ANÁLISE DE SINAIS DINÂMICOS
|
|
|
- Letícia Caminha Lancastre
- 9 Há anos
- Visualizações:
Transcrição
1 ANÁLISE DE SINAIS DINÂMICOS Paulo S. Varoto 7
2 . - Classificação de Sinais Sinais dinâmicos são geralmente classificados como deterministicos e aleatórios, como mostra a figura abaixo: Periódicos Determinísticos Transientes Sinais Caóticos Estacionários Aleatórios Não Estacionários Sinal Caótico: Sinal de aparência aleatória controlado por processo determinístico Sinal Não Estacionário: Possui parâmetros dependentes do tempo Sinal Aleatório: Muitos Componentes em frequência 8
3 . - Média Temporal Seja a função x(t) na variável tempo mostrada abaixo: x(t) x dt A média temporal x é definida por: T Tempo x = T lim xt ( ) dt T 0 T Observações: Flutuações (em termos de valor médio) diminuem à medida em que T aumenta A média temporal è comumente chamada de componente DC de um sinal 9
4 .3 - Média Temporal Quadrática e RMS A média temporal (MS) é definida por: MS = x = T lim xt ( ) T 0 T dt x (t) x dt T Tempo A Root Mean Square é definida por: A RMS = lim xt ( ) T 0 T T dt 0
5 .4 - O Espectro em Frequência É um gráfico das amplitudes componentes de um sinal como função do parâmetro frequência (ciclos/s) A C D Amplitude f a f b f c f d Frequência Características principais : Indica frequências discretas que estão relacionadas com características operacionais de um dado equipamento Oferece uma distribuição de amplitudes que pode ser importante na tomada de decisões sobre um sistema
6 Exemplo: Análise de um sinal senoidal Seja o sinal senoidal dado pela seguinte equação: Onde: x (t) = D + cos (ω t + φ ) D - Offset do sinal - Amplitude ω - Frequência do sinal φ - Fase do sinal senoidal Graficamente: Amplitude Tempo [s]
7 a) Média Temporal x = D+ graficamente: sen( ωt + ϕ) ω T D.8 Média Temporal Amplitude Tempo T [s] A parcela oscilante decresce com o aumento do período T. A média temporal é obtida diretamente quando ω T é múltiplo de π. Sinais senoidais tem média temporal nula quando a média ( average ) dos sinais é realizado em um período T do sinal. Este resultado é útil na seleção de tempos de average de instrumentos a fim de se eliminar contaminações do sinal. 3
8 b) Temporal Mean Square : A RMS É dada pela seguinte equação: A sen T sen RMS = D + D ( ω + ϕ ) ϕ ωt + sen T sen ( ω + ϕ) ϕ + ωt graficamente: 3.5 Root Mean Square A RMS Amplitude Tempo T [s] 4
9 Conforme ωt a equação acima reduz-se a A RMS = D + = D + RMS Para = 0 a amplitude RMS A RMS é igual ao valor médio D; ou seja: A RMS = D Para D = 0, temos ARMS = RMS = = onde RMS é a amplitude senoidal RMS. Logo: O valor global de RMS, A RMS e a amplitude senoidal RMS, RMS são duas grandezas completamente diferentes! A amplitude de pico e o RMS estão relacionados como visto acima para sinais senoidais exclusivamente! Então, em hipótese alguma pode-se converter uma amplitude A RMS para uma amplitude de pico ou RMS equivalente para um sinal arbitrário usando-se esta última relação. 5
10 c) O Espectro em Frequência Pode ser representado de tres formas diferentes: D D / D -(/) ω ω ω Amplitude Média Quadrática RMS 6
11 .5 - Representação Complexa de Funções Reais e ± jθ = cos( θ ) ± j sen( θ ) Relações de Euler : cos( θ ) = sen ( θ ) = e e jθ + e jθ e j jθ jθ Forma Polar: r ( ω + φ ) jφ ω A = Ae = { Ae } e r da = jω { Ae jφ } e j( ω t+ φ) dt r d A jφ j( ω t+ φ) = ω { Ae } e dt j t j t Exemplo: Forma Polar: x( t ) = cos( ω t + φ ) jω t * jω t x( t) = X e + X e com jφ X = a+ jb= a + b e = * Complexo conjugado de X e jφ 7
12 .6 - Fasores e Funções Senoidais Reais Considere o seguinte sinal no tempo: x( t ) = cos( ω t + φ ) = cos( θ ) onde : amplitude do sinal ω : frequência circular do sinal (rad/s) φ : ângulo de fase do sinal θ = ω t + φ : argumento Esta função real pode ser expressa como: x t e j e j t e j e j t ( ) = φ ω + φ ω = jωt * jωt Xe + X e + S. A. H. -S. H. onde: X = a+ jb= a + b e jφ = e jφ X * = a jb= a + b e jφ = e jφ a = cos( φ ) b = sen ( φ ) b tan( φ ) = a 8
13 .3 - Sinais Períodicos Sinal periódico: x (t + T) = x (t) Frequência Circular: ω o = π (/T) = π f o.3. - Séries de Fourier para Sinais Periódicos Qualquer sinal real, periódico e contínuo possuindo um número finito de descontinuidades pode ser escrito como: x( t)= p= X p e jpω o t onde X p representa o p-ésimo coeficiente da série de Fourier, possuindo partes real e imaginária e dado por X p = T t + T t jpω x( τ ) e oτ dτ Estas duas últimas equações constituem o par de transformada de Fourier para sinais periódicos 9
14 Características: A primeira equação para x (t) representa uma soma para todas as frequências discretas que são múltiplas da frequência fundamental ω o Os coeficientes da série X p são obtidos mediante uma integração sobre um período completo (geralmente começando em 0 ou -T/) Estes coeficientes da série de Fourier representam uma medida da correlação entre a função x (t) e a função exponencial num período fundamental T. Eles ocorrem em pares complexos conjugados (X p e X * p ) componente de frequência de ordem p ou harmônico p Im Re S A H a p -φ p X o φ p X p b p -pω o -b p Frequência pω o a p X * p = X -p S H 0
15 Outras propriedades úteis da Série de Fourier: Somente metade dos coeficientes X p precisam ser calculados, visto que ocorrem aos pares complexos conjugados Quando x (t) é uma função par, ou seja, x (-t) = x (t) somente coeficientes reais a p resultam da decomposição. Neste caso a função x (t) correlaciona-se com a componente cos ω t da série Quando x (t) é uma função ímpar, ou seja, x (-t) = - x(t) somente coeficientes reais b p resultam da decomposição. Neste caso a função x(t) correlaciona-se com a componente sin ω t da série O Espectro em Frequência da função periódica x(t) corresponde à um gráfico onde são mostrados os componentes de frequência (ou harmônicos) X p como função de frequências discretas pω o. Esta representação gráfica pode ser dada em termos dos a p e b p ou em em termos do módulo e fase de X p (mais usual!) como função da frequência.
16 Relações importantes: Média: É obtida fazendo-se p = 0 na expressão de X p Xo = T t + T x t ( τ ) dτ Então, X o é o valor médio do sinal periódico! Média Quadrática: É conhecida por Fórmula de Parseval e é dada por A RMS = Xo + X p p= Esta expressão pode ser simplificada para A p RMS = X o + = X o + p p= p= RMS
17 Exemplo: Séries de Fourier de uma onda quadrada Considere a onda quadrada periódica mostrada abaixo. x ( t ) A / ( t ) Os coeficientes da Série de Fourier para este sinal são dados pela seguinte expressão Xp onde z = pπ /. A sen( pπ / ) A = sinc z ( p / ) = ( ) π De forma similar, a fórmula de Parseval fica sen() z sinc () z = z MS A p = + sinc 4 π p= 3
18 Coeficientes da Série de Fourier para onda periódica quadrada Xp/A Amplitude dos coeficientes da Série de Fourier para onda periódica quadrada ω Xp /A ω 4
19 .4 - Transientes Considere o pulso retangular de amplitude A, duração T e periodicidade T o mostrado abaixo. x ( t ) T o = β T To = β T π π ω o = = To β T t Componentes X p da Série de Fourier X p = AT To sen( pπ / β) ( pπ / β) = AT To sinc ( z ) z = pπ β Objetivo: Vamos analizar esta onda para valores crescentes de β, ou seja, vamos isolar o pulso retangular e usar a séries de Fourier para descrever seu conteúdo em frequência 5
20 (a) Valores de X p para β = β = ω o = π /T X p / A ω ω o ω o ω o ω o ω o ω o 0.5 (b) Valores de X p para β = 0 β = 0 ω o = π /5T X p / A 0. 0 p = -30 p = -0 p = p = 0 p = 0 ω p = 30 ω =- π / T ω = -π / T ω = π / T ω = π / T 6
21 Observações importantes: Quando β = 0, as amplitudes de X p são da ordem de / 5 daquelas correspondentes à β = Onze componentes de frequência X p estão entre ω = 0 e ω = π / T, mostrando que os componentes em frequência estão muito mais próximos quando β = 0 Quando o argumento z da função sinc (z) é múltiplo de π, componentes de frequência com amplitude zero ocorrem em fequências fixas Então, torna-se evidente que o método das Séries de Fourier é inadequado para uma análise direta a medida em que β aumenta, ou seja, a medida em que o pulso centrado em t = 0 vai ficando cada vez mais isolado, tornando-se um sinal transiente! Precisamos então efetuar uma modificação no procedimento de cálculo para adequar o método à sinais transientes! Este procedimento novo recebe o nome de Transformada de Fourier para Sinais Transientes e cuja formulação será apresentada a seguir. 7
Teoria de Eletricidade Aplicada
1/24 Teoria de Eletricidade Aplicada Representação Vetorial de Ondas Senoidais Prof. Jorge Cormane Engenharia de Energia 2/24 SUMÁRIO 1. Introdução 2. Números Complexos 3. Funções Exponenciais Complexas
Sistemas Lineares. Aula 9 Transformada de Fourier
Sistemas Lineares Aula 9 Transformada de Fourier Séries de Fourier A Série de Fourier representa um sinal periódico como uma combinação linear de exponenciais complexas harmonicamente relacionadas. Como
Introdução aos Circuitos Elétricos
1 / 47 Introdução aos Circuitos Elétricos Séries e Transformadas de Fourier Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia 2 / 47 Séries e Transformadas
2/47. da matemática é ainda de grande importância nas várias áreas da engenharia. Além disso, lado de Napoleão Bonaparte. 1/47
Introdução aos Circuitos Elétricos Séries e Transformadas de Fourier Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia Sinais: conjunto de dados ou informação
Métodos Matemáticos para Engenharia
Métodos Matemáticos para Engenharia Transformada de Laplace Docentes: > Prof. Fabiano Araujo Soares, Dr. Introdução Muitos parâmetros em nosso universo interagem através de equações diferenciais; Por exemplo,
Aula de Processamento de Sinais I.B De Paula. Tipos de sinal:
Tipos de sinal: Tipos de sinal: Determinístico:Sinais determinísticos são aqueles que podem ser perfeitamente reproduzidos caso sejam aplicadas as mesmas condições utilizadas sua geração. Periódico Transiente
Análise de Circuitos 2
Análise de Circuitos 2 Introdução (revisão) Prof. César M. Vargas Benítez Departamento Acadêmico de Eletrônica, Universidade Tecnológica Federal do Paraná (UTFPR) 1 Análise de Circuitos 2 - Prof. César
Série de Fourier. Prof. Dr. Walter Ponge-Ferreira
Resposta à Excitação Periódica Série de Fourier Prof. Dr. Walter Ponge-Ferreira E-mail: [email protected] Escola Politécnica da Universidade de São Paulo Departamento de Engenharia Mecânica - PME Av. Prof.
ANÁLISE DE SINAIS E SISTEMAS
ANÁLISE DE SINAIS E SISTEMAS AULA 2: :. Sinais de Tempo Contínuo e Sinais de Tempo Discreto; 2. Sinais Analógicos e Digitais; 3. Sinais Determinísticos e Sinais Aleatórios; 4. Sinais Pares e Sinais Ímpares;
Fontes senoidais. Fontes senoidais podem ser expressar em funções de senos ou cossenos A função senoidal se repete periodicamente
Aula 23 Fasores I Fontes senoidais Exemplo de representações de fontes senoidais Fontes senoidais podem ser expressar em funções de senos ou cossenos A função senoidal se repete periodicamente v t = V
Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros
Sinais e Sistemas Série de Fourier Renato Dourado Maia Faculdade de Ciência e Tecnologia de Montes Claros Fundação Educacional Montes Claros Lembremos da resposta de um sistema LTI discreto a uma exponencial
TRANSFORMADA DE FOURIER. Larissa Driemeier
TRANSFORMADA DE FOURIER Larissa Driemeier TESTE 7hs30 às 8hs00 Este não é um sinal periódico. Queremos calcular seu espectro usando análise de Fourier, mas aprendemos que o sinal deve ser periódico. O
Capítulo 12. Potência em Regime Permanente C.A.
Capítulo Potência em Regime Permanente C.A. . Potência Média Em circuitos lineares cujas entradas são funções periódicas no tempo, as tensões e correntes em regime permanente produzidas são periódicas.
Transformada de Fourier Discreta no Tempo (DTFT)
Transformada de Fourier Discreta no Tempo (DTFT) Transformada de Fourier de um sinal discreto no tempo x(n): X e jω = x(n)e jωn n= A DTFT é uma função complexa da variável real e contínua ω. A DTFT é uma
FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS
FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA ELÉTRICA Princípios de Comunicações Aulas 7 e 8 Milton Luiz Neri Pereira (UNEMAT/FACET/DEE) 3. Série de Fourier
, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas.
Oscilações Amortecidas O modelo do sistema massa-mola visto nas aulas passadas, que resultou nas equações do MHS, é apenas uma idealização das situações mais realistas existentes na prática. Sempre que
Método da Resposta da Freqüência
Método da Resposta da Freqüência Introdução; Gráfico de Resposta de Freqüência; Medidas de Resposta de Freqüência; Especificação de Desempenho no Domínio da Freqüência; Diagrama Logarítmicos e de Magnitude
MEDIDAS DINÂMICAS. Figura 1: Classificação de sinais
MEDIDAS DINÂMICAS INRODUÇÃO A medição é uma operação, ou conjunto de operações, destinadas a determinar o valor de uma grandeza física. O seu resultado, acompanhado da unidade conveniente, constitui a
BC 1519 Circuitos Elétricos e Fotônica
BC 1519 Circuitos Elétricos e Fotônica Circuitos em Corrente Alternada 013.1 1 Circuitos em Corrente Alternada (CA) Cálculos de tensão e corrente em regime permanente senoidal (RPS) Conceitos de fasor
Sinais e Sistemas. Sinais e Sistemas Fundamentos. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros
Sinais e Sistemas Sinais e Sistemas Fundamentos Renato Dourado Maia Faculdade de Ciência e Tecnologia de Montes Claros Fundação Educacional Montes Claros Conjuntos de Números e Equações Números Inteiros
Fasores e Números Complexos
Fasores e Números Complexos Evandro Bastos dos Santos 21 de Maio de 2017 1 Introdução Vamos relembrar das aulas anteriores em que vimos que uma corrente ou tensão alternada pode ser representada por funções
EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 2 quadrimestre 2011
EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares quadrimestre 0 (P-0003D) (HAYKIN, 00, p 9) Use a equação de definição da TF para obter a representação no domínio da
Caderno de Exercícios
Caderno de Exercícios Orlando Ferreira Soares Índice Caracterização de Sinais... Caracterização de Sistemas...0 Sistemas LIT - Convolução...5 Série de Fourier para Sinais Periódicos Contínuos...0 Transformada
ANÁLISE DE SINAIS E SISTEMAS AULA 4: SINAIS EXPONENCIAIS; SINAIS SENOIDAIS; SINAIS SENOIDAIS AMORTECIDOS; SINAIS EXPONENCIAIS COMPLEXOS:
ANÁLISE DE SINAIS E SISTEMAS AULA 4: SINAIS EXPONENCIAIS; SINAIS SENOIDAIS; SINAIS SENOIDAIS AMORTECIDOS; SINAIS EXPONENCIAIS COMPLEXOS: 1 SINAIS EXPONECIAIS São sinais da forma x() t Ae t em que A e são
Teoria de Eletricidade Aplicada
1/34 Teoria de Eletricidade Aplicada Considerações sobre a Corrente Alternada (CA) Prof. Jorge Cormane Engenharia de Energia 2/34 SUMÁRIO 1. Introdução 2. Formas de Onda 3. Funções Senoidais 4. Valor Médio
Circuitos RC com corrente alternada. 5.1 Material. resistor de 10 Ω; capacitor de 2,2 µf.
Circuitos RC com corrente alternada 5 5.1 Material resistor de 1 Ω; capacitor de, µf. 5. Introdução Como vimos na aula sobre capacitores, a equação característica do capacitor ideal é dada por i(t) = C
I-4 Espetro de sinais periódicos A Série de Fourier
I-4 Espetro de sinais periódicos Série de Fourier Comunicações Sumário 1. Sinais periódicos Sinusóide Onda quadrada. Espetro de amplitude e de fase Unilateral Bilateral 3. Série de Fourier 4. s tabelas
Tranformada de Fourier. Guillermo Cámara-Chávez
Tranformada de Fourier Guillermo Cámara-Chávez O que é uma série de Fourier Todos conhecemos as funções trigonométricas: seno, cosseno, tangente, etc. O que é uma série de Fourier Essa função é periódica,
Sílvia Mara da Costa Campos Victer Concurso: Matemática da Computação UERJ - Friburgo
Convolução, Série de Fourier e Transformada de Fourier contínuas Sílvia Mara da Costa Campos Victer Concurso: Matemática da Computação UERJ - Friburgo Tópicos Sinais contínuos no tempo Função impulso Sistema
Processamento de Sinais Multimídia
Processamento de Sinais Multimídia Introdução Mylène Christine Queiroz de Farias Departamento de Ciência da Computação Universidade de Brasília (UnB) Brasília, DF 70910-900 [email protected] 22 de Março de
Análise de Sinais no Tempo Contínuo: A Série de Fourier
Análise de Sinais no Tempo Contínuo: A Série de Fourier Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco
FASORES E NÚMEROS COMPLEXOS
Capítulo FSORES E NÚMEROS COMPLEXOS. Introdução.1 Fasor.1.1 Representação Fasorial de uma Onda Senoidal e Co-senoidal.1. Diagramas Fasoriais. Sistema de Números Complexos..1 Plano Complexo.. Operador j.3
Prof. Daniel Hasse. Princípios de Comunicações
Prof. Daniel Hasse Princípios de Comunicações AULA 3 Análise de Fourier Prof. Daniel Hasse Sinais e espectros Os sinais são compostos de várias componentes senoidais (Série de Fourier) Generalização ransformada
LINHAS DE TRANSMISSÃO DE ENERGIA LTE. Aula 4 Conceitos Básicos da Transmissão em Corrente Alternada
LINHAS DE TRANSMISSÃO DE ENERGIA LTE Aula 4 Conceitos Básicos da Transmissão em Corrente Alternada Tópicos da Aula Tensões e Correntes Variantes no Tempo Sistema em Regime Permanente Senoidal Interpretação
Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros
Sinais e Sistemas Série de Fourier Renato Dourado Maia Faculdade de Ciência e ecnologia de Montes Claros Fundação Educacional Montes Claros Convergência da Um sinal periódico contínuo possui uma representação
Sinais e Sistemas. Luis Henrique Assumpção Lolis. 21 de fevereiro de Luis Henrique Assumpção Lolis Sinais e Sistemas 1
Sinais e Sistemas Luis Henrique Assumpção Lolis 21 de fevereiro de 2014 Luis Henrique Assumpção Lolis Sinais e Sistemas 1 Conteúdo 1 Classificação de sinais 2 Algumas funções importantes 3 Transformada
Transformada de Fourier. Theo Pavan e Adilton Carneiro TAPS
Transformada de Fourier Theo Pavan e Adilton Carneiro TAPS Análise de Fourier Análise de Fourier - representação de funções por somas de senos e cossenos ou soma de exponenciais complexas Uma análise datada
Eletricidade Aula 6. Corrente Alternada
Eletricidade Aula 6 Corrente Alternada Comparação entre Tensão Contínua e Alternada Vídeo 7 Característica da tensão contínua A tensão contínua medida em qualquer ponto do circuito não muda conforme o
Métodos de Fourier Prof. Luis S. B. Marques
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO
Introdução ao Processamento Digital de Imagens. Aula 6 Propriedades da Transformada de Fourier
Introdução ao Processamento Digital de Imagens Aula 6 Propriedades da Transformada de Fourier Prof. Dr. Marcelo Andrade da Costa Vieira [email protected] Uma linha de uma imagem formada por uma sequência
Transformada Discreta de Fourier
Processamento Digital de Sinais Transformada Discreta de Fourier Prof. Dr. Carlos Alberto Ynoguti Jean Baptiste Joseph Fourier Nascimento: 21 de março de 1768 em Auxerre, Bourgogne, França Morte: 16 de
Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica
Propriedades das Representações de Fourier Sinais periódicos de tempo contínuo ou discreto têm uma representação por série de Fourier, dada pela soma ponderada de senoides complexas com frequências múltiplas
Transformada Discreta de Fourier
Processamento Digital de Sinais Transformada Discreta de Fourier Prof. Dr. Carlos Alberto Ynoguti Jean Baptiste Joseph Fourier Nascimento: 21 de março de 1768 em Auxerre, Bourgogne, França Morte: 16 de
Exercícios para Processamento Digital de Sinal. 1 Transformada e Série de Fourier
Exercícios para Processamento Digital de Sinal Transformada e Série de Fourier Exercício Considere o seguinte sinal x(t) = sin 2 (0πt). Encontre uma forma aditiva para este sinal e represente graficamente
Teoria das Comunicações Prof. André Noll Barreto Prova 1 Gabarito
Prova Gabarito Questão (4 pontos) Um pulso é descrito por: g t = t e t / u t u t, a) Esboce o pulso. Este é um sinal de energia ou de potência? Qual sua energia/potência? (,7 ponto) b) Dado um trem periódico
Cap. 2 Hart, Eletrônica de Potência. Cálculos de potência
Cap. 2 Hart, Eletrônica de Potência Cálculos de potência Material auxiliar Revisão de circuitos RL Me Salva! RLC10 - Indutores: Introdução https://www.youtube.com/watch?v=yaicexbwtgg Me Salva! RLC11 -
Circuitos Elétricos III
Circuitos Elétricos III Prof. Danilo Melges Depto. de Eng. Elétrica Universidade Federal de Minas Gerais A Transformada de Fourier Série de Fourier e Transformada de Fourier Partindo da Série de Fourier
Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.
Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores Correntes e Tensões Alternadas Senoidais Prof. Clóvis Antônio Petry. Florianópolis, julho de 2007. Bibliografia
Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula
59070 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 6 00 Superposição de Movimentos Periódicos Há muitas situações em física que envolvem a ocorrência simultânea de duas ou mais
Aula 26. Introdução a Potência em CA
Aula 26 Introdução a Potência em CA Valor eficaz - RMS Valor eficaz de uma corrente periódica é a CC que libera a mesma potência média para um resistor que a corrente periódica Potência média para um circuito
EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012
EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0
1. Movimento Harmônico Simples
Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto
Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.
Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento
Análise e Transmissão de Sinais
Análise e Transmissão de Sinais Edmar José do Nascimento (Princípios de Comunicações) Universidade Federal do Vale do São Francisco Roteiro 1 Análise de Fourier 2 Sistemas Lineares 3 Filtros 4 Distorção
Parte A: Circuitos RC com corrente alternada
Circuitos RC e RL com Corrente Alternada 6 Parte A: Circuitos RC com corrente alternada 6.1 Material osciloscópio; multímetro digital; gerador de sinais; resistor de 10 Ω; capacitor de 2,2 µf. 6.2 Introdução
I-5 Espetro de sinais não periódicos A Transformada de Fourier
I-5 Espetro de sinais não periódicos A Transformada de Fourier Comunicações Sumário 1. Sinais não periódicos. Transformada de Fourier Representação, no domínio da frequência, de sinais não periódicos Relação
Circuitos RC e RL com Corrente Alternada
Experimento 6 Circuitos RC e RL com Corrente Alternada Parte A: Circuitos RC com corrente alternada 6.1 Material osciloscópio; multímetro digital; gerador de sinais; resistor de 10 Ω; capacitor de 2,2
Índice. Dia 03 de fevereiro de Apresentação conversa com os alunos Dia 06 de fevereiro de Sinais Aperiódicos...
Índice Dia 03 de fevereiro de 2014....3 Apresentação conversa com os alunos.... 3 Dia 06 de fevereiro de 2014....4 Sinais Aperiódicos.... 4 Dia 10 de fevereiro de 2014....5 - Corrente continua:... 5 -
Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031
Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Aula 10 - Espaço de Estados (II) e Circuitos sob Excitação
Representação de Fourier para Sinais 1
Representação de Fourier para Sinais A representação de Fourier para sinais é realizada através da soma ponderada de funções senoidais complexas. Se este sinal for aplicado a um sistema LTI, a saída do
Capítulo 10. Excitação Senoidal e Fasores
Capítulo 0 Excitação Senoidal e Fasores 0. Propriedades das Senóides: Onda senoidal: ( t) sen( t) v ω Aplitude Freqüência angular ω [rad/s] - π/ω π/ω t Senóide é ua função periódica: Período: T π/ω Freqüência:
Teoria das Comunicações Prof. André Noll Barreto Prova /02
eoria das Comunicações Prova 1-1/ Aluno: Matrícula: Instruções A prova terá a duração de h3 A prova pode ser feita a lápis ou caneta Não é permitida consulta a notas de aula, todas as fórmulas necessárias
Resumo. Sinais e Sistemas Representação de Sinais Periódicos em Séries de Fourier. Objectivo. Função Própria de um Sistema
Resumo Sinais e Sistemas Representação de Sinais Periódicos em Séries de Fourier [email protected] Instituto Superior Técnico Resposta de SLITs a exponenciais complexas Série de Fourier de sinais contínuos
AULA LAB 01 SINAIS SENOIDAIS
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA DEPARTAMENTO DE ELETRÔNICA Retificadores (ENG - 20301) AULA LAB 01 SINAIS SENOIDAIS 1 INTRODUÇÃO Esta aula de laboratório tem por objetivo consolidar
Regime permanente senoidal e Fasores
Regime permanente senoidal e Fasores Flávio R. M. Pavan, 2017 Revisão técnica: Magno T. M. Silva e Flávio A. M. Cipparrone 1 Introdução O estudo de circuitos elétricos em regime permanente senoidal (RPS)
B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil. Constituídodedoisgráficos: umdomóduloemdecibel(db) outrodoângulo de fase;
Diagramas de Bode Constituídodedoisgráficos: umdomóduloemdecibel(db) outrodoângulo de fase; Ambos são traçados em relação à frequência em escala logarítmica; LembrequeologaritmodomódulodeG(jω) é20log 10
SEL Processamento Digital de Imagens Médicas. Aula 4 Transformada de Fourier. Prof. Dr. Marcelo Andrade da Costa Vieira
SEL 0449 - Processamento Digital de Imagens Médicas Aula 4 Transformada de Fourier Prof. Dr. Marcelo Andrade da Costa Vieira [email protected] Jean Baptiste Joseph Fourier 2 Exemplo: Função Degrau 3 Exemplo:
UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE
UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE 1) CORRENTE ALTERNADA: é gerada pelo movimento rotacional de um condutor ou um conjunto de condutores no interior de um campo magnético (B)
Análise e Transmissão de Sinais
Análise e Transmissão de Sinais Edmar José do Nascimento (Princípios de Comunicações) Universidade Federal do Vale do São Francisco Roteiro 1 Transformada de Fourier 2 Sistemas Lineares 3 Filtros 4 Distorção
Experiência 4 - Sinais Senoidais e Fasores
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Edição 2017 Cinthia Itiki, Inés Pereyra, Marcelo Carreño Experiência
Revisão Análise em frequência e amostragem de sinais. Hilton de Oliveira Mota
Revisão Análise em frequência e amostragem de sinais Hilton de Oliveira Mota Introdução Análise em frequência (análise espectral): Descrição de quais frequências compõem um sinal. Por quê? Senóides são
7 Exemplos Numéricos do Caso Não-Linear
84 7 Exemplos Numéricos do Caso Não- Neste capítulo é apresentada uma série de exemplos numéricos mostrando a influência da não-linearidade da fundação na resposta do sistema, tanto para o caso de resposta
ELETROTÉCNICA (ENE078)
UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenharia Civil ELETROTÉCNICA (ENE078) PROF. RICARDO MOTA HENRIQUES E-mail: [email protected] Aula Número: 20 Revisão da aula passada... Circuitos
Circuitos com excitação Senoidal
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO
Frequência de corte 𝕍 𝒋𝝎 𝑉𝑠 𝑡 = 2 cos 𝜔𝑡 + 0𝑜 𝑉 𝐶 = 1𝜇𝐹 𝑅 = 1𝐾Ω 𝜔𝑐 𝝎 (𝒓𝒂𝒅/𝒔𝒆𝒈)
Aula 25 Revisão P3 Frequência de corte V jω Vs t = 2 cos ωt + 0 o V C = 1μF R = 1KΩ ω c ω (rad/seg) Frequência de corte V C = V S 1 jωc R + 1 jωc = V S 1 1 + jωrc V R = V S R R + 1 jωc = V S jωrc 1 + jωrc
Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações. Professor: Gustavo Silva
Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações Professor: Gustavo Silva 1 1.Movimentos Movimento oscilatório é qualquer movimento onde o sistema observado move-se em torno de uma certa
Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial
Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de
! " # $ % & ' # % ( # " # ) * # +
a Aula 69 AMIV ' * + Fórmula de De Moivre Dado z = ρe e Concluímos por indução que = ρ cos θ + i sen θ C temos z = ρe ρe = ρ e z = zz = ρe ρ e = ρ e z = ρ e para qualquer n N e como ρ e ρ e = ρ e pôr n
Exp 3 Comparação entre tensão contínua e tensão alternada
Reprografia proibida Exp 3 Comparação entre tensão contínua e tensão alternada Característica da tensão contínua Quando a tensão, medida em qualquer ponto de um circuito, não muda conforme o tempo passa,
Números Complexos. Prof. Eng. Antonio Carlos Lemos Júnior. Controle de Sistemas Mecânicos 1
Números omplexos Prof. Eng. Antonio arlos Lemos Júnior 1 AGENDA Revisão de conceitos matemáticos Números complexos Exercícios Números complexos Objetivo: O objetivo desta seção é fazer uma pequena revisão
Aula 24. Fasores II Seletores de frequência
Aula 24 Fasores II Seletores de frequência Revisão (j = ) Os números complexos podem ser expressos em 3 formas: Considere que: Retangular Polar cos φ = CA h = x r x = r cos(φ) sen φ = CO h = y r y = r
Análise de Sinais Dep. Armas e Electronica, Escola Naval V1.1 - Victor Lobo Capítulo 3. Transformadas de Fourier e Fourier Discreta
Capítulo 3 Transformadas Fourier e Fourier Discreta Bibliografia (Cap.3,4 Louretie)(Cap.3,6 Haykin)(Cap.3 Ribeiro) 1 1 Domínio da frequência Qualquer sinal (1) po ser composto numa soma exponenciais complexas
Sinais e Sistemas. Sinais e Sistemas Fundamentos. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas
Sinais e Sistemas Sinais e Sistemas Fundamentos Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Classificação de Sinais Sinal de Tempo Contínuo: É definido para todo tempo
Prova P3 Física para Engenharia II, turma nov. 2014
Questão 1 Imagine que você prenda um objeto de 5 g numa mola cuja constante elástica vale 4 N/m. Em seguida, você o puxa, esticando a mola, até 5 cm da sua posição de equilíbrio, quando então o joga com
Processamento de sinais digitais Aula 3: Transformada de Fourier (Parte 1)
Processamento de sinais digitais Aula 3: Transformada de Fourier (Parte 1) [email protected] Tópicos Definição da Transformada de Fourier (TF) Propriedades importantes (ex: linearidade e periodicidade)
Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas
Sinais e Sistemas Série de Fourier Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Lembremos da resposta de um sistema LTI discreto a uma exponencial complexa: x[ n] z,
