Circuitos Elétricos II

Tamanho: px
Começar a partir da página:

Download "Circuitos Elétricos II"

Transcrição

1 Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Ganho e Deslocamento de Fase Função de Rede (ou de Transferência) Estabilidade 1

2 Definições Ganho? Deslocamento de fase? Função de transferência? Como a impedância dos capacitores e indutores do circuito varia com a frequência, consequentemente, essas três propriedades são funções da frequência. 2

3 Definição de Ganho Ganho: é um parâmetro que expressa a relação entre a intensidade do sinal de saída e a intensidade do sinal de entrada. No caso de sinais senoidais em circuitos lineares, o ganho é a razão entre a amplitude da senoide da saída e a amplitude da senoide da entrada. 3

4 Definição de Deslocamento de Fase Deslocamento de fase: é um parâmetro que descreve a relação entre o ângulo de fase do sinal de saída e o ângulo de fase do sinal de entrada. No caso de sinais senoidais em circuitos lineares, o deslocamento de fase é a diferença entre o ângulo de fase da senoide de saída e o ângulo de fase da senoide de entrada. 4

5 Ganho e Deslocamento de Fase 5

6 Ganho e Deslocamento de Fase v in (t) v out (t) 6

7 Ganho e Deslocamento de Fase Resposta em frequência 7

8 Definição de Ressonância Ressonância é uma condição em um circuito RLC no qual as reatâncias capacitivas e indutivas são iguais em módulo. 8

9 Exemplo A I s = V(s) R V(s) I(s) = V(s) + CsV s + Ls Ls CLs 2 + L R s + 1 x 1 LC x 1 LC 9

10 Exemplo A (cont.) V(s) I(s) = s/c s RC s + 1 LC Equação característica s RC s + 1 LC = 0 r 1,2 = 1 2RC ± 1 2RC 2 1 LC α α 2 ω 0 2 s 2 + 2αs + ω 0 2 = 0 (frequência de ressonância) ω 0 = 1 LC rad/s r 1,2 = α ± jω d ω d = ω o 2 α 2 (freq. de amortecimento) (fator de amortecimento) α = 1 2RC Np/s 10

11 Fator de Qualidade O de fator de qualidade do circuito ressonante (Q) expressa a rapidez com a qual Z diminui para valores da frequência maiores ou menores que a frequência de ressonância. No caso de sinais sinusoidais: Q = R C L 11

12 Fator de Qualidade O de fator de qualidade do circuito ressonante (Q) 12

13 Exemplo V(s) I(s) = Z(s) = s/c s RC s + 1 LC C=100 uf L=1 mh R=100Ω Q=31,623 C=100 uf L=1 mh R=10kΩ Q=3162,3 13

14 Funções de Rede (ou de Transferência) u(t) Circuito Linear y(t) Função de Rede: G(s) condições iniciais nulas G(s) não depende da excitação 14

15 Funções de Rede e Resposta Forçada Conhecendo-se a Função de Transferência de um circuito linear, é possível obter a resposta forçada a qualquer excitação e(t): Domínio s L L 1 y t Y s G s E s 1 1 f( ) L L 1 f( ) ( ). ( ) Tempo e (t) y f (t) 15

16 Exemplo B e g (t) 2Ω 1H e g (t) = 4.H(t) i(0-) = 4A ; i =? E.D.O.: di() t L Ri( t) eg ( t) dt di(t) + 2i t dt = e g (t) L di(t) + 2i t dt = L e g (t) si s i 0 + 2I s = E g (s) I s s + 2 = E g s + i(0 ) LL I s = E g(s) (s + 2) + i(0 ) (s + 2) resposta forçada L 16

17 Exemplo B (cont.) G s = Y(s) U(s) c.i.n. = I(s) E g (s) c.i.n. = 1 (s + 2) [ função de rede G(s) ] Resposta forçada ao degrau: e(t)= 4H(t) I ( s) G( s). E( s) f 4/ s ( s 2) L 1 1 2t L if t e ( ) 2 2 [A,s] forçada (transitório+permanente) Resposta forçada ao impulso: e(t)= 4(t) I ( s) G( s). E( s) f 4 ( s 2) 1 L 1 L i t 2t f ( ) 4 e [A,s] forçada (transitório) 17

18 Obtenção de Função de Rede 18

19 Tipos de Funções de Rede Funções de Entrada (circuitos de 1 porta, 2 terminais) 19

20 Tipos de Funções de Rede Funções de Transferência (circuitos de 2 portas, 4 terminais) 20

21 Exemplo C Circuito de segunda ordem A função de transferência depende do sinal que é definido como saída. Como um circuito pode ter múltiplas fontes, podem existir várias funções de transferência. I( s) 1 sc H ( s) V ( s) R sl 1/ Cs s LC RCs 1 1 c. i. n. 2 g H V( s) 1/ Cs 1 ( s) V ( s) R sl 1/ Cs s LC RCs 1 2 c. i. n. 2 g 21

22 Resposta Impulsiva A Resposta Impulsiva é a anti-transformada da Função de Rede 22

23 Resposta Impulsiva Com a resposta ao impulso do sistema, é possível obter a função de transferência do sistema. 23

24 Exemplo D: resposta ao impulso unitário Circuito de primeira ordem 2Ω e g (t) 1H G s = Y(s) U(s) c.i.n. = I(s) E g (s) c.i.n. = 1 (s + 2) Resposta Impulsiva: e g (t) = (t) e i(0-)=0 g( t) L L 1 ( ) 1 G s g t e H t 2t ( ). ( ) [V,s] 24

25 Exemplo E: resposta ao impulso unitário Circuito RLC série sub-amortecido ou oscilatório R=0,2 Ω L=1H C=1F α = R 2L = 0,1 Np s LC 1 rd / 2 2 d 0 0,995 rd / s s Gs ( ) Vs ( ) 1 c. i. n. 2 V ( s) s LC RCs 1 g g( t) L ( ) 1 G s 25

26 Resposta transitória e permanente Considerando: Y(s) = G(s)X(s) Função de transferência entrada Os termos gerados pelos pólos de G(s) dão origem à componente transitória da resposta global, Enquanto que, os termos gerados pelos pólos de X(s) dão origem à componente permanente da resposta global. 26

27 Exemplo F A fonte vg é a alimentação e vo a saída. Determine: A expressão numérica para a função de transferência; Os valores de pólos e zeros. Domínio t Domínio s 27

28 Exemplo F (cont.) Vo Vg 1000 Vo 250 0,05s Vo. s p1=-3000+j4000 H ( s) Vo Vg s ( s 5000) 6000s p2=-3000-j4000 z1=

29 Exemplo F (cont.) Considere que o circuito é alimentado por uma fonte de tensão que aumenta linearmente com o tempo, isto é, vg = 50tu(t). Use a função de transferência para determinar vo. Identifique a componente transitória da resposta. Identifique a componente de regime permanente da resposta. H ( s) Vo Vg s ( s 5000) 6000s V g s = L 50tu(t) = 50 s 2 Vo s ( s 5000) 6000s s 29

30 30 Exemplo F (cont.) V t t e vo t ] ,70º ).cos(4000 [22, s s j s j s Vo ,7º 11, ,7º 11, ) 1000( s s s s Vo transitória permanente

31 Exemplo F (cont.) transitória 22, e 3000t.cos(4000t 79,70º ) permanente (10t ) Parcela transitória: gerada pelos polos de G(s). Parcela permanente: gerado pelo pólo de 2ª ordem da tensão de alimentação. Após 1 ms a diferença entra a resposta global e de regime permanente é imperceptível 31

32 Resposta em Regime Permanente Senoidal (RPS) Uma vez calculada a função de transferência, não é necessário realizar uma análise fasorial para determinar a resposta em RPS. Admita que x(t) = A.cos(wt + ) x t = A. cos wt. cos φ A. sin wt. sin φ Laplace X ( s) A.cos s A. sen w A. s.cos w. sen s 2 w 2 s 2 w 2 s 2 w 2 cos a + b = cos a cos b sin a sin b 32

33 Resposta em RPS A. (s. cos φ w. sin φ) Y s = G s. X(s) Y s = G s. s 2 + w 2 Y s = K 1 s jw + K 1 s + jw + termos devido aos pólos de G(s) Não contribuem para a resposta em reg. permanente Pólos => p 1 = jw; p 2 = jw Utilizando o método dos resíduos: K 1 = 1 G jw. A. ejφ 2 G(jw) quantidade complexa Se: G jw = G(jw). e j G(jw) K 1 = A 2 G(jw). ej( G jw +φ) y rp t = L 1 K 1 s jw + K 1 s + jw = A. G jw. cos(wt + φ + G(jw)) 33

34 Cálculo do resíduo K1 Y s = G s. A. (s. cos φ w. sin φ) s 2 + w 2 = K 1 s jw + K 1 s + jw + termos devido aos pólos de G(s) K 1 = Y s A. (s. cos φ w. sin φ) s jw = G s. s=jw (s jw)(s + jw) s jw s=jw A. (jw. cos φ w. sin φ) K 1 = G jw. (2jw) A. (cos φ + j. sin φ) = G jw. 2 K 1 = G jw. A 2 ejφ 34

35 Exemplo G Para o circuito da figura abaixo, determine a tensão vo(t) em regime permanente, para t>0, se as condições iniciais são nulas. A = 10; w = 2; 35

36 Exemplo G (cont.) L=1H; C=1/2 F; w = 2 rad/s; Transformar o circuito para o domínio da Laplace. Considerar todas as condições iniciais nulas. se: x t = A cos(wt + φ) y rp t = A. G jw. cos(wt + φ + G(jw)) v i t = 10 cos 2t A = 10; w = 2; V 0 s = s 2 3s 2 + 4s + 4 V i(s) LKC@V1: KCL@V 1 V V 2 Voltage Divisor tensão divider : V 2s V o V 2 1 s : 1 i V 2 1 s 1 0 G s = G j2 = s 2 3s 2 + 4s + 4 j2 2 3 j j2 + 4 = 0, v o,rp = 3,54 cos 2t + 45 V 36

37 Exemplo 1 Encontrar a função de transferência: 3 dy(t) dt + 2y(t) = x(t) Se deve aplicar a transformada de Laplace na equação, considerando condições iniciais nulas 3sY s + 2Y(s) = X s Logo, isolar a saída em função da entrada: G s = Y(s) X(s) = 1 3s + 2 = 1 3 s

38 Exemplo 2 Encontrar a função de transferência: 10 dy(t) dt + 2y(t) = x(t) Se deve aplicar a transformada de Laplace na equação, considerando condições iniciais nulas 10sY s + 2Y(s) = X s Logo, isolar a saída em função da entrada: G s = Y(s) X(s) = 1 10s + 2 = 1 10 s = 0,1 s + 0,2 38

39 Exemplo 3 Obtenha a resposta no tempo y(t) a partir da função de transferência anterior, considerando como sinal de entrada uma função degrau unitário, admitindo condições iniciais nulas. G s = 1 10 s = 0,1 s + 0,2 Y s = G s X s ; X s = L u(t) = 1 s Y s = 1 10 s s = K 1 s + K 2 s

40 Exemplo 3 (cont.) Y s = 1 10 s s = K 1 s + K 2 s Y s = 1 2 s 1 2 s y t = L 1 {Y s } = 1 2 u t 1 2 e (1 5 )t u t y t = e 1 5 t ; p/ t > 0 40

41 Exemplo 4 Obtenha a resposta no tempo y(t) à rampa para um sistema cuja função de transferência é: s G s = s + 4 (s + 8) Y s = G s X s ; X s = L{t} = 1 s 2 Y s = s s 2 s + 4 (s + 8) = 1 s s + 4 (s + 8) = K 1 s + K 2 s K 3 s + 8 Y s = 1 32 s s s + 8 y t = L 1 {Y s } = ( e 4t e 8t )u t y t = e 4t e 8t ; p/ t > 0 41

42 Estabilidade das redes lineares Pólos da rede 42

43 Estabilidade das redes lineares Assintoticamente Estável 43

44 Estabilidade das redes lineares Marginalmente Estável 44

45 Estabilidade das redes lineares Instável multiplicidade exponencial linear 45

46 Exemplo Veja o exemplo do colapso da ponte Tacoma Narrows, localizado em Washington, Estados Unidos. Resonance, Tacoma Narrows Bridge Failure, and Undergraduate Physics Textbooks, by K. Y. Billah and R. H. Scalan published in the American Journal of Physics, vol. 59, no. 2 (1991), pp ch?v=j-zczjxsxnw 7 de Novembro de

47 Próxima Aula 1. Exercícios. 47

48 Referências 1. ALEXANDER, C. K.; SADIKU, M. N. O. Fundamentos de Circuitos Elétricos, 5ª edição, Ed. Mc Graw Hill, Slides da prof. Denise, acesso em fevereiro de ORSINI, L.Q.; CONSONNI, D. Curso de Circuitos Elétricos, Vol. 1( 2ª Ed ), Ed. Blücher, São Paulo. 4. CONSONNI, D. Transparências de Circuitos Elétricos I, EPUSP. 5. NILSSON, J.W., RIEDEL, S. A. Circuitos Elétricos, 8ª Ed., Editora Pearson,

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Aplicação da Transformada de Laplace 1 Lei de Ohm no domínio de Laplace Se não houver

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Filtros Passivos Introdução A variação de frequência de uma fonte senoidal altera a

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Filtros Passivos Introdução A variação de frequência de uma fonte senoidal altera a

Leia mais

Circuitos Elétricos I

Circuitos Elétricos I Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Circuitos Elétricos I Prof. José Azcue; Dr. Eng. Excitação Senoidal e Fasores Impedância Admitância 1 Propriedades das Senóides

Leia mais

Circuitos Elétricos I

Circuitos Elétricos I Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Circuitos Elétricos I Prof. Dr. José Luis Azcue Puma Excitação Senoidal e Fasores Impedância Admitância 1 Propriedades das Senóides

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Introdução Definição da Transformada de aplace Propriedades da Transformada de aplace

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do AB Eng. de Instrumentação, Automação e Robótica ircuitos Elétricos II José Azcue, Prof. Dr. Aplicação da Transformada de Laplace 1 Resistor no domínio de Laplace No domínio do tempo:

Leia mais

Circuitos Elétricos I

Circuitos Elétricos I Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Circuitos Elétricos I Prof. José Azcue; Dr. Eng. Análise em Regime Permanente Senoidal 1 Análise em R.P.S. Métodos de Análise: Análise

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Potência em Sistemas Trifásicos 1 Potência em Carga Monofásica v t = V max cos (ωt)

Leia mais

Circuitos Elétricos I

Circuitos Elétricos I Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Circuitos Elétricos I Capacitores e Indutores Redes de Primeira Ordem Circuitos RC e RL Prof. José Azcue; Dr. Eng. 1 Capacitor O

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Diagramas de Bode 1 Introdução Função de transferência É a relação, dependente da frequência,

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 6

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 6 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 6 Steinmetz Tesla Hertz Westinghouse Conteúdo 6 - Análise de Regime Permanente Senoidal...1 6.1 - Números complexos...1

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Transformadores 1 Introdução O transformador é amplamente utilizado em sistemas de

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Potência em Sistemas Trifásicos 1 Potência em Carga Monofásica v t = V max cos (ωt)

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 11

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 11 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo Laplace Bode Fourier Conteúdo - Transformada de Laplace.... - Propriedades básicas da transformada de Laplace....2 - Tabela de

Leia mais

Circuitos Elétricos I

Circuitos Elétricos I Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Teoremas de circuitos Circuitos Elétricos I Prof. José Azcue; Dr. Eng. Teorema de Thévenin Teorema de Norton Teorema de máxima transferência

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Potência em Sistemas Trifásicos 1 Potência em Carga Monofásica v t = V max cos (ωt)

Leia mais

PSI.3031 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA EXPERIÊNCIA 10: REDES DE SEGUNDA ORDEM

PSI.3031 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA EXPERIÊNCIA 10: REDES DE SEGUNDA ORDEM ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI.3031 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA Edição 2017 E.Galeazzo / L.Yoshioka

Leia mais

Aula 11. Revisão de Fasores e Introdução a Laplace

Aula 11. Revisão de Fasores e Introdução a Laplace Aula Revisão de Fasores e Introdução a Laplace Revisão - Fasor Definição: Fasor é a representação complexa da magnitude e fase de uma senoide. V = V m e jφ = V m φ v t = V m cos(wt + φ) = R(V e jwt ) Impedância

Leia mais

Aula 6 Transformada de Laplace

Aula 6 Transformada de Laplace Aula 6 Transformada de Laplace Introdução Propriedades da Transformada de Laplace Tabela Transformada ade Laplace Transformada Inversa de Laplace Função de transferência Definição: X s = L x t = s é uma

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 11

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 11 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo Laplace Bode Fourier Conteúdo - Transformada de Laplace.... - Propriedades básicas da transformada de Laplace....2 - Tabela de

Leia mais

Sistemas lineares. Aula 7 Transformada Inversa de Laplace

Sistemas lineares. Aula 7 Transformada Inversa de Laplace Sistemas lineares Aula 7 Transformada Inversa de Laplace Transformada Inversa de Laplace Transformada Inversa de Laplace e RDC x(t) única Metódos Inversão pela Definição Inversão pela Expansão em Frações

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Circuitos Trifásicos 1 Sistemas Polifásicos Um sistema com n > 2 grandezas alternadas

Leia mais

Circuitos Elétricos III

Circuitos Elétricos III Circuitos Elétricos III Prof. Danilo Melges ([email protected]) Depto. de Engenharia Elétrica Universidade Federal de Minas Gerais A Transformada de Laplace na análise de circuitos Parte 3 Função

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 9

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 9 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo 9 Steinmetz Tesla Hertz Westinghouse Conteúdo 9 - Análise de Regime Permanente Senoidal...1 9.1 - Números complexos...1 9.2 -

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Indutância Mútua 1 Introdução Introdução - transformador Indutância Própria Indutância

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Indutância Mútua 1 Introdução Indutância Própria Indutância Mútua Indutâncias acopladas

Leia mais

Aula 12. Transformada de Laplace II

Aula 12. Transformada de Laplace II Aula 12 Transformada de Laplace II Matérias que serão discutidas Nilsson Circuitos Elétricos Capítulos 12, 13 e 14 LAPLACE Capítulo 8 Circuitos de Segunda ordem no domínio do tempo Revisão A transformada

Leia mais

Aula 04 Representação de Sistemas

Aula 04 Representação de Sistemas Aula 04 Representação de Sistemas Relação entre: Função de Transferência Transformada Laplace da saída y(t) - Transformada Laplace da entrada x(t) considerando condições iniciais nulas. Pierre Simon Laplace,

Leia mais

1 a PROVA DE CIRCUITOS II 2012_1

1 a PROVA DE CIRCUITOS II 2012_1 a Questão a PROVA DE CIRCUITOS II 202_ Figura. No circuito elétrico da Figura, com a chave aberta, o capacitor está totalmente descarregado. Considerando que o capacitor atinge carga máxima após 5 constantes

Leia mais

Análise de Laplace. Prof. André E. Lazzaretti

Análise de Laplace. Prof. André E. Lazzaretti Análise de Laplace Prof. André E. Lazzaretti [email protected] Introdução Objetivo principal: resolução de equações diferenciais; Similar à análise fasorial: transformação para o domínio da frequência;

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do ABC Eng. de nstrumentação, Automação e Robótica Circuitos Elétricos José Azcue, Prof. Dr. Quadripolos 1 ntrodução O que é um quadripolo (rede de duas portas)? Um quadripolo tem

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 5. Heaviside Dirac Newton

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 5. Heaviside Dirac Newton Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 5 Heaviside Dirac Newton Conteúdo 5 - Circuitos de primeira ordem...1 5.1 - Circuito linear invariante de primeira ordem

Leia mais

Roteiro-Relatório da Experiência N o 07 CIRCUITO RLC CC TRANSITÓRIO

Roteiro-Relatório da Experiência N o 07 CIRCUITO RLC CC TRANSITÓRIO Roteiro-Relatório da Experiência N o 7 CIRCUITO RLC CC TRANSITÓRIO. COMPONENTES DA EQUIPE: ALUNOS NOTA 3 Data: / / : hs. OBJETIVOS:.. Esta experiência tem por objetivo verificar as características de resposta

Leia mais

Experimento 10 Circuitos RLC em corrente alternada: ressonância

Experimento 10 Circuitos RLC em corrente alternada: ressonância Experimento 10 Circuitos RLC em corrente alternada: ressonância 1. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos RLC em presença de uma fonte de alimentação de corrente alternada.

Leia mais

CAPÍTULO IX. Análise de Circuitos RLC

CAPÍTULO IX. Análise de Circuitos RLC CAPÍTULO IX Análise de Circuitos RLC 9. Introdução Neste capítulo, serão estudados os circuitos RLC s, ou seja, aqueles que possuem resistores, indutores e capacitores. Em geral, a análise desses circuitos

Leia mais

Prova de Seleção

Prova de Seleção Área de Concentração: Prova de Seleção 2016.2 Código de Inscrição do candidato: Cada questão assinalada corretamente vale 1,0 ponto. π Questão 1. Dada a integral definida y 0 (sin t ) 2 π dt + (cos(t))

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0

Leia mais

Aula 4 - Resposta em Frequência, Sensibilidade, Margem de Ganho e Margem de Fase, Controle em Avanço e Atraso, Critério de Nyquist

Aula 4 - Resposta em Frequência, Sensibilidade, Margem de Ganho e Margem de Fase, Controle em Avanço e Atraso, Critério de Nyquist Aula 4 - Resposta em Frequência, Sensibilidade, Margem de Ganho e Margem de Fase, Controle em Avanço e Atraso, Critério de Nyquist Universidade de São Paulo Introdução Método da Resposta em Frequência

Leia mais

Circuitos com excitação Senoidal

Circuitos com excitação Senoidal MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO

Leia mais

Controle de Processos Aula: Sistemas de 1ª e 2ª ordem

Controle de Processos Aula: Sistemas de 1ª e 2ª ordem 107484 Controle de Processos Aula: Sistemas de 1ª e 2ª ordem Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB) Controle

Leia mais

Sistemas de Controle

Sistemas de Controle Sistemas de Controle Adriano Almeida Gonçalves Siqueira Aula 8 - Resposta em Frequência Sistemas de Controle p. 1/46 Introdução Método da Resposta em Frequência Análise do sistema a partir da resposta

Leia mais

Programa de engenharia biomédica. Princípios de instrumentação biomédica cob 781

Programa de engenharia biomédica. Princípios de instrumentação biomédica cob 781 Programa de engenharia biomédica Princípios de instrumentação biomédica cob 781 5 Circuitos de primeira ordem 5.1 Circuito linear invariante de primeira ordem resposta a excitação zero 5.1.1 O circuito

Leia mais

Aula 05 Transformadas de Laplace

Aula 05 Transformadas de Laplace Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número

Leia mais

Aula 05 Transformadas de Laplace

Aula 05 Transformadas de Laplace Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório AULA 05 SEGUNDA PARTE OSCILOSCÓPIO 1 INTRODUÇÃO Nas aulas anteriores de laboratório

Leia mais

ANÁLISE DE CIRCUITOS ELÉTRICOS II

ANÁLISE DE CIRCUITOS ELÉTRICOS II ANÁLISE DE CIRCUITOS ELÉTRICOS II Módulo III FASORES E IMPEDÂNCIA Números Complexos Forma Retangular: 2 Números Complexos Operações com o j: 3 Números Complexos Forma Retangular: z = x+jy sendo j=(-1)

Leia mais

Regime permanente senoidal e Fasores

Regime permanente senoidal e Fasores Regime permanente senoidal e Fasores Flávio R. M. Pavan, 2017 Revisão técnica: Magno T. M. Silva e Flávio A. M. Cipparrone 1 Introdução O estudo de circuitos elétricos em regime permanente senoidal (RPS)

Leia mais

Análise no Domínio do Tempo de Sistemas em Tempo Contínuo

Análise no Domínio do Tempo de Sistemas em Tempo Contínuo Análise no Domínio do Tempo de Sistemas em Tempo Contínuo Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco

Leia mais

Análise de Circuitos Elétricos. para Engenharia. Sérgio Haffner Luís A. Pereira

Análise de Circuitos Elétricos. para Engenharia. Sérgio Haffner Luís A. Pereira Análise de Circuitos Elétricos para Engenharia Sérgio Haffner Luís A. Pereira http://slhaffner.phpnet.us/ [email protected] [email protected] Desenvolvido para ser utilizado como notas de aula para a

Leia mais

Analise sistemas LCIT usando a Transformada de Laplace

Analise sistemas LCIT usando a Transformada de Laplace MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO

Leia mais

Circuitos Elétricos I

Circuitos Elétricos I Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos I José Azcue, Prof. Dr. Ementa e avaliação Tensão, Corrente, Potência e Energia 1 Ementa resumida Conceitos

Leia mais

Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros

Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros 107484 Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 2 o Semestre

Leia mais

Aula 3. Carlos Amaral Fonte: Cristiano Quevedo Andrea

Aula 3. Carlos Amaral Fonte: Cristiano Quevedo Andrea Aula 3 Carlos Amaral Fonte: Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Marco de 2012. Resumo 1 Introdução 2 3

Leia mais

Introdução aos Circuitos Elétricos

Introdução aos Circuitos Elétricos Introdução aos Circuitos Elétricos A Transformada de Laplace Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia A Transformada de Laplace História Pierri

Leia mais

Representação e Análise de Sistemas Dinâmicos Lineares Componentes Básicos de um Sistema de Controle

Representação e Análise de Sistemas Dinâmicos Lineares Componentes Básicos de um Sistema de Controle Representação e Análise de Sistemas Dinâmicos Lineares 1 Introdução 11 Componentes Básicos de um Sistema de Controle Fundamentos matemáticos 1 Singularidades: Pólos e zeros Equações diferencias ordinárias

Leia mais

Experimento 5 Circuitos RLC com onda quadrada

Experimento 5 Circuitos RLC com onda quadrada Experimento 5 Circuitos RLC com onda quadrada 1. OBJETIVO O objetivo desta aula é estudar a variação de voltagem nas placas de um capacitor, em função do tempo, num circuito RLC alimentado com onda quadrada.

Leia mais

Sistemas lineares. Aula 1 - Sinais

Sistemas lineares. Aula 1 - Sinais Sistemas lineares Aula 1 - Sinais Conceitos Sinais e sistemas Definições Descrições Representações matemáticas Classificações Sinais Elementares (básicos) Operações Sinais Definição: Um sinal é a representação

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 2 quadrimestre 2011

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 2 quadrimestre 2011 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares quadrimestre 0 (P-0003D) (HAYKIN, 00, p 9) Use a equação de definição da TF para obter a representação no domínio da

Leia mais

Resposta natural de circuitos RLC paralelo

Resposta natural de circuitos RLC paralelo Exemplo 1 i R 6 Ω 7 H 1/42 F i C v v() = V () = 1 A α = 3. 5 rad/s s = 1 rad/s ω = 6 rad/s s = 6 rad/s 2 1 v(t) = 84 (e t e 6t ) V Regime sobreamortecido ou aperiódico Teoria dos Circuitos Circuitos RLC

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 6

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 6 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo 6 Heaviside Dirac Newton Conteúdo 6 Circuitos de primeira ordem...1 6.1 Equação diferencial ordinária de primeira ordem...1 6.1.1

Leia mais

Circuitos Elétricos. Circuitos Contendo Resistência, Indutância e Capacitância. Prof.: Welbert Rodrigues

Circuitos Elétricos. Circuitos Contendo Resistência, Indutância e Capacitância. Prof.: Welbert Rodrigues Circuitos Elétricos Circuitos Contendo Resistência, Indutância e Capacitância Prof.: Welbert Rodrigues Introdução Serão estudadas as relações existentes entre as tensões e as correntes alternadas senoidais

Leia mais

O Papel dos Pólos e Zeros

O Papel dos Pólos e Zeros Departamento de Engenharia Mecatrônica - EPUSP 27 de setembro de 2007 1 Expansão em frações parciais 2 3 4 Suponha a seguinte função de transferência: m l=1 G(s) = (s + z l) q i=1(s + z i )(s + p m ),

Leia mais

Instrumentação e Controle Aula 7. Estabilidade. Prof. Renato Watanabe ESTO004-17

Instrumentação e Controle Aula 7. Estabilidade. Prof. Renato Watanabe ESTO004-17 Instrumentação e Controle Aula 7 Estabilidade Prof. Renato Watanabe ESTO004-17 Onde estamos no curso Sistema Obtenção das Equações Diferenciais que descrevem o comportamento do sistema Representação no

Leia mais

UNIVERSIDADE LUTERANA DO BRASIL 1) Considerando a figura abaixo, calcule a série de Fourier que representa este sinal periódico de tensão x tempo.

UNIVERSIDADE LUTERANA DO BRASIL 1) Considerando a figura abaixo, calcule a série de Fourier que representa este sinal periódico de tensão x tempo. UNIVERSIDADE LUTERANA DO BRASIL 1) Considerando a figura abaixo, calcule a série de Fourier que representa este sinal periódico de tensão x tempo. V -6-5 - -1 1-1 Tempo (s) ) A indutância de um indutor

Leia mais

CIRCUITOS DE SEGUNDA ORDEM

CIRCUITOS DE SEGUNDA ORDEM CIRCUITOS DE SEGUNDA ORDEM Prof. Luis C. Vieira [email protected] http://paginapessoal.utfpr.edu.br/vieira/el63a-eletricidade INTRODUÇÃO Circuitos que contem dois elementos armazenadores de energia.

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Ementa e avaliação Circuitos Trifásicos 1 Recomendação Circuitos Elétricos I Conceitos

Leia mais

Lista de exercícios de: Circuitos Elétricos de Corrente Alternada Prof.: Luís Fernando Pagotti

Lista de exercícios de: Circuitos Elétricos de Corrente Alternada Prof.: Luís Fernando Pagotti nome: Parte I Conceitos de Corrente Alternada e de Transformada Fasorial 1 a Questão: (a) Converta as ondas senoidais de tensão e corrente em seus respectivos fasores, indicando-os em um diagrama fasorial.

Leia mais

Circuitos Elétricos 2

Circuitos Elétricos 2 Circuitos Elétricos 2 Tópico 2: Desempenho dos Circuitos em Função da Frequência Prof. Dr. Alex da 1 Rosa LARA ENE UnB www.ene.unb.br/alex Introdução No estudo de circuitos em regime permanente senoidal,

Leia mais

CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/16

CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/16 CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/16 - Introdução - Método de avaliação - Data das provas: P1: 04/10/16 P2: 08/11/16 P3: 22/11/16 (somente para faltosos) - Suspensão de aulas: 09/08/16, 16/08/16, 15/11/16

Leia mais

2) Em qual frequência, uma bobina de indutância 20mH terá uma reatância com módulo de 100Ω? E com módulo de 0Ω?

2) Em qual frequência, uma bobina de indutância 20mH terá uma reatância com módulo de 100Ω? E com módulo de 0Ω? Professor: Caio Marcelo de Miranda Turma: T11 Nome: Data: 05/10/2016 COMPONENTES PASSIVOS E CIRCUITOS RL, RC E RLC EM CORRENTE ALTERNADA graus. Observação: Quando não informado, considere o ângulo inicial

Leia mais

CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/15

CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/15 CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/15 Aula 1 04/08/15 - Introdução - Método de avaliação - Data das provas: P1: 29/09/15 P2: 03/11/15 P3: 10/11/15 (somente para faltosos) - Suspensão de aulas: Não há

Leia mais

Experimento 4 Circuitos RLC com corrente alternada: ressonância

Experimento 4 Circuitos RLC com corrente alternada: ressonância Experimento 4 Circuitos RLC com corrente alternada: ressonância 1. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos RLC na presença de uma fonte de alimentação de corrente alternada.

Leia mais

Circuitos de Primeira Ordem

Circuitos de Primeira Ordem Circuitos de Primeira Ordem Magno T. M. Silva e Flávio R. M. Pavan, 5 Introdução Em geral, um circuito de primeira ordem tem um único elemento armazenador de energia (um capacitor ou um indutor) e é descrito

Leia mais

Método da Resposta da Freqüência

Método da Resposta da Freqüência Método da Resposta da Freqüência Introdução; Gráfico de Resposta de Freqüência; Medidas de Resposta de Freqüência; Especificação de Desempenho no Domínio da Freqüência; Diagrama Logarítmicos e de Magnitude

Leia mais

Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações. Professor: Gustavo Silva

Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações. Professor: Gustavo Silva Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações Professor: Gustavo Silva 1 1.Movimentos Movimento oscilatório é qualquer movimento onde o sistema observado move-se em torno de uma certa

Leia mais

Disciplina: Circuitos Elétricos Elaboração: Prof. Douglas Roberto Jakubiak, Prof. Cláudio Barbalho, Prof.Nilson Kominek

Disciplina: Circuitos Elétricos Elaboração: Prof. Douglas Roberto Jakubiak, Prof. Cláudio Barbalho, Prof.Nilson Kominek Ministério da Educação Universidade Tecnológica Federal do Paraná Pró-Reitoria de Graduação Departamento Acadêmico de Eletrônica Engenharia Eletrônica PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Prática

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁSE DE UTOS - ENG04031 Aula 7 - esposta no Domínio Tempo de ircuitos Série Sumário Solução

Leia mais

Faculdade de Engenharia da UERJ - Departamento de Engenharia Elétrica Controle & Servomecanismo I - Prof.: Paulo Almeida Exercícios Sugeridos

Faculdade de Engenharia da UERJ - Departamento de Engenharia Elétrica Controle & Servomecanismo I - Prof.: Paulo Almeida Exercícios Sugeridos Faculdade de Engenharia da UERJ Departamento de Engenharia Elétrica Controle & Servomecanismo I Prof.: Paulo Almeida Exercícios Sugeridos Estabilidade, Resposta Transitória e Erro Estacionário Exercícios

Leia mais

Aula 18: Projeto de controladores no domínio da frequência

Aula 18: Projeto de controladores no domínio da frequência Aula 18: Projeto de controladores no domínio da frequência prof. Dr. Eduardo Bento Pereira Universidade Federal de São João del-rei [email protected] 26 de outubro de 2017. prof. Dr. Eduardo Bento Pereira

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Ementa e avaliação Circuitos Trifásicos 1 Recomendação Circuitos Elétricos I Conceitos

Leia mais

BC 1519 Circuitos Elétricos e Fotônica

BC 1519 Circuitos Elétricos e Fotônica BC 1519 Circuitos Elétricos e Fotônica Circuitos em Corrente Alternada 013.1 1 Circuitos em Corrente Alternada (CA) Cálculos de tensão e corrente em regime permanente senoidal (RPS) Conceitos de fasor

Leia mais

B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil

B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil Função de Transferência Relação Entrada-Saída Desejamos obter a expressão M(s) = Y(s) R(s) Para obter essa expressão, devemos realizar uma analise de algebra de blocos. Perceba que a relação entre o sinal

Leia mais

Fundamentos de Controle

Fundamentos de Controle Fundamentos de Controle Modelagem matemática de sistemas de controle Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui

Leia mais

A Transformada de Laplace

A Transformada de Laplace MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO

Leia mais

Capítulo 9. Circuitos de Segunda Ordem

Capítulo 9. Circuitos de Segunda Ordem EA-53 Circuitos Elétricos I Capítulo 9 Circuitos de Segunda Ordem EA-53 Circuitos Elétricos I 9. Circuitos com Dois Elementos Armazenadores Circuito com dois indutores, onde deseja-se obter a corrente

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Univeridade Federal do ABC Eng. de Intrumentação, Automação e Robótica Circuito Elétrico II Joé Azcue, Prof. Dr. Tranformada invera de Laplace Definição Funçõe racionai Expanão em fraçõe parciai Teorema

Leia mais

Circuitos polifásicos 2/2008 Lista de Exercícios 1 LISTA 1

Circuitos polifásicos 2/2008 Lista de Exercícios 1 LISTA 1 UNIVERSIDADE DE BRASÍLIA (UnB) FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELETRICA LISTA 1 1) Calcule a velocidade mecânica angular que uma máquina síncrona (gerador) com 80 pólos deve ter para

Leia mais

CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 01/19

CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 01/19 CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 01/19 - Data das provas: P1: 16/04/19 P2: 28/05/19 P3: 04/06/19 (somente para faltosos) - Horário das Provas: As provas se iniciam às 12h 40min. Retardatários não serão

Leia mais

Modelagem Matemática de Sistemas

Modelagem Matemática de Sistemas Modelagem Matemática de Sistemas 1. Descrição Matemática de Sistemas 2. Descrição Entrada-Saída 3. Exemplos pag.1 Teoria de Sistemas Lineares Aula 3 Descrição Matemática de Sistemas u(t) Sistema y(t) Para

Leia mais