TRANSFORMADA DE LAPLACE E OPERADORES LINEARES
|
|
|
- Vasco Mota Porto
- 8 Há anos
- Visualizações:
Transcrição
1 TRANSFORMADA DE LAPLACE E OPERADORES LINEARES
2 O DOMÍNIO DE LAPLACE Usualmente trabalhamos com situações que variam no tempo (t), ou seja, trabalhamos no domínio do tempo. O domínio de Laplace é um domínio imaginário, onde no lugar de t temos uma variável s. 2
3 O DOMÍNIO DE LAPLACE É possível converter uma função no domínio do tempo para uma função no domínio de Laplace e, da mesma forma, é possível converter uma função no domínio de Laplace para uma função no domínio do tempo. A ferramenta utilizada nessa conversão é a chamada Transformada de Laplace L f t = F s L 1 F s = f t 3
4 O DOMÍNIO DE LAPLACE A grande vantagem do domínio de Laplace é que podemos aplicar a transformada de Laplace em um determinado problema, resolver o problema, muitas vezes de uma maneira mais fácil no domínio de Laplace, e aplicar a transformada inversa no resultado, obtendo assim o resultado no domínio do tempo. 4
5 CONCEITO DE DERIVAÇÃO A velocidade média de um carro é denotada como: Δv = Δx Δt Usualmente, velocímetros de carros não medem velocidade média, e sim velocidade instantânea. Para calcular a velocidade instantânea precisamos considerar Δt 0, ou seja, tão próximo de zero quanto possível. 5
6 CONCEITO DE DERIVAÇÃO Quando medimos velocidade instantânea, utilizamos como notação: v = dx dt O operador d especifica infinitesimais, valores que são tão próximos de zero quanto possível. 6
7 CONCEITO DE DERIVAÇÃO Considere um função qualquer f(t), a derivada dessa função é dada por: f df t t = dt Onde f (t) é chamada derivada de f(t) e retorna a inclinação de f(t) em um instante t qualquer. 7
8 OPERADOR DE DERIVAÇÃO Encontrar a derivada de uma função nem sempre é simples. Para evitar trabalhar com derivadas, podemos trabalhar no domínio de Laplace, onde a derivada de uma função é representada por um operador s aplicado àquela função no domínio de Laplace 8
9 OPERADOR DE DERIVAÇÃO Considere uma função f(t), cuja transformada de Laplace é dada por F(s). A derivada de f(t) é definida no domínio de Laplace como: L f t = sf s Dessa forma podemos fazer contas que envolvam derivadas sem ter que calculá-las de fato. 9
10 CONCEITO DE INTEGRAÇÃO Em um gráfico de velocidade tempo, a área sob a curva do gráfico é a distância percorrida. Na matemática, a área abaixo da curva de um gráfico é dada pela operação de integração: x t = න v τ dτ 0 Onde x(t) é a distância percorrida até o tempo t e v t é a velocidade no tempo t. t 10
11 OPERADOR DE INTEGRAÇÃO A integração é uma operação difícil, nem sempre tem solução exata. É possível, porém, resolver alguns problemas de integração no domínio de Laplace. Realizar a integração, no domínio de Laplace, é equivalente a dividir a função pelo operador s. 11
12 OPERADOR INTEGRAÇÃO Considere uma função f(t) cuja transformada de Laplace é dada por F(s). A transformada de Laplace da integral de f(t) é dada por: F s L න tf τ dτ = 0 s Possibilitando trabalharmos com integrais sem resolvê-las no tempo. 12
13 EQUAÇÕES COM DERIVADAS (EQUAÇÕES DIFERENCIAIS) Podemos ter equações utilizando derivadas, onde o objetivo não é encontrar um valor, e sim uma função que atenda aquela equação, como por exemplo: df t = f t dt 13
14 EQUAÇÕES COM DERIVADAS (EQUAÇÕES DIFERENCIAIS) Nessas equações podemos ter derivadas de ordens mais elevadas: d 2 f t df t dt 2 + = f(t) dt Onde d2 f t dt 2 é a derivada da derivada de f t. 14
15 TRANSFORMADA DE LAPLACE EM TEORIA DE CONTROLE Cada bloco dos diagramas que desenhamos pode ser definido por uma equação diferencial, por exemplo: du t u t = + e(t) dt Usualmente, aplicados a Transformada de Laplace a essas equações diferenciais, trabalhando com controle no domínio de Laplace. 15
16 TRANSFORMADA DE LAPLACE EM TEORIA DE CONTROLE Aplicando a transformada em: du t u t = + e t dt Onde u(t) é a saída e e(t) é a entrada do sistema. Obtemos U s = su s + E(s) Aplicando os operadores a cada parte da equação. 16
17 CONCEITO DE FUNÇÃO DE TRANSFERÊNCIA Considere o Transformada de Laplace obtida: U s = su s + E(s) Damos o nome de função de transferência à divisão da saída pela entrada no domínio de Laplace: U s E(s) = 1 1 s 17
18 CONCEITO DE FUNÇÃO DE TRANSFERÊNCIA Dessa forma, os operadores que definimos podem ser representados como funções da variável s. Nosso controlador então passa a ser representado por C s e a planta por P s r(t) e(t) u(t) y(t) r(t) C(s) P(s) e(t) 10 s + 2 u(t) s 3s + 1 y(t) 18
19 MANIPULAÇÃO DE BLOCOS E SIMPLIFICAÇÃO DE SISTEMAS 19
20 POLOS E ZEROS DE UMA FUNÇÃO DE TRANSFERÊNCIA Trabalhamos em controle com funções de transferência racionais, ou seja, elas são representadas pela divisão de dois polinômios em s. Para que o sistema possa ser implementado no mundo real, é necessário que o grau do polinômio do denominador seja maior ou igual ao grau do polinômio do numerador. 20
21 POLOS E ZEROS DE UMA FUNÇÃO DE TRANSFERÊNCIA Os valores de s que zeram o numerador da FT são chamados de zeros. Os valores de s que zeram o denominador da FT são chamados de polos. Esses valores pertencem ao conjunto dos números complexos (s C). 21
22 ESTABILIDADE COM BASE NOS POLOS Se todos os polos do sistema tem parte real negativa, o sistema é assintoticamente estável. Se existem um ou mais polos com parte real nula, mas os demais tem parte real negativa, o sistema é marginalmente estável. Caso ao menos um polo tenha parte real positiva, o sistema é instável. 22
23 SISTEMAS DE 1ª ORDEM Sistemas de 1ª ordem apresentam a seguinte função de transferência: G s = k τs
24 CARACTERÍSTICAS DOS SISTEMAS DE 1ª ORDEM O ganho em estado estacionário é dado por k e representa o ganho que o sistema aplica na entrada. A constante de tempo é dada por τ e representa o tempo necessário para o sistema alcançar aproximadamente 63% do valor final. 24
25 SISTEMAS DE 2ª ORDEM Um sistema de 2ª ordem é definido pela seguinte função de transferência: G s = ω n 2 s 2 + 2ζω n s + ω n 2 Onde ω n é a frequência natural e ζ é a constante de amortecimento. 25
26 CARACTERÍSTICAS DOS SISTEMAS DE 2ª ORDEM Os sistemas de segunda ordem podem ser classificador em três categorias, dependendo do valor de ζ Superamortecido se ζ > 1 Criticamente amortecido se ζ = 1 Subamortecido se 0 < ζ < 1 26
27 CARACTERÍSTICAS DOS SISTEMAS DE 2ª ORDEM Sistema Superamortecido Sistema Criticamente Amortecido Sistema Subamortecido 27
28 CARACTERÍSTICAS DOS PROCESSOS TEMPO DE SUBIDA O tempo de subida t r ("rise time") é o tempo necessário para o sinal de saída variar de 10% a 90% do valor final (ou para sistemas subamortecidos de 0% a 100%). t r = 1,8 ω n 28
29 CARACTERÍSTICAS DOS PROCESSOS CONSTANTE DE TEMPO A constante de tempo de um sistema é dada pelo expoente do envelope exponencial que acompanha o decaimento de um sistema subamortecido de um processo de segunda ordem. τ = 1 ζ ω n 29
30 CARACTERÍSTICAS DOS PROCESSOS SOBRELEVAÇÃO MÁXIMA A sobrelevação máxima percentual M p é a diferença entre o valor máximo de pico atingido e o valor final em percentual do valor final. M p = 100e ζπ 1 ζ 2 % 30
31 CARACTERÍSTICAS DOS PROCESSOS TEMPO DE ACOMODAÇÃO O tempo de acomodação t a ("settling time" t s ) é o tempo gasto para o sinal acomodar (entrar e não sair mais) da faixa de ±2% ou ±5% do valor final. t a2% 4 ζω n 31
32 CARACTERÍSTICAS DOS PROCESSOS 32
1. Sinais de teste. 2. Sistemas de primeira ordem. 3. Sistemas de segunda ordem. Especificações para a resposta
Desempenho de Sistemas de Controle Realimentados 1. Sinais de teste. Sistemas de primeira ordem 3. Sistemas de segunda ordem Especificações para a resposta Fernando de Oliveira Souza pag.1 Engenharia de
Controle de Processos Aula: Sistemas de 1ª e 2ª ordem
107484 Controle de Processos Aula: Sistemas de 1ª e 2ª ordem Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB) Controle
Desempenho de Sistemas de Controle Realimentados. 3. Efeitos de um terceiro pólo e um zero na resposta de um sistema de segunda ordem
Desempenho de Sistemas de Controle Realimentados 1. Sinais de teste 2. Desempenho de sistemas de segunda ordem 3. Efeitos de um terceiro pólo e um zero na resposta de um sistema de segunda ordem 4. Estimação
V. ANÁLISE NO DOMÍNIO DO TEMPO
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE V. ANÁLISE NO DOMÍNIO DO TEMPO Prof. Davi Antônio dos Santos ([email protected]) Departamento de
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap4 Resposta no Domínio do Tempo Prof. Filipe Fraga Sistemas de Controle 1 4. Resposta no Domínio do Tempo 4.1 Introdução
Resposta no Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Resposta no Tempo Carlos Alexandre Mello 1 Resposta no Tempo - Introdução Como já discutimos, após a representação matemática de um subsistema, ele é analisado em suas respostas de transiente e de estadoestacionário
ADL Sistemas de Segunda Ordem Subamortecidos
ADL19 4.6 Sistemas de Segunda Ordem Subamortecidos Resposta ao degrau do sistema de segunda ordem genérico da Eq. (4.22). Transformada da resposta, C(s): (4.26) Expandindo-se em frações parciais, (4.27)
Capítulo 2 Dinâmica de Sistemas Lineares
Capítulo 2 Dinâmica de Sistemas Lineares Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Dinâmica de Sistemas Lineares 1/57
II. REVISÃO DE FUNDAMENTOS
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE II. REVISÃO DE FUNDAMENTOS Prof. Davi Antônio dos Santos ([email protected]) Departamento de Mecatrônica
Indice. Resposta forçada (condições iniciais nulas)
Indice 3.3 Inversão da TLP Fracções parciais Resolução equações diferenciais Polinómio característico Estabilidade resposta natural 3.4 Função de Transferência Estabilidade devido à entrada (resposta forçada)
Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros
107484 Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 2 o Semestre
Analise sistemas LCIT usando a Transformada de Laplace
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap4 Resposta no Domínio do Tempo Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos Lajovic
Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos
107484 Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016
Aula 05 Transformadas de Laplace
Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número
Aula 05 Transformadas de Laplace
Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número
4.1 Pólos, Zeros e Resposta do Sistema
ADL17 4.1 Pólos, Zeros e Resposta do Sistema A resposta de saída de um sistema é a soma de duas respostas: a resposta forçada e a resposta natural. Embora diversas técnicas, como a solução de equações
Aula 3. Carlos Amaral Fonte: Cristiano Quevedo Andrea
Aula 3 Carlos Amaral Fonte: Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Marco de 2012. Resumo 1 Introdução 2 3
Transformada de Laplace
Sinais e Sistemas Transformada de Laplace [email protected] Instituto Superior Técnico Sinais e Sistemas p.1/60 Resumo Definição da transformada de Laplace. Região de convergência. Propriedades da transformada
Faculdade de Engenharia da UERJ - Departamento de Engenharia Elétrica Controle & Servomecanismo I - Prof.: Paulo Almeida Exercícios Sugeridos
Faculdade de Engenharia da UERJ Departamento de Engenharia Elétrica Controle & Servomecanismo I Prof.: Paulo Almeida Exercícios Sugeridos Estabilidade, Resposta Transitória e Erro Estacionário Exercícios
Questões para Revisão Controle
Questões para Revisão Controle 1. (PROVÃO-1999)A Figura 1 apresenta o diagrama de blocos de um sistema de controle, e a Figura 2, o seu lugar das raízes para K > 0. Com base nas duas figuras, resolva os
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap2 - Modelagem no Domínio de Frequência Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos
Transformadas de Laplace Engenharia Mecânica - FAENG. Prof. Josemar dos Santos
Engenharia Mecânica - FAENG SISTEMAS DE CONTROLE Prof. Josemar dos Santos Sumário Transformadas de Laplace Teorema do Valor Final; Teorema do Valor Inicial; Transformada Inversa de Laplace; Expansão em
Sistemas lineares. Aula 7 Transformada Inversa de Laplace
Sistemas lineares Aula 7 Transformada Inversa de Laplace Transformada Inversa de Laplace Transformada Inversa de Laplace e RDC x(t) única Metódos Inversão pela Definição Inversão pela Expansão em Frações
Representação e Análise de Sistemas Dinâmicos Lineares Componentes Básicos de um Sistema de Controle
Representação e Análise de Sistemas Dinâmicos Lineares 1 Introdução 11 Componentes Básicos de um Sistema de Controle Fundamentos matemáticos 1 Singularidades: Pólos e zeros Equações diferencias ordinárias
Aula 12. Transformada de Laplace II
Aula 12 Transformada de Laplace II Matérias que serão discutidas Nilsson Circuitos Elétricos Capítulos 12, 13 e 14 LAPLACE Capítulo 8 Circuitos de Segunda ordem no domínio do tempo Revisão A transformada
EES-49/2012 Prova 1. Q1 Dado o seguinte conjunto de equações:
Q1 Dado o seguinte conjunto de equações: EES-49/2012 Prova 1 Onde: h C é o sinal de entrada do sistema; θ é o sinal de saída do sistema; T P é uma entrada de perturbação; T T, T R e h R são variáveis intermediárias;
Fundamentos de Controlo
Fundamentos de Controlo a Série Resposta no Tempo de Sistemas Causais. S.1 Exercícios Resolvidos P.1 Seja H(s) = s (s + ) a função de transferência de um SLIT contínuo causal. Qual dos sinais da Figura
Aula 6 Transformada de Laplace
Aula 6 Transformada de Laplace Introdução Propriedades da Transformada de Laplace Tabela Transformada ade Laplace Transformada Inversa de Laplace Função de transferência Definição: X s = L x t = s é uma
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap3 Modelagem no Domínio do Tempo Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos Lajovic
RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE
RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE CCL Profa. Mariana Cavalca Baseado em: MAYA, Paulo Álvaro; LEONARDI, Fabrizio. Controle essencial. São Paulo: Pearson, 2011. OGATA, Katsuhiko. Engenharia de controle
Controle de Sistemas. Desempenho de Sistemas de Controle. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas
Controle de Sistemas Desempenho de Sistemas de Controle Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas O é um telescópio de 2,4m, que fica a 380 milhas da Terra, sendo
Resposta dos Exercícios da Apostila
Resposta dos Exercícios da Apostila Carlos Eduardo de Brito Novaes [email protected] 5 de setembro de 0 Circuitos Elétricos. Passivos a) b) V o (s) V i (s) 64s + 400 s + 96s + 400, v o ( ) v i ( )
Controle. Transformada Laplace básico
Controle Transformada Laplace básico REQUISITOS Para perfeita compreensão do conteúdo desta aula é desejável o entendimento dos seguintes assuntos (eventualmente disponíveis em outros vídeos neste canal):
Fundamentos de Controle
Fundamentos de Controle Análise de resposta transitória. Sistemas de primeira e segunda ordem. Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina,
Aula 04 Representação de Sistemas
Aula 04 Representação de Sistemas Relação entre: Função de Transferência Transformada Laplace da saída y(t) - Transformada Laplace da entrada x(t) considerando condições iniciais nulas. Pierre Simon Laplace,
Capítulo 3. Função de transferência e dinâmicas dos sistemas
DINÂMICA DE SISTEMAS BIOLÓGICOS E FISIOLÓGICOS Capítulo 3 Função de transferência e dinâmicas dos sistemas 3.1. Aplicação da transformada de Laplace às equações diferenciais A transformada de Laplace é
Fundamentos de Controle
Fundamentos de Controle Modelagem matemática de sistemas de controle Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui
5 Descrição entrada-saída
Teoria de Controle (sinopse) 5 Descrição entrada-saída J. A. M. Felippe de Souza Descrição de Sistemas Conforme a notação introduzida no capítulo 1, a função u( ) representa a entrada (ou as entradas)
Unidade V - Desempenho de Sistemas de Controle com Retroação
Unidade V - Desempenho de Sistemas de Controle com Retroação Introdução; Sinais de entrada para Teste; Desempenho de um Sistemas de Segunda Ordem; Efeitos de um Terceiro Pólo e de um Zero na Resposta Sistemas
EES-20: Sistemas de Controle II. 31 Julho 2017
EES-20: Sistemas de Controle II 31 Julho 2017 1 / 41 Folha de informações sobre o curso 2 / 41 O que é Controle? Controlar: Atuar sobre um sistema físico de modo a obter um comportamento desejado. 3 /
Controle de Processos
17484 Controle de Processos Aula: Função de Transferência Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 217 E. S. Tognetti (UnB) Controle
CONTROLADOR PROPORCIONAL, INTEGRAL E DERIVATIVO (PID)
CONTROLADOR PROPORCIONAL, INTEGRAL E DERIVATIVO (PID) AÇÕES DE CONTROLE O controlador PID é um controlador composto por três ações de controle Ação proporcional: u t = k e t Ação integral: u t = k 0 t
UNIVERSIDADE DO ALGARVE
UNIVERSIDADE DO ALGARVE FACULDADE DE CIÊNCIAS E TECNOLOGIA Departamento de Engenharia Electrónica e Informática SISTEMAS DE CONTROLO Problemas Ano lectivo de 20062007 Licenciatura em Engenharia de Sistemas
I Controle Contínuo 1
Sumário I Controle Contínuo 1 1 Introdução 3 1.1 Sistemas de Controle em Malha Aberta e em Malha Fechada................ 5 1.2 Componentes de um sistema de controle............................ 5 1.3 Comparação
Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica
Universidade Federal do Pará Instituto de Tecnologia Cálculo III Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia
Aula 18: Projeto de controladores no domínio da frequência
Aula 18: Projeto de controladores no domínio da frequência prof. Dr. Eduardo Bento Pereira Universidade Federal de São João del-rei [email protected] 26 de outubro de 2017. prof. Dr. Eduardo Bento Pereira
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. [email protected] Prof. Rafael Concatto Beltrame, Me.
Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial
Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de
Sistemas a Tempo Discreto
Sistemas a Tempo Discreto 1. Caracterização de sistemas dinâmicos a tempo discreto 2. Transformada-Z 3. FT discreta, estabilidade e analogia com domínio-s 4. Sistemas amostrados 4.1 Amostragem e retenção
B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil
Estabilidade Estabilidade é um comportamento desejado em qualquer sistema físico. Sistemas instáveis tem comportamento, na maioria das vezes, imprevisível; por isso é desejável sempre garantirmos a estabilidade
Análise no Domínio do Tempo de Sistemas em Tempo Contínuo
Análise no Domínio do Tempo de Sistemas em Tempo Contínuo Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco
ANÁLISE DO MÉTODO DA RESPOSTA EM FREQÜÊNCIA
VIII- CAPÍTULO VIII ANÁLISE DO MÉTODO DA RESPOSTA EM FREQÜÊNCIA 8.- INTRODUÇÃO O método da resposta em freqüência, nada mais é que a observação da resposta de um sistema, para um sinal de entrada senoidal,
Controle e Sistemas Não lineares
Controle e Sistemas Não lineares Prof. Marcus V. Americano da Costa F o Departamento de Engenharia Química Universidade Federal da Bahia Salvador-BA, 01 de dezembro de 2016. Sumário Objetivos Introduzir
Modelos Matematicos de Sistemas
Modelos Matematicos de Sistemas Introdução; Equações Diferenciais de Sistemas Físicos; Aproximações Lineares de Sistemas Físicos; Transformada de Laplace; Função de Transferência de Sistemas Lineares;
Sistemas de controle. Prof. André Schneider de Oliveira
Sistemas de controle Prof. André Schneider de Oliveira Estrutura da apresentação Conceitos fundamentais do sistemas de controle Características da resposta Introdução à estabilidade Polos e zeros Conceito
Aula 9. Diagrama de Bode
Aula 9 Diagrama de Bode Hendrik Wade Bode (americano,905-98 Os diagramas de Bode (de módulo e de fase são uma das formas de caracterizar sinais no domínio da frequência. Função de Transferência Os sinais
PROJETO DE CONTROLADORES A PARTIR DO PLANO S. critério Routh-Hurwitz análise de estabilidade análise de desempenho
PROJETO DE CONTROLADORES A PARTIR DO PLANO S critério Routh-Hurwitz análise de estabilidade análise de desempenho Critério Routh-Hurwitz: análise da estabilidade Sistemas de primeira ordem: 1 x o (t)=
SC1 Sistemas de Controle 1. Cap. 3 Erros no Regime Estacionário Prof. Tiago S Vítor
SC1 Sistemas de Controle 1 Cap. 3 Erros no Regime Estacionário Prof. Tiago S Vítor Sumário 1. Introdução 2. Erro em regime estacionário de sistemas com realimentação unitária 3. Constantes de Erro Estático
Transformada de Laplace. Transformada de Laplace (CP1) DEQ/UFSCar 1 / 76
Transformada de Laplace Transformada de Laplace (CP) www.professores.deq.ufscar.br/ronaldo/cp DEQ/UFSCar / 76 Roteiro I Introdução Definição da Transformada Transformada de Laplace de Algumas Funções Transformada
Capítulo 3. Função de transferência e dinâmicas dos sistemas (Parte D, continuação)
DINÂMICA DE SISTEMAS BIOLÓGICOS E FISIOLÓGICOS Capítulo 3 Função de transferência e dinâmicas dos sistemas (Parte D, continuação) Juntando agora os três casos numa só figura, A resposta y(t) classifica-se
Aula 11. Revisão de Fasores e Introdução a Laplace
Aula Revisão de Fasores e Introdução a Laplace Revisão - Fasor Definição: Fasor é a representação complexa da magnitude e fase de uma senoide. V = V m e jφ = V m φ v t = V m cos(wt + φ) = R(V e jwt ) Impedância
Teoria de Controle. Helio Voltolini
Teoria de Controle Helio Voltolini Conteúdo programático Introdução aos sistemas de controle; Modelagem matemática de sistemas dinâmicos; Resposta transitória de sistemas de controle; Estabilidade dos
Ações de controle básicas: uma análise do desempenho em regime
Capítulo 3 Ações de controle básicas: uma análise do desempenho em regime estático 3. Introdução Neste capítulo, as ações de controle básicas utilizadas em controladores industriais e o seu desempenho
Controle de Processos Aula: Atraso no tempo e obtenção de modelos empíricos
107484 Controle de Processos Aula: Atraso no tempo e obtenção de modelos empíricos Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E.
Redução de Subsistemas Múltiplos
CAPÍTULO CINCO Redução de Subsistemas Múltiplos SOLUÇÕES DE DESAFIOS DOS ESTUDOS DE CASO Controle de Antena: Projetando uma Resposta a Malha Fechada a. Desenhando o diagrama de blocos do sistema: b. Desenhando
TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER
TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER Transformada integral Em Física Matemática há pares de funções que satisfazem uma expressão na forma: F α = a b f t K α, t dt f t = A função F( ) é denominada
Transformada de Laplace. Definição. O processo inverso de obter a função temporal f(t) a partir da
Prof. Raimundo Nonato das Mercês Machado O processo inverso de obter a função temporal f(t) a partir da transformada de Laplace F(s) é chamado transformada de Laplace inversa. A notação para a transformada
PMR3404 Controle I Aula 3
PMR3404 Controle I Aula 3 Resposta estática Ações de controle PID Newton Maruyama 23 de março de 2017 PMR-EPUSP Classificação de sistemas de acordo com o seu desempenho em regime estático Seja o seguinte
INSTITUTO FEDERAL DO ESPÍRITO SANTO - CAMPUS SERRA. Sistemas
INSTITUTO FEDERAL DO ESPÍRITO SANTO - CAMPUS SERRA Sistemas Dinâmicos Para controlar é preciso conhecer Sistemas dinâmicos Modificam-se no decorrer do tempo Modelos matemáticos Método analítico (Leis físicas)
Sistemas de Controle 2
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Cap.10 Técnicas de Resposta em Frequência Prof. Dr. Marcos Lajovic Carneiro 10. Técnicas de Resposta de Frequência
SC1 Sistemas de Controle 1. Cap. 4 Técnicas do Lugar Geométrico das Raízes Prof. Tiago S Vítor
SC1 Sistemas de Controle 1 Cap. 4 Técnicas do Lugar Geométrico das Raízes Prof. Tiago S Vítor Sumário 1. Introdução 2. Definição do Lugar Geométrico das Raízes 3. Propriedades do Lugar Geométrico das Raízes
A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)
CONTROLADOR PROPORCIONAL, INTEGRAL E DERIVATIVO (PID)
CONTROLADOR PROPORCIONAL, INTEGRAL E DERIVATIVO (PID) AÇÕES DE CONTROLE O controlador PID é um controlador composto por três ações de controle Ação proporcional: u t = k e t Ação integral: u t = k 0 t
Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre (Parte II)
Instituto Superior Técnico Sinais e Sistemas o teste 4 de Novembro de 0 Nome: Número: Duração da prova: horas Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre
CARACTERIZAÇÃO DEPROCESSOS
CARACTERIZAÇÃO DEPROCESSOS ESINTONIA DECONTROLADORES PORMÉTODOSEMPÍRICOS Profa. Cristiane Paim Semestre 2014-2 Caracterização de Processos Considere a configuração série de um sistema de controle: Dado
Método da Resposta da Freqüência
Método da Resposta da Freqüência Introdução; Gráfico de Resposta de Freqüência; Medidas de Resposta de Freqüência; Especificação de Desempenho no Domínio da Freqüência; Diagrama Logarítmicos e de Magnitude
EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 2 quadrimestre 2011
EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares quadrimestre 0 (P-0003D) (HAYKIN, 00, p 9) Use a equação de definição da TF para obter a representação no domínio da
Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas.
Capítulo 6 Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Definição (6.2): Seja e uma função real incógnita definida num intervalo aberto.
A Transformada de Laplace
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO
Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Erros de Estado Estacionário Carlos Alexandre Mello 1 Introdução Projeto e análise de sistemas de controle: Resposta de Transiente Estabilidade Erros de Estado Estacionário (ou Permanente) Diferença entre
, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas.
Oscilações Amortecidas O modelo do sistema massa-mola visto nas aulas passadas, que resultou nas equações do MHS, é apenas uma idealização das situações mais realistas existentes na prática. Sempre que
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. [email protected] Prof. Rafael Concatto Beltrame, Me.
Controle de Processos Aula: Estabilidade e Critério de Routh
107484 Controle de Processos Aula: Estabilidade e Critério de Routh Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB)
Capítulo 10. Técnicas de Resposta de Freqüência
Capítulo 10 Técnicas de Resposta de Freqüência Fig.10.1 O Analisador Dinâmico de Sinal HP 35670A obtém dados de resposta de freqüência de um sistema físico. Os dados exibidos podem ser usados para analisar,
