Modelagem Matemática de Sistemas
|
|
|
- Mafalda Carmem Paiva Castilho
- 7 Há anos
- Visualizações:
Transcrição
1 Modelagem Matemática de Sistemas Função de Transferência Caracterização da relação entre uma entrada e uma saída (SISO) de um dado sistema linear e invariante no tempo (LIT). Definida como a relação entre as transformadas de Laplace da saída e da entrada, admitindo-se todas as condições iniciais nulas. 1 of 22
2 Considere o sistema LIT dado pela equação abaixo, sendo y a saída e x a entrada: a 0 (n) y +a 1 (n 1) y + a n 1 ẏ+a n y = b 0 (m) x +b 1 (m 1) x + +b m 1 ẋ+b m x, (n > m), A função de transferência desse sistema é dada por: G(s) = B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil L[saída] L[entrada] condições iniciais nulas = Y(s) X(s) = b 0s m +b 1 s m 1 + +b m 1 s +b m a 0 s n +a 1 s n 1 + +a n 1 s +a n Aplicando o teorema da convolução, pode-se verificar que: Y(s) = G(s)X(s) G(s) = Y(s) X(s) ou seja, a função de transferência de um sistema LIT é dada pela transformada de Laplace da resposta impulsiva g(t) desse sistema. A resposta impulsiva ou, alternativamente, a função de transferência G(s) de um sistema LIT caracteriza completamente esse sistema. 2 of 22
3 Análise da Resposta em Frequência Resposta em Frequência: resposta em regime permanente de um sistema a uma entrada senoidal. Os métodos de resposta em frequência foram desenvolvidos no período entre 1930 e 1940 por Nyquist, Bode, Nichols, entre outros. Testes de resposta em frequência são, em geral, simples e podem ser realizados com exatidão com a utilização de geradores senoidais com frequência variável. Considere o sistema LIT estável abaixo. Depois que as condições de regime permanente forem alcançadas, obtém-se a resposta em frequência fazendo-se s = jω em G(s), ou seja: 3 of 22 [ ] Re{G(jω)} G(jω) = G(jω) e j G(jω) = Me jφ(ω),φ(ω) = tan 1 Im{G(jω)}
4 Então aplicando-se uma entrada x(t) = Asin(ωt) obtém-se a saída estacionária (após passado muito tempo) no qual B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil y ss (t) = A G(jω) sin(ωt +φ(ω)) φ(ω) = arctan [ ] ImG(jω) ReG(jω) Portanto, a resposta de um sistema LIT estável à uma entrada senoidal com frequência ω é também um sinal senoidal com a mesma frequência, mas com amplitude ponderada pelo módulo da função de transferência (em ω) e com desvio de fase igual ao ângulo da função de transferência (em ω). 4 of 22
5 Considere uma entrada x(t) = A sin(ωt) no sistema abaixo. A função de transferência pode ser escrita como G(jω) = Note que: K 1+jTω = K(1 jtω) (1+jTω)(1 jtω) = K ReG(jω) = T 2 ω 2 +1 ImG(jω) = ωt T 2 ω 2 +1 K T 2 ω 2 +1 jωt T 2 ω of 22
6 Exemplo Determine módulo e fase de G(s) = 1 s +1 avaliado para entrada x(t) = 2 sin(ωt). Solução: O módulo é G(jω) = ReG(jω) 2 +ImG(jω) 2 1 = 2 (ω 2 +1) 2 + ω 2 (ω 2 +1) 2 A fase é φ(ω) = arctan = 1 ω2 +1 [ ] ImG(jω) = arctan(ω). ReG(jω) Homework Escolha vários valores de 0 ω < e calcule o módulo e fase usando o resultado acima. Trace o gráfico polar. 6 of 22
7 Quando φ(ω) > 0 dizemos que o sistema realiza avanço de fase. Quando φ(ω) < 0 dizemos que o sistema realiza atraso de fase. Exemplo B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil G(s) = s +1/T 1 s +1/T 2 Encontre a resposta em frequência para o sinal de entrada x(t) = sin(ωt) e determine se tal rede é de avanço ou atraso de fase. Solução: Note que G(jω) = jω +1/T 1 jω +1/T 2 = T 2 T 1 1+T 1 jω 1+T 2 jω Disto tem-se G(jω) = T 2 1+T 2 1 ω 2 T 1 1+T 2 2 ω 2, φ(ω) = G(jω) = arctan(t 1ω) arctan(t 2 ω) Logo, se T 1 > T 2 então φ(ω) > 0 [é avanço]; caso contrário quando ocorre T 1 < T 2 é atraso. 7 of 22
8 Gráfico Polar O gráfico polar é obtido fazendo-se a frequência ω variar desde 0 a. Para obterográfico, fixeumvalorω qualqueredesenheuma setapartindoda origem com tamanho G(jω) e ângulo de abertura em relação a origem no valor φ(ω) (veja a figura representanto φ(ω 1 ) = 45 o ). 8 of 22
9 Fatores integrativo e derivativo (jω) 1 : Para o termo (jω) 1, tem-se: G(jω) = 1 jω = 1 ω 90 Portanto, o digrama polar de (jω) 1 é o imaginário negativo. Similarmente, o digrama polar de (jω) é o imaginário positivo. Fatores de primeira ordem (1+jωT) 1 : Para o termo (1+jωT) 1, tem-se: Note que: G(jω) = B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil 1 1+jωT = 1 (ωt) 1+ω2 T 2 tan 1 G(j0) = 1 0 ; G(j1/T) = ; G(j ) of 22
10 O diagrama polar de (1+jωT) 1 descreve uma semicircunferência semelhante a essa da figura abaixo. O diagrama polar de (1+jωT) é a semicircunferência acima refletida sobre o eixo horizontal. 10 of 22
11 Fator quadrático: [ 1+2ζ(jω/ω n )+(jω/ω n ) 2] 1 : Para o termo G(jω) = 1+2ζ 1 ) (j ωωn + (j ωωn ) 2, com ζ > 0, as porções relativas às baixas e às altas frequências são, respectivamente, dadas por: lim G(jω) = ω ; lim G(jω) = ω O diagrama polarpara essa função de transferência se inicia em 1 0 e termina em A forma exata depende de ζ, mas a forma geral é a mesma para o caso subamortecido como para o caso superamortecido. Para o caso subamortecido, a frequência na qual o lugar geométrico de G(jω) cruza o eixo imaginário é a frequência natural não amortecida. 11 of 22
12 12 of 22 B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil
13 Fator quadrático: [ 1+2ζ(jω/ω n )+(jω/ω n ) 2] : ) ) 2 G(jω) = 1+2ζ (j ωωn + (j ωωn ) ) = (1 ω2 +j (2ζ ωωn. (1) Pode-se observar que B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil ω 2 n lim G(jω) = ω ; lim G(jω) = ω of 22
14 Desenhando o Gráfico Polar Considere uma função de transferência G(s) qualquer e suponha que desejamos obter o seu Gráfico Polar. Os passos a seguir auxiliam nessa tarefa. Passo 1: Reescreva G(s) na forma Determine o valor m. Note que m é o numero inteiro do fator (jω) m. Dizemos que o sistema é Tipo 1 se m = 1; é Tipo 2 se m = 2;... é Tipo p se m = p. Passo 2: Determine módulo e fase de G(jω) quando lim G(jω) ω 0 lim G(jω) ω 14 of 22
15 Desenhando o Gráfico Polar Passo 3: Determine ω 1 e ω 2 tal que Re[G(jω 1 )] = 0 Im[G(jω 2 )] = 0 Passo 4: Calcule o módulo e fase de G(jω) para alguns valores de ω entre 0 e. Passo 5: Compare os dados obtidos nos passos anteriores com a forma-padrão dos Gráficos (veja a próxima página). 15 of 22
16 16 of 22 B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil
17 Exemplos: Gráfico Polar 17 of 22
18 Exemplos: Gráfico Polar 18 of 22
19 Exemplos: Gráfico Polar 19 of 22
20 Exemplos: Gráfico Polar 20 of 22
21 Exemplos: Gráfico Polar 21 of 22
22 Homework Desenhe o Gráfico Polar de cada função de transferência a seguir: 1 (a)g(s) = (1+s)(1+2s) 1 (c)g(s) = s(1+s) 1 (e)g(s) = s 2 (1+s) 1+4s (g)g(s) = (1+s)(1+2s) 1 (b)g(s) = (1+s)(1+2s)(1+3s) 1 (d)g(s) = s(1+s)(1+2s)(1+3s) 1 (f)g(s) = s 2 (1+s)(1+2s) 22 of 22
Sistemas de Controle
Sistemas de Controle Adriano Almeida Gonçalves Siqueira Aula 8 - Resposta em Frequência Sistemas de Controle p. 1/46 Introdução Método da Resposta em Frequência Análise do sistema a partir da resposta
B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil. Constituídodedoisgráficos: umdomóduloemdecibel(db) outrodoângulo de fase;
Diagramas de Bode Constituídodedoisgráficos: umdomóduloemdecibel(db) outrodoângulo de fase; Ambos são traçados em relação à frequência em escala logarítmica; LembrequeologaritmodomódulodeG(jω) é20log 10
Introdução Diagramas de Bode Gráficos Polares Gráfico de Amplitude em db Versus Fase. Aula 14. Cristiano Quevedo Andrea 1
Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Outubro 2012. 1 / 48 Resumo 1 Introdução 2 Diagramas de Bode 3
Aula 4 - Resposta em Frequência, Sensibilidade, Margem de Ganho e Margem de Fase, Controle em Avanço e Atraso, Critério de Nyquist
Aula 4 - Resposta em Frequência, Sensibilidade, Margem de Ganho e Margem de Fase, Controle em Avanço e Atraso, Critério de Nyquist Universidade de São Paulo Introdução Método da Resposta em Frequência
Métodos de Resposta em Freqüência
Métodos de Resposta em Freqüência 1. Motivação 2. Gráficos de resposta em freqüência pag.1 Controle de Sistemas Lineares Aula 12 Métodos de Resposta em Freqüência Origem do termo? Entende-se por resposta
Aula 18: Projeto de controladores no domínio da frequência
Aula 18: Projeto de controladores no domínio da frequência prof. Dr. Eduardo Bento Pereira Universidade Federal de São João del-rei [email protected] 26 de outubro de 2017. prof. Dr. Eduardo Bento Pereira
Aula 13 Análise no domínio da frequência
Aula 13 Análise no domínio da frequência A resposta em frequência é a resposta do sistema em estado estacionário (ou em regime permanente) quando a entrada do sistema é sinusoidal. Métodos de análise de
Controle de Processos Aula: Análise da Resposta em Frequência
107484 Controle de Processos Aula: Análise da Resposta em Frequência Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB)
RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE
RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE CCL Profa. Mariana Cavalca Baseado em: MAYA, Paulo Álvaro; LEONARDI, Fabrizio. Controle essencial. São Paulo: Pearson, 2011. OGATA, Katsuhiko. Engenharia de controle
Método da Resposta da Freqüência
Método da Resposta da Freqüência Introdução; Gráfico de Resposta de Freqüência; Medidas de Resposta de Freqüência; Especificação de Desempenho no Domínio da Freqüência; Diagrama Logarítmicos e de Magnitude
B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil
Estabilidade Estabilidade é um comportamento desejado em qualquer sistema físico. Sistemas instáveis tem comportamento, na maioria das vezes, imprevisível; por isso é desejável sempre garantirmos a estabilidade
Aula 9. Diagrama de Bode
Aula 9 Diagrama de Bode Hendrik Wade Bode (americano,905-98 Os diagramas de Bode (de módulo e de fase são uma das formas de caracterizar sinais no domínio da frequência. Função de Transferência Os sinais
Métodos de Resposta em Freqüência
Métodos de Resposta em Freqüência 1. Sistemas de fase mínima 2. Exemplo de traçado do diagrama de Bode 3. Medidas da resposta em freqüência 4. Especificações de desempenho no domínio da freqüência pag.1
Fundamentos de Controle
Fundamentos de Controle Análise de resposta transitória. Sistemas de primeira e segunda ordem. Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina,
0.1 Conceitos básicos
Analise por resposta em frequencia 0 Conceitos básicos O método de análise por resposta em freqüência, desenvolvido anteriormente ao método do lugar das raízes, data do período de930 a 940 e foi apresentado
R + b) Determine a função de transferência de malha fechada, Y (s)
FUP IC Teoria do Controlo xercícios Análise de Sistemas ealimentados Teoria do Controlo xercícios Análise de Sistemas ealimentados AS Considere o sistema da figura ao lado: a) Determine a função de transferência
Transformada de Laplace
Sinais e Sistemas Transformada de Laplace [email protected] Instituto Superior Técnico Sinais e Sistemas p.1/60 Resumo Definição da transformada de Laplace. Região de convergência. Propriedades da transformada
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap4 Resposta no Domínio do Tempo Prof. Filipe Fraga Sistemas de Controle 1 4. Resposta no Domínio do Tempo 4.1 Introdução
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. [email protected] Prof. Rafael Concatto Beltrame, Me.
Papel Bode 2. Papel Bode 3
Departamento de Engenharia Química e de Petróleo UFF Disciplina: TEQ- CONTROLE DE PROCESSOS custo Diagrama Outros Processos de Bode: Traçado Separação por assíntotas Prof a Ninoska Bojorge Papel Bode Papel
Aula 19: Projeto de controladores no domínio da frequência
Aula 19: Projeto de controladores no domínio da frequência prof. Dr. Eduardo Bento Pereira Universidade Federal de São João del-rei [email protected] 14 de novembro de 2017. prof. Dr. Eduardo Bento Pereira
Controle de Processos Aula: Sistemas de 1ª e 2ª ordem
107484 Controle de Processos Aula: Sistemas de 1ª e 2ª ordem Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB) Controle
Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação
Departamento de Engenharia Química e de Petróleo UFF Disciplina: TEQ1- CONTROLE DE PROCESSOS custo Diagrama de Bode Outros Processos de Separação Prof a Ninoska Bojorge Informação Papel Bode 1 3 Papel
Aula 05 Transformadas de Laplace
Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número
Aula 05 Transformadas de Laplace
Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número
Compensadores: projeto no domínio da
Compensadores: projeto no domínio da frequência Relembrando o conteúdo das aulas anteriores: o Compensador (também conhecido como Controlador) tem o objetivo de compensar características ruins do sistema
O Papel dos Pólos e Zeros
Departamento de Engenharia Mecatrônica - EPUSP 27 de setembro de 2007 1 Expansão em frações parciais 2 3 4 Suponha a seguinte função de transferência: m l=1 G(s) = (s + z l) q i=1(s + z i )(s + p m ),
Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial
Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de
Faculdade de Engenharia da UERJ - Departamento de Engenharia Elétrica Controle & Servomecanismo I - Prof.: Paulo Almeida Exercícios Sugeridos
Faculdade de Engenharia da UERJ Departamento de Engenharia Elétrica Controle & Servomecanismo I Prof.: Paulo Almeida Exercícios Sugeridos Estabilidade, Resposta Transitória e Erro Estacionário Exercícios
Análise de Sistemas no Domínio da Freqüência. Diagrama de Bode
Análise de Sistemas no Domínio da Freqüência Diagrama de Bode Análise na Freqüência A análise da resposta em freqüência compreende o estudo do comportamento de um sistema dinâmico em regime permanente,
Representação e Análise de Sistemas Dinâmicos Lineares Componentes Básicos de um Sistema de Controle
Representação e Análise de Sistemas Dinâmicos Lineares 1 Introdução 11 Componentes Básicos de um Sistema de Controle Fundamentos matemáticos 1 Singularidades: Pólos e zeros Equações diferencias ordinárias
ANÁLISE DO MÉTODO DA RESPOSTA EM FREQÜÊNCIA
VIII- CAPÍTULO VIII ANÁLISE DO MÉTODO DA RESPOSTA EM FREQÜÊNCIA 8.- INTRODUÇÃO O método da resposta em freqüência, nada mais é que a observação da resposta de um sistema, para um sinal de entrada senoidal,
Critério de Estabilidade: Routh-Hurwitz
Critério de Estabilidade: Routh-Hurwitz O Critério de Nyquist foi apresentado anteriormente para determinar a estabilidade de um sistema em malha fechada analisando-se sua função de transferência em malha
Estabilidade no Domínio da Freqüência
Estabilidade no Domínio da Freqüência 1. Estabilidade relativa e o critério de Nyquist: margens de ganho e fase 2. Critérios de desempenho especificados no domínio da freqüência Resposta em freqüência
Sistemas lineares. Aula 7 Transformada Inversa de Laplace
Sistemas lineares Aula 7 Transformada Inversa de Laplace Transformada Inversa de Laplace Transformada Inversa de Laplace e RDC x(t) única Metódos Inversão pela Definição Inversão pela Expansão em Frações
Fundamentos de Controle
Fundamentos de Controle Modelagem matemática de sistemas de controle Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui
Sistemas de Controle 2
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Cap.10 Técnicas de Resposta em Frequência Prof. Dr. Marcos Lajovic Carneiro 10. Técnicas de Resposta de Frequência
UNIVERSIDADE DO ALGARVE
UNIVERSIDADE DO ALGARVE FACULDADE DE CIÊNCIAS E TECNOLOGIA Departamento de Engenharia Electrónica e Informática SISTEMAS DE CONTROLO Problemas Ano lectivo de 20062007 Licenciatura em Engenharia de Sistemas
DIAGRAMAS DE BODE, NYQUIST E NICHOLS
DIAGRAMAS DE BODE, NYQUIST E NICHOLS Os diagramas de resposta em freqüência são muito úteis para analisar a estabilidade de um sistema realimentado. Existem 3 formas de analisar a resposta em freqüência
Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos
107484 Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016
TRANSFORMADA DE LAPLACE E OPERADORES LINEARES
TRANSFORMADA DE LAPLACE E OPERADORES LINEARES O DOMÍNIO DE LAPLACE Usualmente trabalhamos com situações que variam no tempo (t), ou seja, trabalhamos no domínio do tempo. O domínio de Laplace é um domínio
Aula 3. Carlos Amaral Fonte: Cristiano Quevedo Andrea
Aula 3 Carlos Amaral Fonte: Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Marco de 2012. Resumo 1 Introdução 2 3
Modelagem de Sistemas de Controle por Espaço de Estados
Modelagem de Sistemas de Controle por Espaço de Estados A modelagem por espaço de estados possui diversas vantagens. Introduz a teoria conhecida como Controle Moderno ; Adequada para sistemas de múltiplas
EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 2 quadrimestre 2011
EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares quadrimestre 0 (P-0003D) (HAYKIN, 00, p 9) Use a equação de definição da TF para obter a representação no domínio da
O critério de Nyquist
O critério de Nyquist Critério de análise de estabilidade de sistemas dinâmicos lineares com realimentação negativa. Usa a função de transferência em malha aberta (antes da realimentação). É uma aplicação
Aula 6 Transformada de Laplace
Aula 6 Transformada de Laplace Introdução Propriedades da Transformada de Laplace Tabela Transformada ade Laplace Transformada Inversa de Laplace Função de transferência Definição: X s = L x t = s é uma
V. ANÁLISE NO DOMÍNIO DO TEMPO
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE V. ANÁLISE NO DOMÍNIO DO TEMPO Prof. Davi Antônio dos Santos ([email protected]) Departamento de
Aula 9. Carlos Amaral Cristiano Quevedo Andrea. UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica
Aula 9 Carlos Amaral Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Abril de 2012. Resumo 1 Introdução - Estabilidade
ANÁLISE DE SINAIS DINÂMICOS
ANÁLISE DE SINAIS DINÂMICOS Paulo S. Varoto 7 . - Classificação de Sinais Sinais dinâmicos são geralmente classificados como deterministicos e aleatórios, como mostra a figura abaixo: Periódicos Determinísticos
Estabilidade. 1. Estabilidade Entrada-Saída Sistemas LIT. 2. Estabilidade BIBO Sistemas LIT. 3. Estabilidade BIBO de Equações Dinâmicas Sistemas LIT
Estabilidade 1. Estabilidade Entrada-Saída Sistemas LIT 2. Estabilidade BIBO Sistemas LIT 3. Estabilidade BIBO de Equações Dinâmicas Sistemas LIT 4. Sistemas Discretos LIT 5. Estabilidade BIBO Sistemas
PMR3404 Controle I Aula 2
PMR3404 Controle I Aula 2 Pólos e zeros, Estabilidade, Critério de Estabilidade de Routh-Hurwitz Newton Maruyama 16 de março de 2017 PMR-EPUSP Introdução Introdução O cálculo da resposta no domínio do
Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica. Sistemas de Controle Realimentados
Margens de Estabilidade Introdução Margens de Fase e de Ganho Exemplos Problemas Propostos 1 Margens de Estabilidade Definições: Diz-se que um sistema LTI é absolutamente estável se todas as raízes da
1. Sinais de teste. 2. Sistemas de primeira ordem. 3. Sistemas de segunda ordem. Especificações para a resposta
Desempenho de Sistemas de Controle Realimentados 1. Sinais de teste. Sistemas de primeira ordem 3. Sistemas de segunda ordem Especificações para a resposta Fernando de Oliveira Souza pag.1 Engenharia de
Estabilidade de sistemas de controle lineares invariantes no tempo
Capítulo 2 Estabilidade de sistemas de controle lineares invariantes no tempo 2. Introdução Neste capítulo, vamos definir alguns conceitos relacionados à estabilidade de sistemas lineares invariantes no
Introdução aos Circuitos Elétricos
1 / 47 Introdução aos Circuitos Elétricos Séries e Transformadas de Fourier Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia 2 / 47 Séries e Transformadas
Métodos Matemáticos para Engenharia
Métodos Matemáticos para Engenharia Transformada de Laplace Docentes: > Prof. Fabiano Araujo Soares, Dr. Introdução Muitos parâmetros em nosso universo interagem através de equações diferenciais; Por exemplo,
B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil
Função de Transferência Relação Entrada-Saída Desejamos obter a expressão M(s) = Y(s) R(s) Para obter essa expressão, devemos realizar uma analise de algebra de blocos. Perceba que a relação entre o sinal
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap4 Resposta no Domínio do Tempo Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos Lajovic
ADL Sistemas de Segunda Ordem Subamortecidos
ADL19 4.6 Sistemas de Segunda Ordem Subamortecidos Resposta ao degrau do sistema de segunda ordem genérico da Eq. (4.22). Transformada da resposta, C(s): (4.26) Expandindo-se em frações parciais, (4.27)
Sinais e Sistemas. Tempo para Sistemas Lineares Invariantes no Tempo. Representações em Domínio do. Profª Sandra Mara Torres Müller.
Sinais e Sistemas Representações em Domínio do Tempo para Sistemas Lineares Invariantes no Tempo Profª Sandra Mara Torres Müller Aula 7 Representações em Domínio do Tempo para Sistemas Lineares e Invariantes
Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros
107484 Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 2 o Semestre
Transformada Z. Transformada Z
Semelhante ao apresentado anteriormente, entre a relação das transformadas de Fourier e de Laplace, será visto que a generalização da representação senoidal complexa de um sinal de tempo discreto pela
Pelo gráfico pode-se perceber que existe atraso na resposta, portanto o modelo adequado é o de 1ª ordem mais tempo morto, que se dá por:
TEQ00 - Lista 3 Controle de Processos Monitoria º Semestre 013 Resolução 1- a) Pelo gráfico pode-se perceber que existe atraso na resposta, portanto o modelo adequado é o de 1ª ordem mais tempo morto,
Capítulo 10. Técnicas de Resposta de Freqüência
Capítulo 10 Técnicas de Resposta de Freqüência Fig.10.1 O Analisador Dinâmico de Sinal HP 35670A obtém dados de resposta de freqüência de um sistema físico. Os dados exibidos podem ser usados para analisar,
I Controle Contínuo 1
Sumário I Controle Contínuo 1 1 Introdução 3 1.1 Sistemas de Controle em Malha Aberta e em Malha Fechada................ 5 1.2 Componentes de um sistema de controle............................ 5 1.3 Comparação
Desempenho de Sistemas de Controle Realimentados. 3. Efeitos de um terceiro pólo e um zero na resposta de um sistema de segunda ordem
Desempenho de Sistemas de Controle Realimentados 1. Sinais de teste 2. Desempenho de sistemas de segunda ordem 3. Efeitos de um terceiro pólo e um zero na resposta de um sistema de segunda ordem 4. Estimação
Circuitos Elétricos II
Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Ganho e Deslocamento de Fase Função de Rede (ou de Transferência) Estabilidade 1 Definições
Método do lugar das Raízes
Guilherme Luiz Moritz 1 1 DAELT - Universidade Tecnológica Federal do Paraná 03 de 2013 Objetivos Entender os objetivos do método do lugar das raízes Aprender a traçar o lugar das raízes Interpretar o
Sinais e Sistemas p.1/33
Resumo Sinais e Sistemas Transformada de Fourier de Sinais Contínuos [email protected] Representação de sinais aperiódicos Transformada de Fourier de sinais periódicos Propriedades da transformada de Fourier
Sistemas de Controle 2
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Cap.10 Técnicas de Resposta em Frequência Prof. Dr. Marcos Lajovic Carneiro 10. Técnicas de Resposta de Frequência
2/47. da matemática é ainda de grande importância nas várias áreas da engenharia. Além disso, lado de Napoleão Bonaparte. 1/47
Introdução aos Circuitos Elétricos Séries e Transformadas de Fourier Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia Sinais: conjunto de dados ou informação
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. [email protected] Prof. Rafael Concatto Beltrame, Me.
INTRODUÇÃO À ANALISE DE SINAIS ELT 032
INTRODUÇÃO À ANALISE DE SINAIS ELT 032 Prof. Jeremias Barbosa Machado Introdução Neste capítulo estudaremos as Transformadas de Laplace. Elas apresentam uma representação de sinais no domínio da frequência
Projeto de Compensadores no Domínio da Frequência
Projeto de Compensadores no Domínio da Frequência Maio de 214 Loop Shaping I No projeto de compensadores no domínio da frequência, parte-se do pressuposto de que o sistema a ser controlado pode ser representado
Fundamentos de Controlo
Fundamentos de Controlo a Série Resposta no Tempo de Sistemas Causais. S.1 Exercícios Resolvidos P.1 Seja H(s) = s (s + ) a função de transferência de um SLIT contínuo causal. Qual dos sinais da Figura
Sistemas a Tempo Discreto
Sistemas a Tempo Discreto 1. Caracterização de sistemas dinâmicos a tempo discreto 2. Transformada-Z 3. FT discreta, estabilidade e analogia com domínio-s 4. Sistemas amostrados 4.1 Amostragem e retenção
Descrição de Incertezas e Estabilidade Robusta
Descrição de Incertezas e Estabilidade Robusta 1. Estabilidade robusta? 1.1. Função de transferência nominal e critério de estabilidade robusta 2. Caracterizando modelos de incertezas não-estruturadas
Análise de Sistemas em Tempo Discreto usando a Transformada Z
Análise de Sistemas em Tempo Discreto usando a Transformada Z Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco
Projeto através de resposta em frequência
Guilherme Luiz Moritz 1 1 DAELT - Universidade Tecnológica Federal do Paraná 04 de 2013 Objetivos Refoçar o conceito das características da resposta em frequência Saber utilizar o diagrama para projeto
Aula 11. Cristiano Quevedo Andrea 1. Curitiba, Outubro de DAELT - Departamento Acadêmico de Eletrotécnica
Aula 11 Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Outubro de 2011. Resumo 1 Introdução - Lugar das Raízes
O lugar das raízes p. 1/54. O lugar das raízes. Newton Maruyama
O lugar das raízes p. 1/54 O lugar das raízes Newton Maruyama O lugar das raízes p. 2/54 Introdução Neste capítulo é apresentado o método do lugar das raízes, que consiste basicamente em levantar a localização
