Critério de Estabilidade: Routh-Hurwitz
|
|
|
- Ricardo Natal Tomé
- 9 Há anos
- Visualizações:
Transcrição
1 Critério de Estabilidade: Routh-Hurwitz O Critério de Nyquist foi apresentado anteriormente para determinar a estabilidade de um sistema em malha fechada analisando-se sua função de transferência em malha aberta Outro Critério de Estabilidade bastante conhecido é devido a Routh-Hurwitz Routh-Hurwitz encontraram condição necessária e suficiente para que um sistema LIT seja estável: precisa-se garantir que todos os polos da função de transferência de malha fechada tenham parte real negativa (pólos estejam localizados semiplano esquerdo do plano-s) 1 of 17
2 Critério de Estabilidade: Routh-Hurwitz Exemplo Considere G(s) = s 10 (s +2)(s 2 +s +2) Os pólos são 2, 1+ 7j Então G(s) é estável 2, 1 7j 2 e todos possuem parte real negativa Alerta Note que analisamos somente o denominador de G(s), pois somente ele determina os pólos A equação do denominador também é conhecida como Equação Característica 2 of 17
3 Critério de Estabilidade: Routh-Hurwitz Considere agora G(s) = s 10 s 7 +6s 6 +s 4 +9s 3 +s 2 +1 Para determinar a estabilidade, deve-se calcular todas as raízes da equação característica s 7 +6s 6 +s 4 +9s 3 +s 2 +1 = 0 Essa tarefa é difícil sem o auxílio do computador Routh-Hurwitz desenvolveram um método capaz de determinar a localização das raízes da equação característica sem necessidade de calcula-las explicitamente 3 of 17
4 (1) Escreva a equação característica da seguinte forma: a 0 s n +a 1 s n 1 + +a n 1 s +a n = 0 Veja se todos os coeficientes da equação característica são positivos (2) Caso a condição anterior seja satisfeita, arranje os coeficientes do polinômio de acordo com o seguinte padrão (Arranjo de Routh): b 1 = a1a2 a0a3 a 1 = 1 a 0 a 2 a 1 a 1 a 3 s n a 0 a 2 a 4 s n 1 a 1 a 3 a 5 s n 2 b b 1 b 2 b 3 2 = a1a4 a0a5 a 1 = 1 a 0 a 4 a 1 a 1 a 5 s n 3 c 1 c 2 c 3 s n 4 d 1 d 2 d 3 s 2 e 1 e 2 s 1 f 1 s 0 g 1 B A Angelico, P R Scalassara, A N Vargas, UTFPR, Brasil b 3 = a1a6 a0a7 a 1 = 1 a 1 a 0 a 6 a 1 a 7 c 1 = 1 b 1 a 1 a 3 b 1 b 2 4 of 17
5 O processo de formação das linhas continuará até que se esgotem todos os elementos, ou sejam até que a n-ésima linha seja completada (3) Critério de Routh-Hurwitz: o número de raízes com parte real positiva é igual ao número de mudanças de sinais dos elementos da primeira coluna do arranjo Exemplo Aplique o critério de Routh-Hurwitz para verificação da estabilidade de um sistema com a equação característica a seguir: s 4 +2s 3 +3s 2 +4s +5 = 0 s s s s 1-6 s 0 5 Há duas mudanças de sinal na primeira coluna, ou seja, há duas raízes com partes reais positivas 5 of 17
6 Para utilização do critério de Routh-Hurwitz, deve-se considerar alguns casos: Caso 1: Caso já discutido, onde não há elementos nulos na primeira coluna do arranjo Caso 2: Há um valor nulo na primeira coluna, porém alguns elementos dessa linha são não nulos Neste caso o zero é substituído por um parâmetro, ǫ > 0, suficientemente pequeno Exemplo Considere o seguinte polinômio: s s s 3 ǫ 6 s 2 c 1 10 s 1 d 1 s of 17 B A Angelico, P R Scalassara, A N Vargas, UTFPR, Brasil s 5 +2s 4 +2s 3 +4s 2 +11s +10 = 0 c 1 = 4ε 12 ε 12 ε d 1 = 6c 1 10ε c 1 6
7 Exemplo (Continuação) Há duas mudanças de sinal e, portanto, há duas raízes no semi-plano direito roots([ ]) ans = i i i i B A Angelico, P R Scalassara, A N Vargas, UTFPR, Brasil Caso 3: Linha com todos os elementos nulos - Essa condição ocorre quando a equação característica possui fatores do tipo (s + σ)(s σ) ou (s +jω)(s jω) ou duas/quatro raízes reais de igual valor e sinais opostos - O arranjo é continuado formando-se um polinômio auxiliar, P(s), com os coeficientes da última linha não-nula e utilizando os coeficientes da derivada de P(s) na próxima linha - A ordem do polinômio auxiliar é sempre par e indica o número de raízes simétricas 7 of 17
8 Exemplo Considere a seguinte equação característica: s 5 +2s 4 +24s 3 +48s 2 25s 50 = 0 s s Polinômio Auxiliar P(s) s s 2 s 1 s 0 Os termos na linha s 3 são todos nulos Isso, quando ocorre, é sempre em linhas ímpares O polinômio auxiliar é dado por: P(s) = 2s 4 +48s 2 50 A derivada de P(s) em relação a s é dada por: 8 of 17 dp(s) ds = 8s 3 +96s
9 Exemplo (Continuação) O arranjo então é completado da seguinte forma: s s s s s 1 112,7 0 s 0-50 Como há mudanças de sinal na primeira coluna, há raízes no semi-plano direito e, portanto, o sistema é instável Em casos como esse, o polinômio auxiliar é um polinômio par (possui expoentes de s que são inteiros pares ou zero) Sempre é um fator do polinômio original, ou seja, as raízes de P(s) também são raízes do polinômio original 9 of 17 B A Angelico, P R Scalassara, A N Vargas, UTFPR, Brasil s 5 +2s 4 +24s 3 +48s 2 +25s +50 = ( 2s 4 +48s ) (0,5s +1) }{{} P(s)
10 Exemplo (Continuação) As raízes de um polinômio par ocorrem em pares que são iguais em magnitude, mas com sinais opostos Tais raízes podem ser em pares puramente reais e/ou pares puramente imaginários e/ou complexas Se complexas, as raízes ocorrem sempre em grupos de quatro, devido às raízes complexas conjugadas Neste caso 3, haverá apenas sistemas instáveis ou marginalmente estáveis Caso 4: Raízes duplas, triplas, etc no eixo imaginário É um caso patológico e o critério de Routh-Hurwitz não revela este tipo de instabilidade 10 of 17
11 Exemplo Considere a seguinte equação característica: Q(s) = (s +1)(s +j)(s j)(s +j)(s j) = s 5 +s 4 +2s 3 +2s 2 +s +1 = 0 s s Polinômio auxiliar P(s) = s 4 +2s 2 +1 s coeficientes de P (s) s Polinômio auxiliar R(s) = s 2 +1 s 1 2 coeficientes de R (s) s 0 1 Notequenãohouveinversãodesinais, oquegera umasituaçãofalsade sistema marginalmente estável No entanto, raízes repetidasno eixo imagináriolevam a termos do tipotsin(t+ φ) na resposta temporal, o que não é estável 11 of 17
12 Exemplo (Continuação) Novamente, os polinômios pares são fatores de Q(x), pois, Q(s) = (s +1)(s +j)(s j) (s +j)(s j) }{{}}{{} } R(s) R(s) {{ } P(s) Exemplo Considerando o sistema abaixo, determine o intervalo de valores de K para que haja estabilidade 12 of 17
13 Exemplo (Continuação) A função de transferência de malha fechada é dada por: Y(s) R(s) = K s(s 2 +s +1)(s +2)+K A equação característica é s 4 +3s 3 +3s 2 +2s +K = 0 Tem-se o seguinte arranjo s K s s 2 7/3 K s 1 2 (9/7)K s 0 K B A Angelico, P R Scalassara, A N Vargas, UTFPR, Brasil Para sistema estável (sem troca de sinais na primeira coluna), tem-se: 14 9 > K > 0 13 of 17
14 Exemplo (Continuação) Quando K = 14 9, o sistema é marginalmente estável Resposta ao degrau para alguns valores de K: 14 of 17
15 Homework Determine se o sistema representado por cada equação característica abaixo é Estável, Marginalmente estável, ou Instável e a Qtde de polos no semiplano direito sobre jω e semiplano esquerdo 15 of 17
16 Homework Determine o intervalo de valores de K t de modo a garantir a estabilidade do sistema abaixo 16 of 17
17 Dica de atividades Dica 1 Fazer os Exercícios apresentados no livro K OGATA, Engenharia de Controle Moderno 17 of 17
Estabilidade de Sistemas Lineares Realimentados
Estabilidade de Sistemas Lineares Realimentados 1. Conceito de estabilidade 2. Critério de estabilidade de Routh-Hurwitz p.1 Engenharia de Controle Aula 6 Estabilidade de Sistemas Lineares Realimentados
Pólos, Zeros e Estabilidade
Pólos, Zeros e Estabilidade Definindo Estabilidade A condição para estabilidade pode também ser expressa da seguinte maneira: se um sistema é estável quando sujeito a um impulso, a saída retoma a zero.
IV. ESTABILIDADE DE SISTEMAS LIT
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE IV. ESTABILIDADE DE SISTEMAS LIT Prof. Davi Antônio dos Santos ([email protected]) Departamento de
CRITÉRIO DE ESTABILIDADE DE ROUTH
ENGENHARIA ELETRÔNICA DAELN UTFPR Prof. Paulo R. Brero de Campos CRITÉRIO DE ESTABILIDADE DE ROUTH Um sistema será estável quando todos os polos estiverem no semiplano esquerdo do plano S. Exemplo: G(s)
AULA 3. CRITÉRIO DE ESTABILIDADE DE Routh-Hurwitz. Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I
Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I AULA 3 CRITÉRIO DE ESTABILIDADE DE Routh-Hurwitz PROF. DR. ALFREDO DEL SOLE LORDELO TELA CHEIA Critério de estabilidade de Routh A questão
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap6 Estabilidade Prof. Filipe Fraga Sistemas de Controle 1 6. Estabilidade 6.1 Introdução 6.2 Critério de Routh-Hurwitz
Controle de Processos Aula: Estabilidade e Critério de Routh
107484 Controle de Processos Aula: Estabilidade e Critério de Routh Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB)
Aula 9. Carlos Amaral Cristiano Quevedo Andrea. UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica
Aula 9 Carlos Amaral Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Abril de 2012. Resumo 1 Introdução - Estabilidade
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap6 Estabilidade Prof. Filipe Fraga Sistemas de Controle 1 6. Estabilidade 6.1 Introdução 6.2 Critério de Routh-Hurwitz
SC1 Sistemas de Controle 1. Cap. 2 - Estabilidade Prof. Tiago S Vítor
SC1 Sistemas de Controle 1 Cap. 2 - Estabilidade Prof. Tiago S Vítor Sumário 1. Introdução 2. Critério de Routh-Hurwitz 3. Critério de Routh-Hurwitz: Casos Especiais 4. Projeto de Estabilidade via Routh-Hurwitz
B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil
Estabilidade Estabilidade é um comportamento desejado em qualquer sistema físico. Sistemas instáveis tem comportamento, na maioria das vezes, imprevisível; por isso é desejável sempre garantirmos a estabilidade
SISTEMAS DE CONTROLE I Capítulo 6 - Estabilidade. Prof. M.e Jáder de Alencar Vasconcelos
SISTEMAS DE CONTROLE I Capítulo 6 - Estabilidade Prof. M.e Jáder de Alencar Vasconcelos CAPÍTULO 6 INTRODUÇÃO INTRODUÇÃO No Capítulo 1, vimos que três requisitos fazem parte do projeto de um sistema de
Pontifícia Universidade Católica de Goiás Escola de Engenharia. Aluno (a): Aula Laboratório 11 Cap 6 Estabilidade
Pontifícia Universidade Católica de Goiás Escola de Engenharia Laboratório ENG 3503 Sistemas de Controle Prof: Filipe Fraga 11 Aluno (a): Aula Laboratório 11 Cap 6 Estabilidade 1- Considerações teóricas:
PROJETO DE CONTROLADORES A PARTIR DO PLANO S. critério Routh-Hurwitz análise de estabilidade análise de desempenho
PROJETO DE CONTROLADORES A PARTIR DO PLANO S critério Routh-Hurwitz análise de estabilidade análise de desempenho Critério Routh-Hurwitz: análise da estabilidade Sistemas de primeira ordem: 1 x o (t)=
O lugar das raízes p. 1/54. O lugar das raízes. Newton Maruyama
O lugar das raízes p. 1/54 O lugar das raízes Newton Maruyama O lugar das raízes p. 2/54 Introdução Neste capítulo é apresentado o método do lugar das raízes, que consiste basicamente em levantar a localização
O método do lugar das raízes
4 O método do lugar das raízes 4.1 Introdução Neste capítulo é apresentado o método do lugar das raízes, que consiste basicamente em levantar a localização dos pólos de um sistema em malha fechada em função
Aula 11. Cristiano Quevedo Andrea 1. Curitiba, Outubro de DAELT - Departamento Acadêmico de Eletrotécnica
Aula 11 Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Outubro de 2011. Resumo 1 Introdução - Lugar das Raízes
Critério de Estabilidade de Routh-Hurwitz
Critério de Estabilidade de Routh-Hurwitz Carlos Eduardo de Brito Novaes carlosnovaes@aeducom http://professorcarlosnovaeswordpresscom de agosto de 1 1 Introdução Edward Routh apresentou em 1877 um algorítimo
VI. MÉTODO DO LUGAR GEOMÉTRICO DAS RAÍZES
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE VI. MÉTODO DO LUGAR GEOMÉTRICO DAS RAÍZES Prof. Davi Antônio dos Santos ([email protected]) Departamento
Aula 12 Root Locus LGR (Lugar Geométrico das Raízes) parte II
Aula 12 Root Locus LGR (Lugar Geométrico das Raízes) parte II Recapitulando (da parte I): Sistema de malha fechada K O Root Locus é o lugar geométrico dos polos do sistema de malha fechada, quando K varia.
Estabilidade de sistemas de controle lineares invariantes no tempo
Capítulo 2 Estabilidade de sistemas de controle lineares invariantes no tempo 2. Introdução Neste capítulo, vamos definir alguns conceitos relacionados à estabilidade de sistemas lineares invariantes no
O Papel dos Pólos e Zeros
Departamento de Engenharia Mecatrônica - EPUSP 27 de setembro de 2007 1 Expansão em frações parciais 2 3 4 Suponha a seguinte função de transferência: m l=1 G(s) = (s + z l) q i=1(s + z i )(s + p m ),
Estabilidade no Domínio da Freqüência
Estabilidade no Domínio da Freqüência 1. Motivação 2. Mapas de contorno no Plano-s 3. Critério de Nyquist pag.1 Controle de Sistemas Lineares Aula 16 Estabilidade no Domínio da Freqüência Como analisar
Sistemas de controle. Prof. André Schneider de Oliveira
Sistemas de controle Prof. André Schneider de Oliveira Estrutura da apresentação Conceitos fundamentais do sistemas de controle Características da resposta Introdução à estabilidade Polos e zeros Conceito
Lugar Geométrico das Raízes (Root Locus)
Lugar Geométrico das Raízes (Root Locus) ENGC4: Sistemas de Controle I Departamento de Engenharia Elétrica - DEE Universidade Federal da Bahia - UFBA 18 de janeiro de 016 Prof. Tito Luís Maia Santos 1/
Fundamentos de Controlo
Fundamentos de Controlo 3 a Série Estabilidade e Desempenho, Critério de Routh-Hurwitz, Rejeição de Perturbações, Sensibilidade à Variação de Parâmetros, Erros em Regime Estacionário. S3. Exercícios Resolvidos
Fundamentos de Controlo
Fundamentos de Controlo 4 a Série Root-locus: traçado, análise e projecto. S4.1 Exercícios Resolvidos P4.1 Considere o sistema de controlo com retroacção unitária representado na Figura 1 em que G(s) =
SC1 Sistemas de Controle 1. Cap. 3 Erros no Regime Estacionário Prof. Tiago S Vítor
SC1 Sistemas de Controle 1 Cap. 3 Erros no Regime Estacionário Prof. Tiago S Vítor Sumário 1. Introdução 2. Erro em regime estacionário de sistemas com realimentação unitária 3. Constantes de Erro Estático
J. A. M. Felippe de Souza 10 Estabilidade. 10 Estabilidade
J. A. M. Felippe de Souza 10 Estabilidade 10 Estabilidade 10.1 Introdução à Estabilidade 3 Definição 10.1 Estabilidade 3 Definição 10.2 - BIBO-estável 3 Teorema 10.1 Localização dos polos 4 Exemplo 10.1
6-Análise de estabilidade de sistemas feedback 6.1- Noções de estabilidade
6-Análise de estabilidade de sistemas feedback 6.- Noções de estabilidade Nos capítulos anteriores examinamos as características dinâmicas da resposta de sistemas em malha fechada e desenvolvemos a função
EES-20: Sistemas de Controle II. 20 Outubro 2017 (Tarde)
EES-20: Sistemas de Controle II 20 Outubro 2017 (Tarde) 1 / 58 Recapitulando: Modelo da planta amostrada G z G c s u k u t y t y k T T G(z) = (1 z 1 ) Z { } G c (s) s Importante: Trata-se de discretização
Um resumo das regras gerais para a construção do lugar das raízes p. 1/43. Newton Maruyama
Um resumo das regras gerais para a construção do lugar das raízes p. 1/43 Um resumo das regras gerais para a construção do lugar das raízes Newton Maruyama Um resumo das regras gerais para a construção
SCILAB: MÓDULO 4 SISTEMAS E CONTROLE
SCILAB: MÓDULO 4 SISTEMAS E CONTROLE Scilab 5.3.3 Dr.ª Eng.ª Mariana Santos Matos Cavalca O que é controlar? Função de Transferência: breve definição u(t) Sistema LIT y(t) Usualmente (sistemas próprios)
Análise do Lugar das Raízes
Análise do Lugar das Raízes A característica básica da resposta transitória de um sistema de malha fechada, depende essencialmente da localização dos pólos de malha fechada. É importante, então, que o
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. [email protected] Prof. Rafael Concatto Beltrame, Me.
Sistemas de Controle 2
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Cap.8 - Técnicas do Lugar das Raízes Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 2 Prof. Dr. Marcos Lajovic
Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Erros de Estado Estacionário Carlos Alexandre Mello 1 Introdução Projeto e análise de sistemas de controle: Resposta de Transiente Estabilidade Erros de Estado Estacionário (ou Permanente) Diferença entre
Resposta dos Exercícios da Apostila
Resposta dos Exercícios da Apostila Carlos Eduardo de Brito Novaes [email protected] 5 de setembro de 0 Circuitos Elétricos. Passivos a) b) V o (s) V i (s) 64s + 400 s + 96s + 400, v o ( ) v i ( )
Projeto de Filtros IIR. Métodos de Aproximação para Filtros Analógicos
Projeto de Filtros IIR Métodos de Aproximação para Filtros Analógicos Introdução Especificações para filtros passa-baixas analógicos - Faixa de passagem: 0 W W p - Faixa de rejeição: W W r - Ripple na
ANÁLISE DO MÉTODO DA RESPOSTA EM FREQÜÊNCIA
VIII- CAPÍTULO VIII ANÁLISE DO MÉTODO DA RESPOSTA EM FREQÜÊNCIA 8.- INTRODUÇÃO O método da resposta em freqüência, nada mais é que a observação da resposta de um sistema, para um sinal de entrada senoidal,
Método do lugar das Raízes
Guilherme Luiz Moritz 1 1 DAELT - Universidade Tecnológica Federal do Paraná 03 de 2013 Objetivos Entender os objetivos do método do lugar das raízes Aprender a traçar o lugar das raízes Interpretar o
O método do lugar das raízes
Capítulo 4 O método do lugar das raízes 4.1 Introdução Neste capítulo é apresentado o método do lugar das raízes, que consiste basicamente em levantar a localização dos pólos de um sistema em malha fechada
R + b) Determine a função de transferência de malha fechada, Y (s)
FUP IC Teoria do Controlo xercícios Análise de Sistemas ealimentados Teoria do Controlo xercícios Análise de Sistemas ealimentados AS Considere o sistema da figura ao lado: a) Determine a função de transferência
Compensadores: projeto no domínio da
Compensadores: projeto no domínio da frequência Relembrando o conteúdo das aulas anteriores: o Compensador (também conhecido como Controlador) tem o objetivo de compensar características ruins do sistema
O critério de Nyquist
O critério de Nyquist Critério de análise de estabilidade de sistemas dinâmicos lineares com realimentação negativa. Usa a função de transferência em malha aberta (antes da realimentação). É uma aplicação
Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros
107484 Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 2 o Semestre
Sintonia de Controladores PID
Sintonia de Controladores PID Objetivo: Determinar K p, K i e K d de modo a satisfazer especificações de projeto. Os efeitos independentes dos ganhos K p, K i e K d na resposta de malha fechada do sistema
Indice. Resposta forçada (condições iniciais nulas)
Indice 3.3 Inversão da TLP Fracções parciais Resolução equações diferenciais Polinómio característico Estabilidade resposta natural 3.4 Função de Transferência Estabilidade devido à entrada (resposta forçada)
RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE
RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE CCL Profa. Mariana Cavalca Baseado em: MAYA, Paulo Álvaro; LEONARDI, Fabrizio. Controle essencial. São Paulo: Pearson, 2011. OGATA, Katsuhiko. Engenharia de controle
Método de Nyquist. definições propriedades (Teorema de Cauchy) estabilidade Relativa. Margem de Ganho Margem de Fase
Método de Nyquist M O T I V A Ç Ã O F U N Ç Õ E S C O M P L E X A S definições propriedades (Teorema de Cauchy) C A M I N H O D E N Y Q U I S T D I A G R A M A S D E N Y Q U I S T C R I T É R I O D E E
EES-49/2012 Prova 2. Individual Duração: 100 minutos. Consulta permitida a uma página A4 com anotações pessoais e fórmulas.
EES-49/2012 Prova 2 Individual Duração: 100 minutos Consulta permitida a uma página A4 com anotações pessoais e fórmulas. Permitido o uso de calculadora para a realização de operações básicas, incluindo
Controle e Sistemas Não lineares
Controle e Sistemas Não lineares Prof. Marcus V. Americano da Costa F o Departamento de Engenharia Química Universidade Federal da Bahia Salvador-BA, 01 de dezembro de 2016. Sumário Objetivos Introduzir
Sistemas de Controle 2
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Cap.8 - Técnicas do Lugar das Raízes Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 2 Prof. Dr. Marcos Lajovic
Transformada de Laplace
Transformada de aplace Nas aulas anteriores foi visto que as ferramentas matemáticas de Fourier (série e transformadas) são de extrema importância na análise de sinais e de sistemas IT. Isto deve-se ao
Erro de Estado Estacionário
Erro de Estado Estacionário Carlos Eduardo de Brito Novaes [email protected] http://professorcarlosnovaes.wordpress.com 24 de agosto de 202 Introdução Um aspecto muito importante em um sistema de
Erro de Estado Estacionário
Erro de Estado Estacionário Carlos Eduardo de Brito Novaes [email protected] http://professorcarlosnovaes.wordpress.com 24 de agosto de 202 Introdução Um aspecto muito importante em um sistema de
Margem de Ganho e Margem de Fase Diagrama de Nichols
Departamento de Engenharia Química e de Petróleo UFF Margem de Ganho e Margem de Fase Diagrama de Nichols Outros Processos de Separação Critério de Estabilidade de Desenvolvido por Harry (1932) nos laboratórios
Resposta dinâmica. Prof. Alan Petrônio Pinheiro Universidade Federal de Uberlândia Faculdade de Engenharia Elétrica
Capítulo 6*: Resposta dinâmica Prof. Alan Petrônio Pinheiro Universidade Federal de Uberlândia Faculdade de Engenharia Elétrica [email protected] *Baseado no capítulo 3 do livro texto: Sistemas de Controle
Controle de Processos Aula 14: Critério de Estabilidade (Bode)
107484 Controle de Processos Aula 14: Critério de Estabilidade (Bode) Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2018 E. S. Tognetti (UnB)
SCS Sistemas de Controle / Servomecanismos. Aula 04 Diagrama do lugar geométrico das raízes
Aula 04 Diagrama do lugar geométrico das raízes Definição: O lugar das raízes de um sistema é um gráfico que representa a trajetória das raízes de sua equação característica pólos da função de transferência
PMR3404 Controle I Aula 3
PMR3404 Controle I Aula 3 Resposta estática Ações de controle PID Newton Maruyama 23 de março de 2017 PMR-EPUSP Classificação de sistemas de acordo com o seu desempenho em regime estático Seja o seguinte
2 a PROVA CONTROLE DINÂMICO Turma B 2 /2015
ENE/FT/UnB Departamento de Engenharia Elétrica Prova individual, sem consulta. Faculdade de Tecnologia É permitido usar calculadora. Universidade de Brasília Prof. Adolfo Bauchspiess Auditório SG11, 21/1/215,
Analise sistemas LCIT usando a Transformada de Laplace
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO
Sistemas de Controle 2
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Cap.10 Técnicas de Resposta em Frequência Prof. Dr. Marcos Lajovic Carneiro 10. Técnicas de Resposta de Frequência
Controle de Sistemas. Estabilidade. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas
Controle de Sitema Etabilidade Renato Dourado Maia Univeridade Etadual de Monte Claro Engenharia de Sitema Etabilidade: Uma Idéia Intuitiva... Etável... Neutro... Intável... 2/5 Etabilidade Ma o que é
PMR3404 Controle I Aula 2
PMR3404 Controle I Aula 2 Pólos e zeros, Estabilidade, Critério de Estabilidade de Routh-Hurwitz Newton Maruyama 16 de março de 2017 PMR-EPUSP Introdução Introdução O cálculo da resposta no domínio do
I Controle Contínuo 1
Sumário I Controle Contínuo 1 1 Introdução 3 1.1 Sistemas de Controle em Malha Aberta e em Malha Fechada................ 5 1.2 Componentes de um sistema de controle............................ 5 1.3 Comparação
Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos
107484 Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016
Conteúdo. Definições básicas;
Conteúdo Definições básicas; Caracterização de Sistemas Dinâmicos; Caracterização dinâmica de conversores cc-cc; Controle Clássico x Controle Moderno; Campus Sobral 2 Engenharia de Controle Definições
Resposta no Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Resposta no Tempo Carlos Alexandre Mello 1 Resposta no Tempo - Introdução Como já discutimos, após a representação matemática de um subsistema, ele é analisado em suas respostas de transiente e de estadoestacionário
AULA #12. Estabilidade de Sistemas de Controle por
AULA #12 Estabilidade de Sistemas de Controle por Realimentação Estabilidade de Sistemas de Controle por Realimentação A presença de medidores, controladores e elementos finais de controle afetam as características
CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA
CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA 4.. Introdução Pelo termo resposta em freqüência, entende-se a resposta em regime estacionário de um sistema com entrada senoidal. Nos métodos de resposta
Aula 6 Transformada de Laplace
Aula 6 Transformada de Laplace Introdução Propriedades da Transformada de Laplace Tabela Transformada ade Laplace Transformada Inversa de Laplace Função de transferência Definição: X s = L x t = s é uma
II. REVISÃO DE FUNDAMENTOS
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE II. REVISÃO DE FUNDAMENTOS Prof. Davi Antônio dos Santos ([email protected]) Departamento de Mecatrônica
UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA ELÉTRICA. Disciplina de Controle II Prof. MC. Leonardo Gonsioroski da Silva
UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA ELÉTRICA Disciplina de Controle II Prof. MC. Leonardo Gonsioroski da Silva 1. K. Ogata: Engenharia de Controle Moderno, 5 Ed., Pearson, 2011 2.
Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14
Sumário CAPÍTULO 1 Introdução 1 1.1 Sistemas de controle 1 1.2 Exemplos de sistemas de controle 2 1.3 Sistemas de controle de malha aberta e malha fechada 3 1.4 Realimentação 3 1.5 Características da realimentação
PROJETO DE FILTROS IIR
PROJETO DE FILTROS IIR INTRODUÇÃO Filtros IIR tem resposta ao impulso com duração infinita, então eles podem ser relacionados a filtros analógicos. Portanto a técnica básica para o projeto de filtro IIR
Princípios de Controle Robusto
Princípios de Controle Robusto ENGA71: Análise e Projeto de Sistemas de Controle Departamento de Engenharia Elétrica - DEE Universidade Federal da Bahia - UFBA 27 de junho de 2018 Sumário 1 Introdução
Representação e Análise de Sistemas Dinâmicos Lineares Componentes Básicos de um Sistema de Controle
Representação e Análise de Sistemas Dinâmicos Lineares 1 Introdução 11 Componentes Básicos de um Sistema de Controle Fundamentos matemáticos 1 Singularidades: Pólos e zeros Equações diferencias ordinárias
Modelagem Matemática de Sistemas
Modelagem Matemática de Sistemas Função de Transferência Caracterização da relação entre uma entrada e uma saída (SISO) de um dado sistema linear e invariante no tempo (LIT). Definida como a relação entre
Aula 3. Carlos Amaral Fonte: Cristiano Quevedo Andrea
Aula 3 Carlos Amaral Fonte: Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Marco de 2012. Resumo 1 Introdução 2 3
EES-49/2012 Prova 1. Q1 Dado o seguinte conjunto de equações:
Q1 Dado o seguinte conjunto de equações: EES-49/2012 Prova 1 Onde: h C é o sinal de entrada do sistema; θ é o sinal de saída do sistema; T P é uma entrada de perturbação; T T, T R e h R são variáveis intermediárias;
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES A função de transferência do circuito abaixo em malha fechada é: F(s) = C(s) = G(s)
Sistemas lineares. Aula 7 Transformada Inversa de Laplace
Sistemas lineares Aula 7 Transformada Inversa de Laplace Transformada Inversa de Laplace Transformada Inversa de Laplace e RDC x(t) única Metódos Inversão pela Definição Inversão pela Expansão em Frações
EES-49/2012 Correção do Exame. QBM1 Esboce o diagrama de Nyquist para a seguinte função de transferência:
EES-49/2012 Correção do Exame QBM1 Esboce o diagrama de Nyquist para a seguinte função de transferência: Analise a estabilidade do sistema em malha fechada (dizendo quantos polos instáveis o sistema tem
1. Sinais de teste. 2. Sistemas de primeira ordem. 3. Sistemas de segunda ordem. Especificações para a resposta
Desempenho de Sistemas de Controle Realimentados 1. Sinais de teste. Sistemas de primeira ordem 3. Sistemas de segunda ordem Especificações para a resposta Fernando de Oliveira Souza pag.1 Engenharia de
