de informações sobre o curso 2 / 41 O que é Controle? Controlar: Atuar sobre um sistema físico de modo a obter um comportamento desejado. 3 /
1ā lista de exercícios de Sistemas de Controle II
ā lista de exercícios de Sistemas de Controle II Obtenha uma representação em espaço de estados para o sistema da figura R(s) + E(s) s + z U(s) K Y (s) s + p s(s + a) Figura : Diagrama de blocos do exercício
Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos
107484 Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016
SEM Sistemas de Controle Aula 1 - Introdução
SEM 5928 - Sistemas de Controle Universidade de São Paulo O que é controle? Dicionário Houaiss: Controle:... 3. Dispositivo ou mecanismo destinado a comandar ou regular o funcionamento de máquina, aparelho
Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros
107484 Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 2 o Semestre
1 Controlabilidade, observabilidade e estabilidade de sistemas em tempo contínuo
Rio de Janeiro, 24 de março de 2006. 1 a Lista de Exercícios de Controle e Servomecanismos II Tópicos: autovalores, estabilidade, controlabilidade, observabilidade, realimentação de estado e observadores
Modelos Matematicos de Sistemas
Modelos Matematicos de Sistemas Introdução; Equações Diferenciais de Sistemas Físicos; Aproximações Lineares de Sistemas Físicos; Transformada de Laplace; Função de Transferência de Sistemas Lineares;
5 Descrição entrada-saída
Teoria de Controle (sinopse) 5 Descrição entrada-saída J. A. M. Felippe de Souza Descrição de Sistemas Conforme a notação introduzida no capítulo 1, a função u( ) representa a entrada (ou as entradas)
Teoria de Controle. Helio Voltolini
Teoria de Controle Helio Voltolini Conteúdo programático Introdução aos sistemas de controle; Modelagem matemática de sistemas dinâmicos; Resposta transitória de sistemas de controle; Estabilidade dos
AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E
AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 26 de março de 2018 Roteiro 1 Modelo geral Amortecimento supercrítico Amortecimento subcrítico
EXERCÍCIOS RESOLVIDOS
ENG JR ELETRON 2005 29 O gráfico mostrado na figura acima ilustra o diagrama do Lugar das Raízes de um sistema de 3ª ordem, com três pólos, nenhum zero finito e com realimentação de saída. Com base nas
Aula 05 Transformadas de Laplace
Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número
Aula 05 Transformadas de Laplace
Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número
INSTITUTO SUPERIOR TÉCNICO CONTROLO. As questões assinaladas com * serão abordadas na correspondente aula de apoio.
INSTITUTO SUPERIOR TÉCNICO ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES CONTROLO 3 a Série (root-locus, análise e projecto no plano-s) As questões assinaladas com * serão abordadas na correspondente aula
5 a LISTA DE EXERCÍCIOS
5 a LITA DE EXERCÍCIO ) A ação de controle proporcionalderivativo só apresenta influência durante o regime permanente não tendo nenhum efeito durante os transitórios do sistema. Responda se a afirmação
2ª Avaliação - Controle Automático II (CTR 03) Prof. Accacio
Data de Entrega do relatório e apresentação do trabalho: 06/05/2017 Pontuação da atividade: 30pts Objetivo - Projetar um Controlador para o sistema de estudo (sorteado) através dos Métodos do Lugar das
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA LISTA DE EXERCÍCIO #6 (1) COMPUTAÇÃO ANALÓGICA - A computação analógica
B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil
Função de Transferência Relação Entrada-Saída Desejamos obter a expressão M(s) = Y(s) R(s) Para obter essa expressão, devemos realizar uma analise de algebra de blocos. Perceba que a relação entre o sinal
EES-20: Sistemas de Controle II. 08 Novembro 2017
EES-20: Sistemas de Controle II 08 Novembro 2017 1 / 46 Recapitulando: Controle empregando realimentação de estado r k F u k u t y t T y k T x(t) T K x k 2 / 46 Recapitulando: Projeto por alocação de polos
AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E
AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 20 de março de 2013 Roteiro 1 Amortecidas forçadas Roteiro Amortecidas forçadas 1 Amortecidas
Sistemas lineares. Aula 4 Respostas de um SLIT
Sistemas lineares Aula 4 Respostas de um SLIT Cronograma Introdução Características de um SLIT Resposta ao degrau unitário Resposta a entrada nula Resposta total Introdução A convolução entre dois sinais
TRANSFORMADA DE LAPLACE E OPERADORES LINEARES
TRANSFORMADA DE LAPLACE E OPERADORES LINEARES O DOMÍNIO DE LAPLACE Usualmente trabalhamos com situações que variam no tempo (t), ou seja, trabalhamos no domínio do tempo. O domínio de Laplace é um domínio
Aula 4 Respostas de um SLIT
Aula 4 Respostas de um SLIT Introdução Características de um SLIT Resposta ao degrau unitário Resposta a entrada nula Resposta total A convolução entre dois sinais de tempo contínuo x(t) e h(t) é dada
Realimentação de Estado Sistemas SISO
1. Realimentação de Estado para Sistemas SISO pag.1 Teoria de Sistemas Lineares Aula 18 Considere o sistema n dimensional, SISO: ẋ = Ax + bu y = cx Na realimentação de estados, a entrada u é dada por u
V. ANÁLISE NO DOMÍNIO DO TEMPO
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE V. ANÁLISE NO DOMÍNIO DO TEMPO Prof. Davi Antônio dos Santos ([email protected]) Departamento de
Questões para Revisão Controle
Questões para Revisão Controle 1. (PROVÃO-1999)A Figura 1 apresenta o diagrama de blocos de um sistema de controle, e a Figura 2, o seu lugar das raízes para K > 0. Com base nas duas figuras, resolva os
INSTITUTO SUPERIOR TÉCNICO CONTROLO. As questões assinaladas com * serão abordadas na correspondente aula de apoio.
INSTITUTO SUPERIOR TÉCNICO ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES CONTROLO 2 a Série (resposta no tempo, diagrama de blocos, erro estático) As questões assinaladas com * serão abordadas na correspondente
Modelagem de Sistemas de Controle por Espaço de Estados
Modelagem de Sistemas de Controle por Espaço de Estados A modelagem por espaço de estados possui diversas vantagens. Introduz a teoria conhecida como Controle Moderno ; Adequada para sistemas de múltiplas
Capítulo 2 Dinâmica de Sistemas Lineares
Capítulo 2 Dinâmica de Sistemas Lineares Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Dinâmica de Sistemas Lineares 1/57
ANÁLISE DE SISTEMAS LINEARES NO ESPAÇO DE ESTADOS
AE- ANÁLISE DE SISTEMAS LINEARES NO ESPAÇO DE ESTADOS AE- Determine os valores e vectores próprios de a) A= -.5.5 -.5 b) B= - - AE- Forma canónica controlável. a) Mostre que a equação diferencial homogénea
Controle de Processos Aula: Sistemas de 1ª e 2ª ordem
107484 Controle de Processos Aula: Sistemas de 1ª e 2ª ordem Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB) Controle
Prova de Seleção
Área de Concentração: Prova de Seleção 2016.2 Código de Inscrição do candidato: Cada questão assinalada corretamente vale 1,0 ponto. π Questão 1. Dada a integral definida y 0 (sin t ) 2 π dt + (cos(t))
Aula 6. Carlos Amaral Fonte: Cristiano Quevedo Andrea
Aula 6 Carlos Amaral Fonte: Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Março de 2012. Resumo 1 Introdução Espaço
Introdução ao Sistema de Controle
Introdução ao Sistema de Controle 0.1 Introdução Controle 1 Prof. Paulo Roberto Brero de Campos Controle é o ato de exercer comando sobre uma variável de um sistema para que esta variável siga um determinado
QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)
[0000]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) ando necessário, use π = 3, 14, g=10 m/s 2. Respostas da questões por versão de prova: E7Hx: (1) A; (2) E; (3) A; (4) E; 112F: (1) E; (2) B; (3) D; (4) B;
Fundamentos de Controlo
Fundamentos de Controlo a Série Resposta no Tempo de Sistemas Causais. S.1 Exercícios Resolvidos P.1 Seja H(s) = s (s + ) a função de transferência de um SLIT contínuo causal. Qual dos sinais da Figura
1. Sinais de teste. 2. Sistemas de primeira ordem. 3. Sistemas de segunda ordem. Especificações para a resposta
Desempenho de Sistemas de Controle Realimentados 1. Sinais de teste. Sistemas de primeira ordem 3. Sistemas de segunda ordem Especificações para a resposta Fernando de Oliveira Souza pag.1 Engenharia de
Sistemas de Controle (CON) Modelagem de Sistemas de Rotação e Eletromecânicos
Universidade do Estado de Santa Catarina UDESC Centro de Ciências Tecnológicas CCT Departamento de Engenharia Mecânica DEM Sistemas de Controle (CON) Modelagem de Sistemas de Rotação e Eletromecânicos
Ações de controle básicas: uma análise do desempenho em regime
Capítulo 3 Ações de controle básicas: uma análise do desempenho em regime estático 3. Introdução Neste capítulo, as ações de controle básicas utilizadas em controladores industriais e o seu desempenho
Aula 3. Carlos Amaral Fonte: Cristiano Quevedo Andrea
Aula 3 Carlos Amaral Fonte: Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Marco de 2012. Resumo 1 Introdução 2 3
B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil
Função de Transferência Relação Entrada-Saída Desejamos obter a expressão M(s) = Y(s) R(s) Para obter essa expressão, devemos realizar uma analise de algebra de blocos. Perceba que a relação entre o sinal
INSTITUTO FEDERAL DO ESPÍRITO SANTO - CAMPUS SERRA. Sistemas
INSTITUTO FEDERAL DO ESPÍRITO SANTO - CAMPUS SERRA Sistemas Dinâmicos Para controlar é preciso conhecer Sistemas dinâmicos Modificam-se no decorrer do tempo Modelos matemáticos Método analítico (Leis físicas)
SEM561 - SISTEMAS DE CONTROLE
SEM561 - SISTEMAS DE CONTROLE Adriano Almeida Gonçalves Siqueira Aula 1 - Introdução a Sistemas de Controle Índice O que é controle? Exemplo 1: componentes de um sistema de controle Exemplo 2: malha aberta
PMR3404 Controle I Aula 3
PMR3404 Controle I Aula 3 Resposta estática Ações de controle PID Newton Maruyama 23 de março de 2017 PMR-EPUSP Classificação de sistemas de acordo com o seu desempenho em regime estático Seja o seguinte
Faculdade de Engenharia da UERJ - Departamento de Engenharia Elétrica Controle & Servomecanismo I - Prof.: Paulo Almeida Exercícios Sugeridos
Faculdade de Engenharia da UERJ Departamento de Engenharia Elétrica Controle & Servomecanismo I Prof.: Paulo Almeida Exercícios Sugeridos Estabilidade, Resposta Transitória e Erro Estacionário Exercícios
Física para Engenharia II - Prova P a (cm/s 2 ) -10
4320196 Física para Engenharia II - Prova P1-2012 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de 2 horas. Não somos responsáveis
Fundamentos de Controlo
Fundamentos de Controlo 3 a Série Estabilidade e Desempenho, Critério de Routh-Hurwitz, Rejeição de Perturbações, Sensibilidade à Variação de Parâmetros, Erros em Regime Estacionário. S3. Exercícios Resolvidos
Controle de Processos: Solução analítica de sistemas lineares dinâmicos
Controle de Processos: Solução analítica de sistemas lineares dinâmicos Prof. Eduardo Stockler Tognetti & David Fiorillo Laboratório de Automação e Robótica (LARA) Dept. Engenharia Elétrica - UnB Conteúdo
Modelagem no Domínio do Tempo
CAPÍTULO TRÊS Modelagem no Domínio do Tempo SOLUÇÕES DE DESAFIOS DOS ESTUDOS DE CASO Controle de Antena: Representação no Espaço de Estados Para o amplificador de potência, E s a() V () s 150. Usando a
Fundamentos de Controle
Fundamentos de Controle Modelagem matemática de sistemas de controle Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui
EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012
EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0
SEM Sistemas de Controle I Aula 1 - Introdução
SEM 536 - Sistemas de Controle I Universidade de São Paulo O que é controle? Dicionário Houaiss: Controle:... 3. Dispositivo ou mecanismo destinado a comandar ou regular o funcionamento de máquina, aparelho
Análise Dinâmica de Sistemas Mecânicos e Controle
Análise Dinâmica de Sistemas Mecânicos e Controle Unidade 2 Representação de sistemas Através de Diagramas e Espaço de Estados Prof. Thiago da Silva Castro [email protected] 1. Representação
EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 2 quadrimestre 2011
EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares quadrimestre 0 (P-0003D) (HAYKIN, 00, p 9) Use a equação de definição da TF para obter a representação no domínio da
CONTROLE LINEAR CONTÍNUO: PRINCÍPIOS E LUGAR DAS RAÍZES
PETROBRAS ENGENHEIRO(A) DE EQUIPAMENTOS JÚNIOR - ELETRÔNICA ENGENHEIRO(A) DE EQUIPAMENTOS JÚNIOR - ELÉTRICA ENGENHEIRO(A) JÚNIOR - ÁREA: AUTOMAÇÃO CONTROLE LINEAR CONTÍNUO: PRINCÍPIOS E LUGAR DAS RAÍZES
Desempenho de Sistemas de Controle Realimentados. 3. Efeitos de um terceiro pólo e um zero na resposta de um sistema de segunda ordem
Desempenho de Sistemas de Controle Realimentados 1. Sinais de teste 2. Desempenho de sistemas de segunda ordem 3. Efeitos de um terceiro pólo e um zero na resposta de um sistema de segunda ordem 4. Estimação
Controle e Servomecanismos I
Controle e Servomecanismos I Introdução Sistemas de controle com e sem retroalimentação São de enorme importância científica, tecnológica e econômica com aplicações em Telecom, transportes, navegação,
Capítulo 2. Modelagem no Domínio de Freqüência
Capítulo 2 Modelagem no Domínio de Freqüência Fig. 2.1 a. Representação em diagrama de blocos de um sistema; b. representação em diagrama de blocos de uma interconexão de subsistemas Entrada Entrada Sistema
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto
SEM Sistemas de Controle. Aula 4 - Controladores PID, Avanço, Atraso, Esp. Estados
SEM 5928 - Sistemas de Controle Aula 4 - Controladores PID, Avanço, Atraso e no Espaço de Estados Universidade de São Paulo Controlador PID Controlador Proporcional Controlador Integral Controlador PID
SISTEMAS DE CONTROLO I
Departamento de Electrónica e Informática SISTEMAS DE CONTROLO I PROBLEMAS Licenciatura em: Engenharia de Sistemas e Informática Ano lectivo de 005006 (º Semestre) Engº João Lima Prof. Dr. António Ruano
Controle II. Márcio J. Lacerda. 2 o Semestre Departamento de Engenharia Elétrica Universidade Federal de São João del-rei
Controle II Márcio J. Lacerda Departamento de Engenharia Elétrica Universidade Federal de São João del-rei 2 o Semestre 2016 M. J. Lacerda Aula 1 1/24 Integral P 1 (100 pontos) - 22 de Setembro. P 2 (100
SEM561 - SISTEMAS DE CONTROLE
SEM561 - SISTEMAS DE CONTROLE Adriano Almeida Gonçalves Siqueira Aula 1 - Introdução a Sistemas de Controle Índice O que é controle? Exemplo 1: componentes de um sistema de controle Exemplo 2: malha aberta
Terceira Prova - Questões objetivas (0,7 pontos)
Universidade Federal do Rio de janeiro Instituto de Física Disciplina: Física II-A (FIT122) 2018.2 Data: 30/11/2018 Terceira Prova - Questões objetivas (0,7 pontos) 1. Se a temperatura de um gás ideal
EES-20: Sistemas de Controle II. 21 Agosto 2017
EES-2: Sistemas de Controle II 21 Agosto 217 1 / 52 Recapitulando: Realimentação de estado r t u t y t x t Modelo da planta: Lei de controle: ẋ = Ax + Bu y = Cx u = Kx + Fr Representação para o sistema
Sistemas lineares. Aula 3 Sistemas Lineares Invariantes no Tempo
Sistemas lineares Aula 3 Sistemas Lineares Invariantes no Tempo SLIT Introdução Resposta de um SLIT Resposta de Entrada Nula Resposta de Estado Nulo Resposta ao Impulso Unitária Introdução Sistemas: Modelo
Nota de Aula: Equações Diferenciais Ordinárias de 2 Ordem. ( Aplicações )
Nota de Aula: Equações Diferenciais Ordinárias de Ordem ( Aplicações ) Vamos nos ater a duas aplicações de grande interesse na engenharia: Sistema massa-mola-amortecedor ( Oscilador Mecânico ) O Sistema
Modelagem Matemática de Sistemas
Modelagem Matemática de Sistemas 1. Descrição Matemática de Sistemas 2. Descrição Entrada-Saída 3. Exemplos pag.1 Teoria de Sistemas Lineares Aula 3 Descrição Matemática de Sistemas u(t) Sistema y(t) Para
Projeto de pesquisa realizado no curso de Engenharia Elétrica da Unijuí, junto ao GAIC (Grupo de Automação Industrial e Controle) 2
MODELAGEM MATEMÁTICA DE PLATAFORMA EXPERIMENTAL PARA SIMULAÇÃO DE AERONAVE MULTIRROTORA 1 MATHEMATICAL MODELLING OF EXPERIMENTAL PLATFORM FOR SIMULATION OF MULTIROTOR AIRCRAFT Christopher Sauer 2, Manuel
Características de Sensores
Instrumentação e Controle Aula 8 Características de Sensores Prof. Renato Watanabe ESTO004-17 Onde estamos no curso Sistema Obtenção das Equações Diferenciais que descrevem o comportamento do sistema Representação
SEM Sistemas de Controle I Aula 1 - Introdução
SEM 536 - Sistemas de Controle I Universidade de São Paulo O que é controle? Dicionário Houaiss: Controle:... 3. Dispositivo ou mecanismo destinado a comandar ou regular o funcionamento de máquina, aparelho
PMR3404 Aula 1. Introdução os sistemas de controle. Newton Maruyama 10 de março de 2017 PMR-EPUSP
PMR3404 Aula 1 Introdução os sistemas de controle Newton Maruyama 10 de março de 2017 PMR-EPUSP Conteúdo 1. Introdução 2. Sistemas de controle: malha aberta versus malha fechada 3. Uma análise do conceito
Modelagem de Sistemas Dinâmicos. Eduardo Camponogara
Equações Diferenciais Ordinárias Modelagem de Sistemas Dinâmicos Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle
Transformadas de Laplace Engenharia Mecânica - FAENG. Prof. Josemar dos Santos
Engenharia Mecânica - FAENG SISTEMAS DE CONTROLE Prof. Josemar dos Santos Sumário Transformadas de Laplace Teorema do Valor Final; Teorema do Valor Inicial; Transformada Inversa de Laplace; Expansão em
UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHRIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA. 2ª Lista de SEL0417 Fundamentos de Controle.
UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHRIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA ª Lista de SEL0417 undamentos de Controle Professor: Rodrigo Andrade Ramos Questão 1 Suponha que um satélite
LISTA DE EXERCÍCIOS 1
LISTA DE EXERCÍCIOS Esta lista trata de vários conceitos associados ao movimento harmônico simples (MHS). Tais conceitos são abordados no capítulo 3 do livro-texto: Moysés Nussenzveig, Curso de Física
Problemas sobre osciladores simples
Universidade de Coimbra mecânica Clássica II 2009.2010 Problemas sobre osciladores simples 1. Um objecto com 1 kg de massa está suspenso por uma mola e é posto a oscilar. Quando a aceleração do objecto
Análise no Domínio do Tempo de Sistemas em Tempo Contínuo
Análise no Domínio do Tempo de Sistemas em Tempo Contínuo Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco
