Controle e Sistemas Não lineares
|
|
|
- Estela Gil Rico
- 8 Há anos
- Visualizações:
Transcrição
1 Controle e Sistemas Não lineares Prof. Marcus V. Americano da Costa F o Departamento de Engenharia Química Universidade Federal da Bahia Salvador-BA, 01 de dezembro de 2016.
2 Sumário
3 Objetivos Introduzir os conceitos básicos dos sistemas não lineares. Apresentar as principais técnicas de análise e projeto de controladores para sistemas não lineares. Colocar ao aluno frente à problemática de controle considerando as não linearidades presentes nas aplicações práticas. Introduzir os princípios básicos relacionados com o controle Não Linear de processos assim como as principais ferramentas de análise e projeto.
4 Análise de sistemas não-lineares 1 Sistemas dinâmicos não-lineares. Modelagem matemática e principais não linearidades em sistemas de controle (saturação, zona morta, histerese, etc). Representação por variáveis de estado. Espaço de estados (plano de fases). 2 Análise qualitativa de sistemas dinâmicos. Atratores: equilíbrios, ciclos limites e comportamento aperiódico. Teorema da linearização. Noção de Bifurcações. 3 Sistemas lineares com restrições na ação de controle. Anti-windup. Métodos aproximados de análise: método da função descritiva. 4 Métodos de síntese de controladores de sistemas não-lineares: linearização por realimentação, estrutura variável.
5 As avaliações - 2 PROVAS ESCRITAS: 1 a PROVA: 17 de janeiro de a PROVA: 21 de fevereiro de TRABALHO NA FORMA DE SEMINÁRIO: Definição dos trabalhos: 10 de janeiro de Entrega da parte escrita e apresentação: 14 e 16 de março de a CHAMADA: 21 de março de Cálculo da Média Final: MF = P1+P2+T 3 T = Escrita+Apresentação 2
6 Bibliografia sugerida L.H.A Monteiro. Sistemas Dinâmicos. Ed. Livraria da Física. 2da Edição. 2006; Khalil. Nonlinear Systems, Prentice-Hall, 3rd edition. 2002; Katsuhiko Ogata. Engenharia de Controle Moderno, Pearson Education-Br, Cap. 15, 4 a edição, 2011.
7 Sumário
8 Princípio da Superposição Princípio da Superposição Um sistema relaxado em t 0, representado pelo operador H, é linear se: H[α 1 u 1 (t)+α 2 u 2 (t)] = α 1 H[u 1 (t)]+α 2 H[u 2 (t)] Provar pelo Princípio da Superposição que a função du dt é linear.
9 Integral de Convolução Integral de Convolução Sistemas lineares, causais, invariantes no tempo e relaxado em t = 0. Conhecendo-se g(t), a resposta do sistema linear à função impulso, é possível determinar a saída y(t) qualquer que seja a entrada u(t) contínua por partes: g(t) u(t) = t 0 g(t τ)u(τ)dτ = t 0 g(τ)u(t τ)dτ
10 Integral de Convolução Observação Seja r(t) a resposta do sistema ao degrau unitário 1(t). Como d1(t) = δt e o sistema é linear, então se pode demonstrar que dt dr(t) dt = g(t), ou seja, a resposta ao impulso é a derivada da resposta ao degrau.
11 Função de Transferência Função de Transferência A Função de Transferência de um sistema linear, da entrada u(t) para a saída y(t), é definida como a transformada de laplace da resposta g(t) ao impulso.
12 Função de Transferência Sistemas Multivariáveis Pelo Princípio da Superposição o efeito total das entradas em cada saída é igual à soma dos efeitos individuais de cada entrada. Neste caso, G ij = Y i(s) U j (s), em que G ij (s) é a função de transferência da entrada u j (t) para a saída y i (t), considerando-se todas as outras entradas nulas. Ou seja, Y i (s) = G i1 (s) U 1 (s)+g i2 (s)u 2 (s)+...+g im U m (s) Forma matricial: Y(s) = G(s)U(s).
13 Estabilidade Critério de Estabilidade de Routh-Hurwitz Seja G(s) = B(s) A(s) = b ms m + b m 1 s m b 1 s + b 0 a n s n + a n 1 s n a 1 s + a 0 Os pólos de G(s) são as raízes da equação característica A(s) = 0. Deseja-se verificar a existência de raízes de A(s) com parte real não negativa.
14 Estabilidade Critério de Estabilidade de Routh-Hurwitz A partir das leis básicas da álgebra, uma condição necessária para que todas as raízes de A(S) tenham parte real negativa é que todos os seus coeficientes tenham mesmo sinal. Uma condição suficiente é dada pelo critério de Routh-Hurwitz: o número de raízes de A(s) com parte real positiva é igual ao número de mudanças do sinal dos elementos da 1 a coluna da tabela. Ex.: determinar o número de raízes com parte real positiva do polinômio A(s) = s 6 + 4s 5 + 3s 4 + 2s 3 + s 2 + 4s + 4. Casos especiais: (i) o 1 o elemento de uma linha da tabela é nulo, mas há pelo menos um elemento que não é; (ii) todos os elementos de uma linha da tabela são nulos.
15 Estabilidade Estabilidade Relativa A estabilidade do sistema não é suficiente para garantir uma resposta satisfatória. Em geral, deseja-se que a parte real dos pólos seja menor ou igual a um dado valor σ, com σ > 0. Ex.: determinar o número de raízes com parte real maior que 1 do polinômio A(s) = 2s 3 + 8s 2 + 8s + 1.
16 Estabilidade Mais exemplos Calcule o(s) valor(es) de K para que o sistema K G(s) = (s+1)(s+3)(s+5) seja estável com realimentação unitária. Calcule também a frequência crítica, isto é, com que frequência o sistema oscila no limite da estabilidade.
17 Estabilidade Estabilidade Externa de Sistemas Representados por Variáveis de Estado Todo pólo de G(s) é um autovalor de A. Se todos os autovalores de A tiverem parte real negativas, o sistema é externamente estável. Porém, como nem todo autovalor é pólo de G(s), então A pode ter autovalores com parte real não negativa e mesmo assim o sistema ser externamente estável. Ex: considere as matrizes de uma equação de estados abaixo. [ ] [ ] A = B = C = [ 0 1 ] (1) 0 2 2
18 Estabilidade Estabilidade Interna A estabilidade interna é definida em relação à resposta livre do sistema (u(t) = 0, t t 0 ), isto é, em relação à ẋ(t) = Ax(t). DEF.1: um sistema linear é marginalmente estável se x(t) for limitado t 0, qualquer que seja o estado inicial finito. DEF.2: um sistema linear é assintoticamente estável se x(t) for limitado t 0 e, além disso, x(t) 0 quando t, x(0) finito.
Capítulo 2 Dinâmica de Sistemas Lineares
Capítulo 2 Dinâmica de Sistemas Lineares Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Dinâmica de Sistemas Lineares 1/57
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. [email protected] Prof. Rafael Concatto Beltrame, Me.
Estabilidade entrada-saída (externa).
Estabilidade entrada-saída (externa) ENGC33: Sinais e Sistemas II Departamento de Engenharia Elétrica - DEE Universidade Federal da Bahia - UFBA 05 de junho de 2019 Prof Tito Luís Maia Santos 1/ 38 Sumário
Estabilidade de sistemas de controle lineares invariantes no tempo
Capítulo 2 Estabilidade de sistemas de controle lineares invariantes no tempo 2. Introdução Neste capítulo, vamos definir alguns conceitos relacionados à estabilidade de sistemas lineares invariantes no
Modelagem Matemática de Sistemas
Modelagem Matemática de Sistemas 1. Descrição Matemática de Sistemas 2. Descrição Entrada-Saída 3. Exemplos pag.1 Teoria de Sistemas Lineares Aula 3 Descrição Matemática de Sistemas u(t) Sistema y(t) Para
INSTITUTO FEDERAL DO ESPÍRITO SANTO - CAMPUS SERRA. Sistemas
INSTITUTO FEDERAL DO ESPÍRITO SANTO - CAMPUS SERRA Sistemas Dinâmicos Para controlar é preciso conhecer Sistemas dinâmicos Modificam-se no decorrer do tempo Modelos matemáticos Método analítico (Leis físicas)
Controle de Processos
17484 Controle de Processos Aula: Função de Transferência Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 217 E. S. Tognetti (UnB) Controle
Pólos, Zeros e Estabilidade
Pólos, Zeros e Estabilidade Definindo Estabilidade A condição para estabilidade pode também ser expressa da seguinte maneira: se um sistema é estável quando sujeito a um impulso, a saída retoma a zero.
IV. ESTABILIDADE DE SISTEMAS LIT
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE IV. ESTABILIDADE DE SISTEMAS LIT Prof. Davi Antônio dos Santos ([email protected]) Departamento de
Estabilidade. 1. Estabilidade Entrada-Saída Sistemas LIT. 2. Estabilidade BIBO Sistemas LIT. 3. Estabilidade BIBO de Equações Dinâmicas Sistemas LIT
Estabilidade 1. Estabilidade Entrada-Saída Sistemas LIT 2. Estabilidade BIBO Sistemas LIT 3. Estabilidade BIBO de Equações Dinâmicas Sistemas LIT 4. Sistemas Discretos LIT 5. Estabilidade BIBO Sistemas
Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos
107484 Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016
5 Descrição entrada-saída
Teoria de Controle (sinopse) 5 Descrição entrada-saída J. A. M. Felippe de Souza Descrição de Sistemas Conforme a notação introduzida no capítulo 1, a função u( ) representa a entrada (ou as entradas)
Conteúdo. Definições básicas;
Conteúdo Definições básicas; Caracterização de Sistemas Dinâmicos; Caracterização dinâmica de conversores cc-cc; Controle Clássico x Controle Moderno; Campus Sobral 2 Engenharia de Controle Definições
Análise no Domínio do Tempo de Sistemas em Tempo Contínuo
Análise no Domínio do Tempo de Sistemas em Tempo Contínuo Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco
Sistemas de Controle
Sistemas de Controle Adriano Almeida Gonçalves Siqueira Aula 2 - Transformada de Laplace e Função Transferência Sistemas de Controle p. 1/27 Função Impulso Unitário Função pulso com área unitária: f(t)
Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros
107484 Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 2 o Semestre
Controle de Processos Aula: Estabilidade e Critério de Routh
107484 Controle de Processos Aula: Estabilidade e Critério de Routh Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB)
Aula 9. Carlos Amaral Cristiano Quevedo Andrea. UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica
Aula 9 Carlos Amaral Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Abril de 2012. Resumo 1 Introdução - Estabilidade
FUNDAMENTOS DE SISTEMAS LINEARES PARTE 2
FUNDAMENTOS DE SISTEMAS LINEARES PARTE 2 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Agenda Resposta no espaço de estados Representações
Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14
Sumário CAPÍTULO 1 Introdução 1 1.1 Sistemas de controle 1 1.2 Exemplos de sistemas de controle 2 1.3 Sistemas de controle de malha aberta e malha fechada 3 1.4 Realimentação 3 1.5 Características da realimentação
AULA 3. CRITÉRIO DE ESTABILIDADE DE Routh-Hurwitz. Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I
Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I AULA 3 CRITÉRIO DE ESTABILIDADE DE Routh-Hurwitz PROF. DR. ALFREDO DEL SOLE LORDELO TELA CHEIA Critério de estabilidade de Routh A questão
PROJETO DE CONTROLADORES A PARTIR DO PLANO S. critério Routh-Hurwitz análise de estabilidade análise de desempenho
PROJETO DE CONTROLADORES A PARTIR DO PLANO S critério Routh-Hurwitz análise de estabilidade análise de desempenho Critério Routh-Hurwitz: análise da estabilidade Sistemas de primeira ordem: 1 x o (t)=
Aula 05 Transformadas de Laplace
Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número
Aula 05 Transformadas de Laplace
Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número
Sistemas lineares. Aula 4 Respostas de um SLIT
Sistemas lineares Aula 4 Respostas de um SLIT Cronograma Introdução Características de um SLIT Resposta ao degrau unitário Resposta a entrada nula Resposta total Introdução A convolução entre dois sinais
Fundamentos de Controlo
Fundamentos de Controlo 3 a Série Estabilidade e Desempenho, Critério de Routh-Hurwitz, Rejeição de Perturbações, Sensibilidade à Variação de Parâmetros, Erros em Regime Estacionário. S3. Exercícios Resolvidos
Teoria de Sistemas Lineares I
Teoria de Sistemas Lineares I Prof. Aguinaldo S.e Silva Universidade Federal de Santa Catarina Estabilidade Entrada-Saída BIBO Estabilidade Considere o sistema linear SISO invariante no tempo, causal e
Sistemas Dinâmicos Lineares
Sistemas Dinâmicos Lineares 1. Descrição de sistemas dinâmicos 1.1. Sinais? 1.2. Sistemas? 1.3. Espaço de estados. Resposta do sistema dinâmico 2. Estabilidade de sistemas dinâmicos 2.1. Análise de estabilidade
PMR3404 Controle I Aula 2
PMR3404 Controle I Aula 2 Pólos e zeros, Estabilidade, Critério de Estabilidade de Routh-Hurwitz Newton Maruyama 16 de março de 2017 PMR-EPUSP Introdução Introdução O cálculo da resposta no domínio do
Sistemas lineares. Aula 3 Sistemas Lineares Invariantes no Tempo
Sistemas lineares Aula 3 Sistemas Lineares Invariantes no Tempo SLIT Introdução Resposta de um SLIT Resposta de Entrada Nula Resposta de Estado Nulo Resposta ao Impulso Unitária Introdução Sistemas: Modelo
II. REVISÃO DE FUNDAMENTOS
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE II. REVISÃO DE FUNDAMENTOS Prof. Davi Antônio dos Santos ([email protected]) Departamento de Mecatrônica
Aula 3. Carlos Amaral Fonte: Cristiano Quevedo Andrea
Aula 3 Carlos Amaral Fonte: Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Marco de 2012. Resumo 1 Introdução 2 3
SCILAB: MÓDULO 4 SISTEMAS E CONTROLE
SCILAB: MÓDULO 4 SISTEMAS E CONTROLE Scilab 5.3.3 Dr.ª Eng.ª Mariana Santos Matos Cavalca O que é controlar? Função de Transferência: breve definição u(t) Sistema LIT y(t) Usualmente (sistemas próprios)
Cap.2. Representação de Estado e Controlabilidade
Cap.2. Representação de Estado e Controlabilidade Visão geral do capítulo Neste capítulo trataremos o problema da controlabilidade de sistemas lineares invariantes no tempo. Faremos antes uma breve revisão
SC1 Sistemas de Controle 1. Cap. 2 - Estabilidade Prof. Tiago S Vítor
SC1 Sistemas de Controle 1 Cap. 2 - Estabilidade Prof. Tiago S Vítor Sumário 1. Introdução 2. Critério de Routh-Hurwitz 3. Critério de Routh-Hurwitz: Casos Especiais 4. Projeto de Estabilidade via Routh-Hurwitz
Sílvia Mara da Costa Campos Victer Concurso: Matemática da Computação UERJ - Friburgo
Convolução, Série de Fourier e Transformada de Fourier contínuas Sílvia Mara da Costa Campos Victer Concurso: Matemática da Computação UERJ - Friburgo Tópicos Sinais contínuos no tempo Função impulso Sistema
Aula 4 Respostas de um SLIT
Aula 4 Respostas de um SLIT Introdução Características de um SLIT Resposta ao degrau unitário Resposta a entrada nula Resposta total A convolução entre dois sinais de tempo contínuo x(t) e h(t) é dada
Erro de Estado Estacionário
Erro de Estado Estacionário Carlos Eduardo de Brito Novaes [email protected] http://professorcarlosnovaes.wordpress.com 24 de agosto de 202 Introdução Um aspecto muito importante em um sistema de
Erro de Estado Estacionário
Erro de Estado Estacionário Carlos Eduardo de Brito Novaes [email protected] http://professorcarlosnovaes.wordpress.com 24 de agosto de 202 Introdução Um aspecto muito importante em um sistema de
Sistemas lineares. Aula 7 Transformada Inversa de Laplace
Sistemas lineares Aula 7 Transformada Inversa de Laplace Transformada Inversa de Laplace Transformada Inversa de Laplace e RDC x(t) única Metódos Inversão pela Definição Inversão pela Expansão em Frações
Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre (Parte II)
Instituto Superior Técnico Sinais e Sistemas o teste 4 de Novembro de 0 Nome: Número: Duração da prova: horas Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre
O Papel dos Pólos e Zeros
Departamento de Engenharia Mecatrônica - EPUSP 27 de setembro de 2007 1 Expansão em frações parciais 2 3 4 Suponha a seguinte função de transferência: m l=1 G(s) = (s + z l) q i=1(s + z i )(s + p m ),
DESCRIÇÃO MATEMÁTICA DE SISTEMAS PARTE 1
DESRIÇÃO MATEMÁTIA DE SISTEMAS PARTE 1 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Agenda Modelagem de sistemas dinâmicos Descrição Entrada-Saída
Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto
Universidade Federal da Paraíba Programa de Pós-Graduação em Engenharia Elétrica Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto Prof. Juan Moises Mauricio Villanueva [email protected]
Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial
Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de
Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.
Critério de Estabilidade: Routh-Hurwitz
Critério de Estabilidade: Routh-Hurwitz O Critério de Nyquist foi apresentado anteriormente para determinar a estabilidade de um sistema em malha fechada analisando-se sua função de transferência em malha
Aula 8. Cristiano Quevedo Andrea 1. Curitiba, Abril de DAELT - Departamento Acadêmico de Eletrotécnica
Classificaçã dos Sistemas de Controle Especificaçõe do Estado Estacionário de Erro Aula 8 Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico
Sistemas lineares. Aula 6 Transformada de Laplace
Sistemas lineares Aula 6 Transformada de Laplace Introdução Transformada de Laplace Convergência da transformada de laplace Exemplos Região de Convergência Introdução Transformações matemáticas: Logaritmo:
Apresentação do programa da disciplina. Definições básicas. Aplicações de sinais e sistemas na engenharia. Revisão sobre números complexos.
FUNDAÇÃO UNVERSDADE FEDERAL DO VALE DO SÃO FRANCSCO PLANO DE UNDADE DDÁTCA- PUD Professor: Edmar José do Nascimento Disciplina: ANÁLSE DE SNAS E SSTEMAS Carga Horária: 60 hs Semestre: 2010.1 Pág. 1 de
Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.
Transformadas de Laplace Engenharia Mecânica - FAENG. Prof. Josemar dos Santos
Engenharia Mecânica - FAENG SISTEMAS DE CONTROLE Prof. Josemar dos Santos Sumário Transformadas de Laplace Teorema do Valor Final; Teorema do Valor Inicial; Transformada Inversa de Laplace; Expansão em
Aula 6 Transformada de Laplace
Aula 6 Transformada de Laplace Introdução Propriedades da Transformada de Laplace Tabela Transformada ade Laplace Transformada Inversa de Laplace Função de transferência Definição: X s = L x t = s é uma
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap6 Estabilidade Prof. Filipe Fraga Sistemas de Controle 1 6. Estabilidade 6.1 Introdução 6.2 Critério de Routh-Hurwitz
Caderno de Exercícios
Caderno de Exercícios Orlando Ferreira Soares Índice Caracterização de Sinais... Caracterização de Sistemas...0 Sistemas LIT - Convolução...5 Série de Fourier para Sinais Periódicos Contínuos...0 Transformada
TRANSFORMADA DE LAPLACE E OPERADORES LINEARES
TRANSFORMADA DE LAPLACE E OPERADORES LINEARES O DOMÍNIO DE LAPLACE Usualmente trabalhamos com situações que variam no tempo (t), ou seja, trabalhamos no domínio do tempo. O domínio de Laplace é um domínio
Transformada de Laplace
Sinais e Sistemas Transformada de Laplace [email protected] Instituto Superior Técnico Sinais e Sistemas p.1/60 Resumo Definição da transformada de Laplace. Região de convergência. Propriedades da transformada
REPÚBLICA FEDERATIVA DO BRASIL ESTADO DE SANTA CATARINA Universidade do Estado de Santa Catarina - UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS - UDESC/CCT
Curso: ELE-ELE - Bacharelado em Engenharia Elétrica Departamento: DEE - Engenharia Elétrica Disciplina: null Código: ISC0001 Carga horária: 90 Período letivo: 2017/2 Professor: Celso José Faria de Araújo
Sistemas de Equações Diferenciais Lineares
Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. [email protected] Prof. Rafael Concatto Beltrame, Me.
Fundamentos de Controle
Fundamentos de Controle Modelagem matemática de sistemas de controle Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui
EES-49/2012 Correção do Exame. QBM1 Esboce o diagrama de Nyquist para a seguinte função de transferência:
EES-49/2012 Correção do Exame QBM1 Esboce o diagrama de Nyquist para a seguinte função de transferência: Analise a estabilidade do sistema em malha fechada (dizendo quantos polos instáveis o sistema tem
Critério de Estabilidade de Routh-Hurwitz
Critério de Estabilidade de Routh-Hurwitz Carlos Eduardo de Brito Novaes carlosnovaes@aeducom http://professorcarlosnovaeswordpresscom de agosto de 1 1 Introdução Edward Routh apresentou em 1877 um algorítimo
EES-20: Sistemas de Controle II. 31 Julho 2017
EES-20: Sistemas de Controle II 31 Julho 2017 1 / 41 Folha de informações sobre o curso 2 / 41 O que é Controle? Controlar: Atuar sobre um sistema físico de modo a obter um comportamento desejado. 3 /
ANÁLISE DE SISTEMAS LINEARES NO ESPAÇO DE ESTADOS
AE- ANÁLISE DE SISTEMAS LINEARES NO ESPAÇO DE ESTADOS AE- Determine os valores e vectores próprios de a) A= -.5.5 -.5 b) B= - - AE- Forma canónica controlável. a) Mostre que a equação diferencial homogénea
Estabilidade de Sistemas Lineares Realimentados
Estabilidade de Sistemas Lineares Realimentados 1. Conceito de estabilidade 2. Critério de estabilidade de Routh-Hurwitz p.1 Engenharia de Controle Aula 6 Estabilidade de Sistemas Lineares Realimentados
Sistemas de controle. Prof. André Schneider de Oliveira
Sistemas de controle Prof. André Schneider de Oliveira Estrutura da apresentação Conceitos fundamentais do sistemas de controle Características da resposta Introdução à estabilidade Polos e zeros Conceito
Controle de Processos Aula: Sistemas de 1ª e 2ª ordem
107484 Controle de Processos Aula: Sistemas de 1ª e 2ª ordem Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB) Controle
X. MÉTODOS DE ESPAÇO DE ESTADOS
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE X. MÉTODOS DE ESPAÇO DE ESTADOS Prof. Davi Antônio dos Santos ([email protected]) Departamento de
Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00
Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00 [ ] 4 2 Questão 1. Seja T : R 2 R 2 o operador linear cuja matriz, com respeito à base canônica de R 2, é. 1 3 [ ] 2 0 Seja B uma base de R 2 tal que
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap3 Modelagem no Domínio do Tempo Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos Lajovic
EES-20: Sistemas de Controle II
EES-: Sistemas de Controle II 14 Agosto 17 1 / 49 Recapitulando: Estabilidade interna assintótica Modelo no espaço de estados: Equação de estado: ẋ = Ax + Bu Equação de saída: y = Cx + Du Diz-se que o
Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.
INTRODUÇÃO À ANALISE DE SINAIS ELT 032
INTRODUÇÃO À ANALISE DE SINAIS ELT 032 Prof. Jeremias Barbosa Machado Introdução Neste capítulo estudaremos as Transformadas de Laplace. Elas apresentam uma representação de sinais no domínio da frequência
Matrizes e Linearidade
Matrizes e Linearidade 1. Revisitando Matrizes 1.1. Traço, Simetria, Determinante 1.. Inversa. Sistema de Equações Lineares. Equação Característica.1. Autovalor & Autovetor 4. Polinômios Coprimos 5. Função
Sistemas Dinâmicos Lineares
Sumário Sistemas Dinâmicos Lineares 4 de julho de 2016 () Sistemas Dinâmicos Lineares 4 de julho de 2016 1 / 29 () Sistemas Dinâmicos Lineares 4 de julho de 2016 2 / 29 Apresentação da disciplina Objetivos
Modelagem de Sistemas de Controle por Espaço de Estados
Modelagem de Sistemas de Controle por Espaço de Estados A modelagem por espaço de estados possui diversas vantagens. Introduz a teoria conhecida como Controle Moderno ; Adequada para sistemas de múltiplas
Sistemas Lineares e Invariantes de Tempo Discreto
Sistemas Lineares e Invariantes de Tempo Discreto 28 Sistemas Lineares de Tempo Discreto Um sistema linear satisfaz o teorema da superposição e implica que o sistema tem condições iniciais iguais a zero
RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE
RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE CCL Profa. Mariana Cavalca Baseado em: MAYA, Paulo Álvaro; LEONARDI, Fabrizio. Controle essencial. São Paulo: Pearson, 2011. OGATA, Katsuhiko. Engenharia de controle
Professor Msc. Leonardo Henrique Gonsioroski
Professor Msc. Leonardo Henrique Gonsioroski Professor Leonardo Henrique Gonsioroski UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO Definições Um sistema que estabeleça
Controle de Processos: Solução analítica de sistemas lineares dinâmicos
Controle de Processos: Solução analítica de sistemas lineares dinâmicos Prof. Eduardo Stockler Tognetti & David Fiorillo Laboratório de Automação e Robótica (LARA) Dept. Engenharia Elétrica - UnB Conteúdo
