Aula 4 Respostas de um SLIT
|
|
|
- Luiz Fernando das Neves de Barros
- 8 Há anos
- Visualizações:
Transcrição
1 Aula 4 Respostas de um SLIT
2 Introdução Características de um SLIT Resposta ao degrau unitário Resposta a entrada nula Resposta total
3 A convolução entre dois sinais de tempo contínuo x(t) e h(t) é dada pela integral: y t = x t h t = x τ h t τ dτ x(t) h(t) y(t)
4 Propriedades: Comutativa: Associativa: Distributiva: Deslocamento: Elemento Neutro: h t x t = x t h(t) x t h 1 t h 2 t = x t {h 1 t h 2 t } x t h 1 t + h 2 t = x t h 1 t + x t h 2 (t) y t = x t h t x t h t T = y(t T) x t δ t = x(t)
5 Causalidade: Se x(t) e h(t) são sinais causais, então x(t) h(t) também será causal Largura:
6 Em relação à memória: Sem memória: A saída y(t) só depende da entrada x(t) em tempo corrente: Com memória: y t h t = Kx t = Kδ t A saída y(t) depende de entradas ou saídas em tempos diferentes do corrente: h t 0 0, para t 0 0 Causalidade h t = 0, t < 0 y t = h t x t = h τ x t τ dτ 0
7 Estabilidade: Um SLIT é considerado estável (BIBO) se sua resposta impulsiva for integrável em módulo y t = h t x t = h τ x t τ dτ y t h τ x t τ dτ Considerando uma entrada limitada x t τ K < Logo, para estabilidade BIBO y t K. h τ dτ = K h τ dτ h τ dτ <
8 Resposta ao degrau unitário: s(t) Caracteriza como o sistema responde a mudanças repentinas na entrada. Expressada considerando x t = u(t) e aplicando a convolução: t y t = h t u t = h τ dτ Invertendo as relações, temos: h t = d s(t)
9 Exemplo: Encontre a resposta ao degrau unitário do circuito RC que tem a resposta ao impulso: Resolução: h t = 1 RC e t/rc u(t) s t = t 1 τ RC e RCu τ dτ = t 1 RC e τ/rc dτ 0 s t = 0, para t 0 1 e t/rc, para t > 0
10 Relembrando: Equação diferencial geral que descreve um sistema: d N y(t) N + a d N 1 y(t) dy t 1 N a N 1 = b N M d M x t M + b N M+1 + a N y(t) d M 1 x t M b N 1 dx t + b N x(t) Fazendo-se D = d/ D N + a 1 D N a N 1 D + a N y t = b N M D M + b N M+1 D M b N 1 D + b N x t Q D y t = P D x(t)
11 Resposta nula é aquela quando x(t) = 0 Logo, Q D y t = P D x t = 0 D N + a 1 D N a N 1 D + a N y t = 0 Solução: y 0 t = c. e λt
12 Substituindo y(t) = y 0 (t): Dy 0 t D 2 y 0 t = cλe λt = cλ 2 e λt Logo, D 3 y 0 t D N y 0 t = cλ 3 e λt = cλ N e λt D N + a 1 D N a N 1 D + a N y t = 0 c λ N + a 1 λ N a N 1 λ + a N e λt = 0 λ N + a 1 λ N a N 1 λ + a N = 0 Q λ = 0
13 Com N raízes distintas: Q λ = 0 λ λ 1 λ λ 2 λ λ N = 0 Daí, y 0 t = c 1. e λ 1t + c 2. e λ 2t + + c N. e λ Nt
14 Q λ é chamado de polinômio característico do sistema, e não depende da entrada x(t); A equação Q λ = 0 é chamada de equação característica; As raízes λ 1, λ 2,, λ N são chamadas de raízes características do sistema. Também chamados de valores característicos, autovalores e frequências naturais;
15 As exponenciais e λ 1t, e λ 2t,, e λ Nt são chamadas de modos característicos. Também chamados de modos naturais; Todo comportamento de um sistema é ditado principalmente pelos modos característicos; Modos característicos são etapa determinante da resposta ao estado nulo; A resposta de entrada nula é a combinação linear dos modos característicos do sistema;
16 Exemplo: Seja um sistema linear invariante no tempo contínuo descrito pela EDLCC abaixo. Determine o polinômio característico, as raízes e os modos característicos do sistema. Determine também a resposta de entrada nula quando y 0 0 = 2 e dy 0 0 = 1. d 2 y(t) dy(t) + 6y(t) = dx t + x(t)
17 Exemplo: Solução: Considerando D = d/: D 2 + 5D + 6 y t = D + 1 x t Q D y t = P D x t Polinômio característico: Q λ = λ 2 + 5λ + 6 Solucionando a equação característica Q λ = 0, encontram-se as raízes características: λ 1 = 2, λ 2 = 3 Desta forma, os modos característicos são: e 2t e e 3t A resposta a entrada nula é: y 0 t = c 1 e 2t + c 2 e 3t
18 Exemplo: Solução: A resposta a entrada nula é: y 0 t = c 1 e 2t + c 2 e 3t Considerando os valores iniciais: y 0 0 dy 0 (0) = 2 = c 1 e 2t + c 2 e 3t = 1 = c 1 e 2t + c 2 e 3t Solucionando este sistema de equações, temos: c 1 = 5 e c 2 = 3 Portanto, y 0 t = 5e 2t 3e 3t
19 A resposta completa de um SLIT é: Resposta total = resposta de estado nulo + resposta de entrada nula Resposta total = c k e λ kt N k=1 componente de entrada nula + x t h(t) componente de estado nulo Considerando raízes distintas. Caso o sistema avaliado possua raízes repetidas, deve-se modificar a equação acima;
20 Para determinar a resposta ao impulso de um sistema descrito por uma EDLCC, pode-se utilizar da relação: h t = b 0 δ t + P D y N t u t, b 0 = 0 se M < N Onde y N (t) é a combinação linear dos modos característicos e sujeitos às condições iniciais: y 0 = dy(0) = d2 y(0) 2 = = dn 2 y 0 N 2 = 0 e dn 1 y 0 N 1 = 1
21 Exemplo: Seja um SLIT descrito por sua EDLCC abaixo. Determine a resposta ao impulso quando y 0 0 = 0 e dy 0(0) = 1. Solução: d 2 y(t) dy(t) + 2y(t) = dx t λ 2 + 3λ + 2 = 0 λ 1 = 1, λ 2 = 2 y N t = c 1 e t + c 2 e 2t dy N (t) = c 1 e t 2c 2 e 2t
22 Solução: Aplicando condições inicias nulas: y N 0 = 0 = c 1 e 0 + c 2 e 0 Logo, c 1 = 1, c 2 = 1 Então, dy N (0) y N t = 1 = c 1 e 0 2c 2 e 0 = e t e 2t Para determinar a resposta ao impulso: h t = b 0 δ t + P D y N t u t h t = 0δ t + D(e t e 2t ) u t h t = 2e 2t e t u(t)
23 LATHI, B. P. Sinais e sistemas lineares. 2. Ed. Porto Alegre: Bookman, p. ISBN HAYKIN, Simon S. Sinais e sistemas. Porto Alegre: Bookman, p.
Sistemas lineares. Aula 4 Respostas de um SLIT
Sistemas lineares Aula 4 Respostas de um SLIT Cronograma Introdução Características de um SLIT Resposta ao degrau unitário Resposta a entrada nula Resposta total Introdução A convolução entre dois sinais
Sistemas lineares. Aula 3 Sistemas Lineares Invariantes no Tempo
Sistemas lineares Aula 3 Sistemas Lineares Invariantes no Tempo SLIT Introdução Resposta de um SLIT Resposta de Entrada Nula Resposta de Estado Nulo Resposta ao Impulso Unitária Introdução Sistemas: Modelo
Aula 6 Transformada de Laplace
Aula 6 Transformada de Laplace Introdução Propriedades da Transformada de Laplace Tabela Transformada ade Laplace Transformada Inversa de Laplace Função de transferência Definição: X s = L x t = s é uma
Análise no Domínio do Tempo de Sistemas em Tempo Contínuo
Análise no Domínio do Tempo de Sistemas em Tempo Contínuo Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco
Sistemas lineares. Aula 7 Transformada Inversa de Laplace
Sistemas lineares Aula 7 Transformada Inversa de Laplace Transformada Inversa de Laplace Transformada Inversa de Laplace e RDC x(t) única Metódos Inversão pela Definição Inversão pela Expansão em Frações
Sinais e Sistemas. Sistemas Lineares Invariantes no Tempo. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas
Sinais e Sistemas Sistemas Lineares Invariantes no Tempo Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Lembrando... xt () yt () ht () OK!!! xn [ ] yn [ ] hn [ ] ht (
04/04/ :31. Sumário. 2.1 Sistemas LIT de Tempo Discreto 2.2 Sistemas LIT de Tempo Contínuo 2.3 Propriedades dos Sistemas LIT
Sumário 2.1 Sistemas LIT de Tempo Discreto 2.2 Sistemas LIT de Tempo Contínuo 2.3 Propriedades dos Sistemas LIT slide 1 2 Introdução Muitos processos físicos podem ser modelados como sistemas lineares
Teste Tipo. Sinais e Sistemas (LERCI) 2004/2005. Outubro de Respostas
Teste Tipo Sinais e Sistemas (LERCI) 2004/2005 Outubro de 2004 Respostas i Problema. Considere o seguinte integral: + 0 δ(t π/4) cos(t)dt em que t e δ(t) é a função delta de Dirac. O integral vale: 2/2
Aula 05 Transformadas de Laplace
Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número
Aula 05 Transformadas de Laplace
Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número
Sistemas lineares. Aula 6 Transformada de Laplace
Sistemas lineares Aula 6 Transformada de Laplace Introdução Transformada de Laplace Convergência da transformada de laplace Exemplos Região de Convergência Introdução Transformações matemáticas: Logaritmo:
Resumo. Sinais e Sistemas Sistemas Lineares e Invariantes no Tempo. Resposta ao Impulso. Representação de Sequências
Resumo Sinais e Sistemas Sistemas Lineares e Invariantes no Tempo [email protected] Instituto Superior Técnico SLITs discretos. O somatório de convolução. SLITs contínuos. A convolução contínua. Propriedades
Análise e Processamento de Bio-Sinais. Mestrado Integrado em Engenharia Biomédica. Sinais e Sistemas. Licenciatura em Engenharia Física
Análise e Processamento de Bio-Sinais Mestrado Integrado em Engenharia Biomédica Licenciatura em Engenharia Física Faculdade de Ciências e Tecnologia Slide 1 Slide 1 Sobre Modelos para SLIT s Introdução
Sílvia Mara da Costa Campos Victer Concurso: Matemática da Computação UERJ - Friburgo
Convolução, Série de Fourier e Transformada de Fourier contínuas Sílvia Mara da Costa Campos Victer Concurso: Matemática da Computação UERJ - Friburgo Tópicos Sinais contínuos no tempo Função impulso Sistema
EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012
EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0
Instrumentação e Controle Aula 7. Estabilidade. Prof. Renato Watanabe ESTO004-17
Instrumentação e Controle Aula 7 Estabilidade Prof. Renato Watanabe ESTO004-17 Onde estamos no curso Sistema Obtenção das Equações Diferenciais que descrevem o comportamento do sistema Representação no
FUNDAMENTOS DE SISTEMAS LINEARES PARTE 2
FUNDAMENTOS DE SISTEMAS LINEARES PARTE 2 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Agenda Resposta no espaço de estados Representações
EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 2 quadrimestre 2011
EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares quadrimestre 0 (P-0003D) (HAYKIN, 00, p 9) Use a equação de definição da TF para obter a representação no domínio da
Capítulo 2 Dinâmica de Sistemas Lineares
Capítulo 2 Dinâmica de Sistemas Lineares Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Dinâmica de Sistemas Lineares 1/57
Transformada de Laplace
Sinais e Sistemas Transformada de Laplace [email protected] Instituto Superior Técnico Sinais e Sistemas p.1/60 Resumo Definição da transformada de Laplace. Região de convergência. Propriedades da transformada
Sinais e Sistemas. Tempo para Sistemas Lineares Invariantes no Tempo. Representações em Domínio do. Profª Sandra Mara Torres Müller.
Sinais e Sistemas Representações em Domínio do Tempo para Sistemas Lineares Invariantes no Tempo Profª Sandra Mara Torres Müller Aula 7 Representações em Domínio do Tempo para Sistemas Lineares e Invariantes
Sinais e Sistemas Exame Data: 18/1/2018. Duração: 3 horas
Sinais e Sistemas Exame Data: 8//28. Duração: 3 horas Número: Nome: Identique este enunciado e a folha de respostas com o seu número e os seus primeiro e último nomes. Para as questões a 9, indique as
Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial
Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de
Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros
Sinais e Sistemas Série de Fourier Renato Dourado Maia Faculdade de Ciência e Tecnologia de Montes Claros Fundação Educacional Montes Claros Lembremos da resposta de um sistema LTI discreto a uma exponencial
Sinais e Sistemas no domínio do tempo Lista de Exercícios
Sinais e Sistemas no domínio do tempo Lista de Exercícios Prof. Dr. Marcelo de Oliveira Rosa 10 de abril de 2012 Resumo O objetivo desta lista é reforçar alguns aspectos da análise de sistemas no domínio
Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre (Parte II)
Instituto Superior Técnico Sinais e Sistemas o teste 4 de Novembro de 0 Nome: Número: Duração da prova: horas Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre
Caderno de Exercícios
Caderno de Exercícios Orlando Ferreira Soares Índice Caracterização de Sinais... Caracterização de Sistemas...0 Sistemas LIT - Convolução...5 Série de Fourier para Sinais Periódicos Contínuos...0 Transformada
Estabilidade. 1. Estabilidade Entrada-Saída Sistemas LIT. 2. Estabilidade BIBO Sistemas LIT. 3. Estabilidade BIBO de Equações Dinâmicas Sistemas LIT
Estabilidade 1. Estabilidade Entrada-Saída Sistemas LIT 2. Estabilidade BIBO Sistemas LIT 3. Estabilidade BIBO de Equações Dinâmicas Sistemas LIT 4. Sistemas Discretos LIT 5. Estabilidade BIBO Sistemas
IV. ESTABILIDADE DE SISTEMAS LIT
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE IV. ESTABILIDADE DE SISTEMAS LIT Prof. Davi Antônio dos Santos ([email protected]) Departamento de
Controle de Processos
17484 Controle de Processos Aula: Função de Transferência Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 217 E. S. Tognetti (UnB) Controle
Modelagem Matemática de Sistemas
Modelagem Matemática de Sistemas 1. Descrição Matemática de Sistemas 2. Descrição Entrada-Saída 3. Exemplos pag.1 Teoria de Sistemas Lineares Aula 3 Descrição Matemática de Sistemas u(t) Sistema y(t) Para
Estabilidade de sistemas de controle lineares invariantes no tempo
Capítulo 2 Estabilidade de sistemas de controle lineares invariantes no tempo 2. Introdução Neste capítulo, vamos definir alguns conceitos relacionados à estabilidade de sistemas lineares invariantes no
Controle e Sistemas Não lineares
Controle e Sistemas Não lineares Prof. Marcus V. Americano da Costa F o Departamento de Engenharia Química Universidade Federal da Bahia Salvador-BA, 01 de dezembro de 2016. Sumário Objetivos Introduzir
Estabilidade entrada-saída (externa).
Estabilidade entrada-saída (externa) ENGC33: Sinais e Sistemas II Departamento de Engenharia Elétrica - DEE Universidade Federal da Bahia - UFBA 05 de junho de 2019 Prof Tito Luís Maia Santos 1/ 38 Sumário
Aula 04 Representação de Sistemas
Aula 04 Representação de Sistemas Relação entre: Função de Transferência Transformada Laplace da saída y(t) - Transformada Laplace da entrada x(t) considerando condições iniciais nulas. Pierre Simon Laplace,
1.3.2 Sistemas LIT - a integral de convolução
Eisencraft e Loiola 1.3 Análise e transmissão de sinais 23 Figura 1.22: Propriedades da Transformada de Fourier [1]. 1.3.2 Sistemas LIT - a integral de convolução Na Seção 1.2, página 4, já foi discutido
Sistemas Lineares. Aula 9 Transformada de Fourier
Sistemas Lineares Aula 9 Transformada de Fourier Séries de Fourier A Série de Fourier representa um sinal periódico como uma combinação linear de exponenciais complexas harmonicamente relacionadas. Como
Apresentação do programa da disciplina. Definições básicas. Aplicações de sinais e sistemas na engenharia. Revisão sobre números complexos.
FUNDAÇÃO UNVERSDADE FEDERAL DO VALE DO SÃO FRANCSCO PLANO DE UNDADE DDÁTCA- PUD Professor: Edmar José do Nascimento Disciplina: ANÁLSE DE SNAS E SSTEMAS Carga Horária: 60 hs Semestre: 2010.1 Pág. 1 de
A Transformada de Laplace
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO
I-6 Sistemas e Resposta em Frequência. Comunicações (6 de Dezembro de 2012)
I-6 Sistemas e Resposta em Frequência (6 de Dezembro de 2012) Sumário 1. A função especial delta-dirac 2. Sistemas 3. Resposta impulsional e resposta em frequência 4. Tipos de filtragem 5. Associação de
Circuitos Elétricos II
Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Introdução Definição da Transformada de aplace Propriedades da Transformada de aplace
Introdução aos Sinais e Sistemas
Introdução aos Sinais e Sistemas Deise Monquelate Arndt [email protected] Curso Superior de Tecnologia em Sistemas de Telecomunicações IFSC - Campus São José Índice 1 Sinais Operações com Sinais
Sinais e Sistemas p.1/33
Resumo Sinais e Sistemas Transformada de Fourier de Sinais Contínuos [email protected] Representação de sinais aperiódicos Transformada de Fourier de sinais periódicos Propriedades da transformada de Fourier
Sistemas Prof. Luis S. B. Marques
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO
DESCRIÇÃO MATEMÁTICA DE SISTEMAS PARTE 1
DESRIÇÃO MATEMÁTIA DE SISTEMAS PARTE 1 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Agenda Modelagem de sistemas dinâmicos Descrição Entrada-Saída
Aula 9. Carlos Amaral Cristiano Quevedo Andrea. UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica
Aula 9 Carlos Amaral Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Abril de 2012. Resumo 1 Introdução - Estabilidade
I-6 Sistemas e Resposta em Frequência
I-6 Sistemas e Resposta em Frequência Comunicações 1 Sumário 1. A função especial delta-dirac 2. Sistemas 3. Resposta impulsional e resposta em frequência 4. Tipos de filtragem 5. Associação de sistemas
UNIVASF de Sinais e Sistemas
UNIVASF Análise de Sinais e Sistemas Sistemas Prof. Rodrigo Ramos [email protected] Sistemas Definição: Entidade que manipula um ou mais sinais para realizar uma função, produzindo, assim, novos sinais.
Sinais e Sistemas - Lista 1. Gabarito
UNIVERSIDADE DE BRASÍLIA, FACULDADE GAMA Sinais e Sistemas - Lista 1 Gabarito 4 de outubro de 015 1. Considere o sinal x(t) mostrado na figura abaixo. O sinal é zero fora do intervalo < t
ESTV DEE Teoria dos Circuitos e do Sinal
Teoria dos Circuitos e do Sinal Teoria dos Circuitos e do Sinal Docente Luís Filipe Carvalho Simões Gabinete 15 E-mail [email protected] Página pessoal www.estv.ipv.pt/paginaspessoais/lfcsimoespt/paginaspessoais/lfcsimoes
5 Descrição entrada-saída
Teoria de Controle (sinopse) 5 Descrição entrada-saída J. A. M. Felippe de Souza Descrição de Sistemas Conforme a notação introduzida no capítulo 1, a função u( ) representa a entrada (ou as entradas)
Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros
107484 Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 2 o Semestre
Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas
Sinais e Sistemas Série de Fourier Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Lembremos da resposta de um sistema LTI discreto a uma exponencial complexa: x[ n] z,
Representação de Fourier para Sinais 1
Representação de Fourier para Sinais A representação de Fourier para sinais é realizada através da soma ponderada de funções senoidais complexas. Se este sinal for aplicado a um sistema LTI, a saída do
depende apenas da variável y então a função ṽ(y) = e R R(y) dy
Formulario Equações Diferenciais Ordinárias de 1 a Ordem Equações Exactas. Factor Integrante. Dada uma equação diferencial não exacta M(x, y) dx + N(x, y) dy = 0. ( ) 1. Se R = 1 M N y N x depende apenas
Sistemas de Controle
Sistemas de Controle Adriano Almeida Gonçalves Siqueira Aula 2 - Transformada de Laplace e Função Transferência Sistemas de Controle p. 1/27 Função Impulso Unitário Função pulso com área unitária: f(t)
Sistemas a Tempo Discreto
Sistemas a Tempo Discreto 1. Caracterização de sistemas dinâmicos a tempo discreto 2. Transformada-Z 3. FT discreta, estabilidade e analogia com domínio-s 4. Sistemas amostrados 4.1 Amostragem e retenção
INTRODUÇÃO À ANALISE DE SINAIS ELT 032
INTRODUÇÃO À ANALISE DE SINAIS ELT 032 Prof. Jeremias Barbosa Machado Introdução Neste capítulo estudaremos as Transformadas de Laplace. Elas apresentam uma representação de sinais no domínio da frequência
Representação e Análise de Sistemas Dinâmicos Lineares Componentes Básicos de um Sistema de Controle
Representação e Análise de Sistemas Dinâmicos Lineares 1 Introdução 11 Componentes Básicos de um Sistema de Controle Fundamentos matemáticos 1 Singularidades: Pólos e zeros Equações diferencias ordinárias
Aula 06 Representação de sistemas LIT: A soma de convolução
Aula 06 Representação de sistemas LIT: A soma de convolução Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Sinais e Sistemas, 2a edição, Pearson, 2010. ISBN 9788576055044. Páginas 47-56. HAYKIN, S. S.; VAN
Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto
Universidade Federal da Paraíba Programa de Pós-Graduação em Engenharia Elétrica Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto Prof. Juan Moises Mauricio Villanueva [email protected]
Representação de Sistemas LTI por
Sistemas e Sinais Representação de Sistemas LTI por Equações Diferenciais e de Diferenças Equações diferenciais e de diferenças de coeficientes constantes e lineares fornecem outra representação das características
EXAMES DE ANÁLISE MATEMÁTICA III
EXAMES DE ANÁLISE MATEMÁTICA III Jaime E. Villate Faculdade de Engenharia Universidade do Porto 22 de Fevereiro de 1999 Resumo Estes são alguns dos exames e testes da disciplina de Análise Matemática III,
Processamento de sinais digitais
Processamento de sinais digitais Aula 2: Descrição discreta no tempo de sinais e sistemas [email protected] Tópicos Sequências discretas no tempo. Princípio da superposição para sistemas lineares.
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. [email protected] Prof. Rafael Concatto Beltrame, Me.
1.5 Sistemas de Tempo Contínuo e de Tempo Discreto
1.5 Sistemas de Tempo Contínuo e de Tempo Discreto Os sistemas físicos, em sentido amplo, são uma interconexão de componentes, dispositivos ou subsistemas. Um sistema de tempo contínuo é um sistema em
Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 5. Heaviside Dirac Newton
Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 5 Heaviside Dirac Newton Conteúdo 5 - Circuitos de primeira ordem...1 5.1 - Circuito linear invariante de primeira ordem
Transformada de Laplace
Transformada de aplace Nas aulas anteriores foi visto que as ferramentas matemáticas de Fourier (série e transformadas) são de extrema importância na análise de sinais e de sistemas IT. Isto deve-se ao
Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos
107484 Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016
PONTÍFICIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA ENG1380 SISTEMAS LINEARES CAPÍTULO 01 LISTA DE EXERCÍCIOS PROFA. FABRÍCIA NERES BORGES
PONTÍFICIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA ENG1380 SISTEMAS LINEARES CAPÍTULO 01 LISTA DE EXERCÍCIOS PROFA. FABRÍCIA NERES BORGES 1.1-1 Determine a energia dos sinais mostrados na Fig.
Equações Diferenciais (M2011)
Equações Diferenciais (M2011) ICruz - FCUP Aula 16-16 abr 18 (ICruz - FCUP) Equações Diferenciais (M2011) Aula 16-16 abr 18 1 / 12 Estabilidade de pontos de equilíbrio de sistemas LHCC No caso de sistemas
Aula 07 Propriedades da resposta ao impulso
Aula 07 Propriedades da resposta ao impulso Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Sinais e Sistemas, a edição, Pearson, 00. ISBN 9788576055044. Páginas 6-69. HAYKIN, S. S.; VAN VEEN, B. Sinais e
II. REVISÃO DE FUNDAMENTOS
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE II. REVISÃO DE FUNDAMENTOS Prof. Davi Antônio dos Santos ([email protected]) Departamento de Mecatrônica
Indice. Resposta forçada (condições iniciais nulas)
Indice 3.3 Inversão da TLP Fracções parciais Resolução equações diferenciais Polinómio característico Estabilidade resposta natural 3.4 Função de Transferência Estabilidade devido à entrada (resposta forçada)
1. Sinais de teste. 2. Sistemas de primeira ordem. 3. Sistemas de segunda ordem. Especificações para a resposta
Desempenho de Sistemas de Controle Realimentados 1. Sinais de teste. Sistemas de primeira ordem 3. Sistemas de segunda ordem Especificações para a resposta Fernando de Oliveira Souza pag.1 Engenharia de
Convolução de Sinais
Análise de Sinais (5001) Ficha Prática Laboratorial VII Curso: Eng. Electrotécnica Duração prevista: 2 horas Convolução de Sinais I. Sinais analógicos Operações matemáticas realizadas em sinais analógicos
Professor Msc. Leonardo Henrique Gonsioroski
Professor Msc. Leonardo Henrique Gonsioroski Professor Leonardo Henrique Gonsioroski UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO Definições Um sistema que estabeleça
