Teoria de Eletricidade Aplicada
|
|
|
- Luiz de Sousa Belém
- 7 Há anos
- Visualizações:
Transcrição
1 1/24 Teoria de Eletricidade Aplicada Representação Vetorial de Ondas Senoidais Prof. Jorge Cormane Engenharia de Energia
2 2/24 SUMÁRIO 1. Introdução 2. Números Complexos 3. Funções Exponenciais Complexas
3 3/24 INTRODUÇÃO Associar um número complexo a uma senoide é um artificio conveniente, que permite analisar a resposta estacionária de circuitos lineares em corrente alternada
4 4/24 NÚMEROS COMPLEXOS Definição: Um número complexo (z) é definido como a soma de um número real e um número imaginário, da forma z = x +jy, onde x e y são número reais e j = 1.
5 5/24 NÚMEROS COMPLEXOS Representação dos números complexos: Coordenadas Retangulares z = }{{} x +j y }{{} Re Im Coordenadas Polares x = z cos(θ) z = x 2 +y 2 z = z θ = z e jθ y = z sin(θ) θ = tan 1 ( y ) x e jθ = cos(θ) +j sin(θ)
6 6/24 NÚMEROS COMPLEXOS O Plano Complexo é uma representação geométrica do conjunto dos números complexos: Im y= z sin(θ) θ z x= z cos(θ) (x,y) O plano complexo associa o número complexo x +jy do plano ao ponto (x, y) e a distância euclidiana "segmento de reta"do ponto até a origem do sistema de coordenadas z. Re
7 7/24 NÚMEROS COMPLEXOS Operações (Soma e Subtração) z 1 = x 1 +jy 1 z 2 = x 2 +jy 2 z 1 ±z 2 = (x 1 +jy 1 ) ± (x 2 +jy 2 ) = (x 1 +x 2 ) ±j(y 1 +y 2 ) Dica: executar as operações de SOMA e SUBTRAÇÃO de números complexos em Coordenadas Retangulares
8 8/24 NÚMEROS COMPLEXOS Operações (Multiplicação) z 1 = z 1 θ 1 z 2 = z 2 θ 2 z 1 z 2 = z 1 z 2 θ 1 + θ 2 A MULTIPLICAÇÃO é mais fácil de ser realizada na forma polar
9 9/24 NÚMEROS COMPLEXOS Operações (Divisão) z 1 = z 1 θ 1 z 2 = z 2 θ 2 z 1 z 2 = z 1 z 2 θ 1 θ 2 A DIVISÃO é mais fácil de ser realizada na forma polar
10 10/24 NÚMEROS COMPLEXOS Operações (Potenciação) z n = z n nθ j 1 = j = 1 90 j 0 = 1 = 1 0 j 1 = j = 1 90 j 2 = 1 = j 3 = j j 2 = j. j n+4 = j n
11 11/24 NÚMEROS COMPLEXOS Operações (Conjugado) z = x jy = z θ z +z = 2Re{z} z z = j2im{z} (z 1 +z 2 ) = z 1 +z 2 zz = z 2 (z 1 z 2 ) = z 1 z 2 O conjugado de um número complexo é seu simétrico no plano complexo em relação ao eixo real.
12 12/24 NÚMEROS COMPLEXOS Inverso multiplicativo (para z 0) 1 z = 1 z θ = 1 z θ 1 z = 1 x+jy = (x jy) (x+jy)(x jy) = x jy = z x 2 +y 2 z 2
13 NÚMEROS COMPLEXOS Exercícios Aula Considerando os números complexos mostrados a seguir, interprete geometricamente as operações: i. z = z 1 +z 2, ii. z = z 1 z 2 e iii. z 1. z 1 = z 1 θ 1 e z 2 = z 2 π 2 + θ 1 Exercícios Aula Calcular os valores de x e y. 15 x +jy = 20ej π 4 13/24
14 NÚMEROS COMPLEXOS Exercícios Aula Calcular os valores de r e θ. (r θ)( 3 +j5) = j25 Exercícios Aula Calcular os valores de x e y na equação 15 x +jy = 20ej π 4 14/24
15 15/24 NÚMEROS COMPLEXOS Exercícios Aula Resolver as operações e j π 3 (40 50 ) + (3 j4) (2 +j4)(3 j5) [ 10 +j6 ] 1 2 j j Exercícios Aula Resolver o sistema de equações lineares [ 10 +j6 2 j j ][ ] x1 x 2 [ e j π] = 2 0
16 16/24 FUNÇÕES FUNÇÕES EXPONENCIAIS COMPLEXAS Uma senoide é um sinal na forma de uma seno ou cosseno: x (t) = Ae jωt ω = 2πf = 2π T f - frequência [Hz] T - Período [s] A - amplitude ω - frequência angular [rad/s] φ - ângulo de fase [rad ou º]
17 17/24 FUNÇÕES FUNÇÕES EXPONENCIAIS COMPLEXAS As fórmulas de Euler e seus corolários permitem transitar entre as funções senoidais e exponenciais complexas Formulas de Euler e jθ = cosθ +j sinθ e jθ = cosθ j sinθ Corolários cosθ = ejθ +e jθ 2 sinθ = ejθ e jθ 2j
18 18/24 FUNÇÕES FUNÇÕES EXPONENCIAIS COMPLEXAS As funções senoidais podem ser expressas como a soma de dos termos exponenciais complexas f (t) = A cos ( ωt + φ ) = 1 [Ae j(ωt+φ) +Ae j(ωt+φ)] }{{} 2 e jθ +e jθ 2 = 1 Ae jφ 2 }{{} e jωt +Ae }{{ jφ } e jωt = 1 [Fe ] jωt +F e jωt 2 F F onde, F = Ae jθ e F = Ae jθ são números complexos ou Constantes Complexas
19 19/24 FUNÇÕES EXPONENCIAIS COMPLEXAS As exponenciais complexas são representadas graficamente no plano complexo da forma a seguir: Para um valor dado de t Im A A j j t Fe Ae t Re ( t ) * j j t F e Ae À medida que t aumenta j Fe t 2 Fe * j t 2 Im Fe j * j F e t 4 j Fe t 0 Re t * j Fe 4 t 0 Os dois segmentos giram em sentidos opostos e são chamados de "Fasores girantes"
20 20/24 FUNÇÕES EXPONENCIAIS COMPLEXAS Observa-se que para todo t, a função f (t) é uma função REAL representada como: a metade da soma dos dois fasores girantes Im 1 2 j * j Fe Fe f t Re a projeção de quaisquer dos fasores no eixo real Im j ReFe f t Re
21 21/24 FUNÇÕES EXPONENCIAIS COMPLEXAS F t 2 Im Ft 4 F t 0 Re Por convenção, mostra-se unicamente o fasor girante no sentido anti-horário. Adicionalmente, omite-se a parte e jω de F por causa de que eles sempre giram com a mesma frequência
22 22/24 FUNÇÕES EXPONENCIAIS COMPLEXAS O termo FASOR, a menos que seguido de um adjetivo que modifique, é entendido como sendo "o valor do fasor girante em sentido anti-horário no instante t = 0" O termo fasor é usado em vez de vetor porque o ângulo indica uma fase temporal e não uma orientação espacial.
23 FUNÇÕES EXPONENCIAIS COMPLEXAS Exercícios Aula Calcular a soma do sinal resultante x 1 (t) = 2cos(6t +60 ) x 2 (t) = 4sin(6t 60 ) Exercícios Aula Uma fonte de tensão senoidal v(t) possui uma amplitude de 100V e um período de T = 1 ms. O valor de v(t) em t = 0 é 10V. Determine uma expressão para v(t). 23/24
24 24/24 DÚVIDAS?
Fontes senoidais. Fontes senoidais podem ser expressar em funções de senos ou cossenos A função senoidal se repete periodicamente
Aula 23 Fasores I Fontes senoidais Exemplo de representações de fontes senoidais Fontes senoidais podem ser expressar em funções de senos ou cossenos A função senoidal se repete periodicamente v t = V
FASORES E NÚMEROS COMPLEXOS
Capítulo FSORES E NÚMEROS COMPLEXOS. Introdução.1 Fasor.1.1 Representação Fasorial de uma Onda Senoidal e Co-senoidal.1. Diagramas Fasoriais. Sistema de Números Complexos..1 Plano Complexo.. Operador j.3
Análise de Circuitos 2
Análise de Circuitos 2 Introdução (revisão) Prof. César M. Vargas Benítez Departamento Acadêmico de Eletrônica, Universidade Tecnológica Federal do Paraná (UTFPR) 1 Análise de Circuitos 2 - Prof. César
Fasores e Números Complexos
Fasores e Números Complexos Evandro Bastos dos Santos 21 de Maio de 2017 1 Introdução Vamos relembrar das aulas anteriores em que vimos que uma corrente ou tensão alternada pode ser representada por funções
ANÁLISE DE CIRCUITOS ELÉTRICOS II
ANÁLISE DE CIRCUITOS ELÉTRICOS II Módulo III FASORES E IMPEDÂNCIA Números Complexos Forma Retangular: 2 Números Complexos Operações com o j: 3 Números Complexos Forma Retangular: z = x+jy sendo j=(-1)
Experiência 4 - Sinais Senoidais e Fasores
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Edição 2017 Cinthia Itiki, Inés Pereyra, Marcelo Carreño Experiência
ANÁLISE DE SINAIS DINÂMICOS
ANÁLISE DE SINAIS DINÂMICOS Paulo S. Varoto 7 . - Classificação de Sinais Sinais dinâmicos são geralmente classificados como deterministicos e aleatórios, como mostra a figura abaixo: Periódicos Determinísticos
FASORES E NÚMEROS COMPLEXOS
e(t) θ3 θ 0 π/ π 3π/ π ωt[rad] FASORES E NÚMEROS COMPLEXOS Q = E I sen(θ) SሬԦ = E I θ I* I cos( θ) E θ E θ I sen( θ) I DEPARTAMENTO DA ÁREA DE ELETRO-ELETRÔNICA COORDENAÇÃO DE ELETROTÉCNICA Prof. Rupert
Teoria de Eletricidade Aplicada
1/34 Teoria de Eletricidade Aplicada Considerações sobre a Corrente Alternada (CA) Prof. Jorge Cormane Engenharia de Energia 2/34 SUMÁRIO 1. Introdução 2. Formas de Onda 3. Funções Senoidais 4. Valor Médio
BC 1519 Circuitos Elétricos e Fotônica
BC 1519 Circuitos Elétricos e Fotônica Circuitos em Corrente Alternada 013.1 1 Circuitos em Corrente Alternada (CA) Cálculos de tensão e corrente em regime permanente senoidal (RPS) Conceitos de fasor
ELETROTÉCNICA (ENE078)
UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenharia Civil ELETROTÉCNICA (ENE078) PROF. RICARDO MOTA HENRIQUES E-mail: [email protected] Aula Número: 20 Revisão da aula passada... Circuitos
INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA
INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA -1-20. 8 Curso Técnico em Eletrotécnica Os Dispositivos Básicos e os 1.. Sequência de conteúdos: 1. Revisão; 2.. Vitória-ES
Análise de Circuitos I I
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS DE SÃO JOSÉ CURSO TÉCNICO INTEGRADO EM TELECOMUNICAÇÕES
Frequência de corte 𝕍 𝒋𝝎 𝑉𝑠 𝑡 = 2 cos 𝜔𝑡 + 0𝑜 𝑉 𝐶 = 1𝜇𝐹 𝑅 = 1𝐾Ω 𝜔𝑐 𝝎 (𝒓𝒂𝒅/𝒔𝒆𝒈)
Aula 25 Revisão P3 Frequência de corte V jω Vs t = 2 cos ωt + 0 o V C = 1μF R = 1KΩ ω c ω (rad/seg) Frequência de corte V C = V S 1 jωc R + 1 jωc = V S 1 1 + jωrc V R = V S R R + 1 jωc = V S jωrc 1 + jωrc
Números Complexos. Prof. Eng. Antonio Carlos Lemos Júnior. Controle de Sistemas Mecânicos 1
Números omplexos Prof. Eng. Antonio arlos Lemos Júnior 1 AGENDA Revisão de conceitos matemáticos Números complexos Exercícios Números complexos Objetivo: O objetivo desta seção é fazer uma pequena revisão
Sistemas Lineares. Aula 9 Transformada de Fourier
Sistemas Lineares Aula 9 Transformada de Fourier Séries de Fourier A Série de Fourier representa um sinal periódico como uma combinação linear de exponenciais complexas harmonicamente relacionadas. Como
ELETRICIDADE APLICADA RESUMO DE AULAS PARA A 2ª PROVA
ELETRICIDADE APLICADA RESUMO DE AULAS PARA A 2ª PROVA Eletricidade Aplicada I 12ª Aula Corrente Alternada Corrente Alternada: Introdução A expressão em função do tempo é: v(t)=v máx sen(wt+a). V máx é
Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.
Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores Correntes e Tensões Alternadas Senoidais Prof. Clóvis Antônio Petry. Florianópolis, julho de 2007. Bibliografia
Capítulo 5 Teoria dos Circuitos de Corrente Alternada em Estado Permanente
Capítulo 5 Teoria dos Circuitos de Corrente Alternada em Estado Permanente Sumário Álgebra dos Números Complexos Representação de Funções Senoidais do Tempo Impedância e Admitância Diagramas Fasoriais
Circuitos RC com corrente alternada. 5.1 Material. resistor de 10 Ω; capacitor de 2,2 µf.
Circuitos RC com corrente alternada 5 5.1 Material resistor de 1 Ω; capacitor de, µf. 5. Introdução Como vimos na aula sobre capacitores, a equação característica do capacitor ideal é dada por i(t) = C
LINHAS DE TRANSMISSÃO DE ENERGIA LTE. Aula 4 Conceitos Básicos da Transmissão em Corrente Alternada
LINHAS DE TRANSMISSÃO DE ENERGIA LTE Aula 4 Conceitos Básicos da Transmissão em Corrente Alternada Tópicos da Aula Tensões e Correntes Variantes no Tempo Sistema em Regime Permanente Senoidal Interpretação
Eletrotécnica II Números complexos
Eletrotécnica II Números complexos Prof. Danilo Z. Figueiredo Curso Superior de Tecnologia em Instalações Elétricas Faculdade de Tecnologia de São Paulo Tópicos Aspectos históricos: a solução da equação
Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula
59070 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 6 00 Superposição de Movimentos Periódicos Há muitas situações em física que envolvem a ocorrência simultânea de duas ou mais
UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE
UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE 1) CORRENTE ALTERNADA: é gerada pelo movimento rotacional de um condutor ou um conjunto de condutores no interior de um campo magnético (B)
RESOLUÇÃO DA LISTA II P3
RESOLUÇÃO DA LISTA II P3 9.25) Determine a expressão em regime permanente i o (t) no circuito abaixo se v s = 750cos (5000t)mV Z L = jωl = 40 0 3 5000 Z L = 200j Z C = jωc = j 5000 0,4 0 6 Z C = 500j Sabemos
Aula 26. Introdução a Potência em CA
Aula 26 Introdução a Potência em CA Valor eficaz - RMS Valor eficaz de uma corrente periódica é a CC que libera a mesma potência média para um resistor que a corrente periódica Potência média para um circuito
Circuitos Elétricos I
Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Circuitos Elétricos I Prof. José Azcue; Dr. Eng. Excitação Senoidal e Fasores Impedância Admitância 1 Propriedades das Senóides
Circuitos com excitação Senoidal
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO
Circuitos Elétricos I
Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Circuitos Elétricos I Prof. Dr. José Luis Azcue Puma Excitação Senoidal e Fasores Impedância Admitância 1 Propriedades das Senóides
Prof. Daniel Hasse. Princípios de Comunicações
Prof. Daniel Hasse Princípios de Comunicações AULA 3 Análise de Fourier Prof. Daniel Hasse Sinais e espectros Os sinais são compostos de várias componentes senoidais (Série de Fourier) Generalização ransformada
Introdução aos Circuitos Elétricos
1 / 47 Introdução aos Circuitos Elétricos Séries e Transformadas de Fourier Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia 2 / 47 Séries e Transformadas
Regime permanente senoidal e Fasores
Regime permanente senoidal e Fasores Flávio R. M. Pavan, 2017 Revisão técnica: Magno T. M. Silva e Flávio A. M. Cipparrone 1 Introdução O estudo de circuitos elétricos em regime permanente senoidal (RPS)
Aula 24. Fasores II Seletores de frequência
Aula 24 Fasores II Seletores de frequência Revisão (j = ) Os números complexos podem ser expressos em 3 formas: Considere que: Retangular Polar cos φ = CA h = x r x = r cos(φ) sen φ = CO h = y r y = r
Capítulo 12. Potência em Regime Permanente C.A.
Capítulo Potência em Regime Permanente C.A. . Potência Média Em circuitos lineares cujas entradas são funções periódicas no tempo, as tensões e correntes em regime permanente produzidas são periódicas.
Aula 11. Revisão de Fasores e Introdução a Laplace
Aula Revisão de Fasores e Introdução a Laplace Revisão - Fasor Definição: Fasor é a representação complexa da magnitude e fase de uma senoide. V = V m e jφ = V m φ v t = V m cos(wt + φ) = R(V e jwt ) Impedância
Eletricidade Aula 6. Corrente Alternada
Eletricidade Aula 6 Corrente Alternada Comparação entre Tensão Contínua e Alternada Vídeo 7 Característica da tensão contínua A tensão contínua medida em qualquer ponto do circuito não muda conforme o
Método da Resposta da Freqüência
Método da Resposta da Freqüência Introdução; Gráfico de Resposta de Freqüência; Medidas de Resposta de Freqüência; Especificação de Desempenho no Domínio da Freqüência; Diagrama Logarítmicos e de Magnitude
2/47. da matemática é ainda de grande importância nas várias áreas da engenharia. Além disso, lado de Napoleão Bonaparte. 1/47
Introdução aos Circuitos Elétricos Séries e Transformadas de Fourier Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia Sinais: conjunto de dados ou informação
Análise de circuitos em regime permanente sinusoidal
Análise de circuitos em regime permanente sinusoidal 3º ANO 2º SEM. 2005/ Prof. Dr. Ricardo Mendes Corrente Alternada Monofásica - noções fundamentais, amplitude e valor icaz, representação em notação
ELETROTÉCNICA. Impedância
ELETROTÉCNICA Impedância 1 Números complexos As equações algébricas do tipo x =-3não possuem soluções no campo dos números reais. Tais equações podem ser resolvidas somente com a introdução de uma unidade
Métodos Matemáticos para Engenharia
Métodos Matemáticos para Engenharia Transformada de Laplace Docentes: > Prof. Fabiano Araujo Soares, Dr. Introdução Muitos parâmetros em nosso universo interagem através de equações diferenciais; Por exemplo,
Introdução ao Processamento Digital de Imagens. Aula 6 Propriedades da Transformada de Fourier
Introdução ao Processamento Digital de Imagens Aula 6 Propriedades da Transformada de Fourier Prof. Dr. Marcelo Andrade da Costa Vieira [email protected] Uma linha de uma imagem formada por uma sequência
Parte A: Circuitos RC com corrente alternada
Circuitos RC e RL com Corrente Alternada 6 Parte A: Circuitos RC com corrente alternada 6.1 Material osciloscópio; multímetro digital; gerador de sinais; resistor de 10 Ω; capacitor de 2,2 µf. 6.2 Introdução
Circuitos RC e RL com Corrente Alternada
Experimento 6 Circuitos RC e RL com Corrente Alternada Parte A: Circuitos RC com corrente alternada 6.1 Material osciloscópio; multímetro digital; gerador de sinais; resistor de 10 Ω; capacitor de 2,2
1 Números Complexos e Plano Complexo
UNIVERSIDADE FEDERAL DE SANTA CATARINA Centro de Ciências Físicas e Matemáticas Departamento de Matemática SEMESTRE CÓDIGO DISCIPLINA TURMA 09-1 MTM5327 Variável Complexa 0549 Professor Lista de Exercícios
Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031
Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Aula 10 - Espaço de Estados (II) e Circuitos sob Excitação
Capítulo 10. Excitação Senoidal e Fasores
Capítulo 0 Excitação Senoidal e Fasores 0. Propriedades das Senóides: Onda senoidal: ( t) sen( t) v ω Aplitude Freqüência angular ω [rad/s] - π/ω π/ω t Senóide é ua função periódica: Período: T π/ω Freqüência:
REVISÃO DE NÚMEROS COMPLEXOS
REVISÃO DE NÚMEROS COMPLEXOS Ettore A. de Barros. INTRODUÇÃO. Definições Um número compleo pode ser definido pelo par ordenado, de números reais e,, O par, é identificado com o número real, e o par, é
! " # $ % & ' # % ( # " # ) * # +
a Aula 69 AMIV ' * + Fórmula de De Moivre Dado z = ρe e Concluímos por indução que = ρ cos θ + i sen θ C temos z = ρe ρe = ρ e z = zz = ρe ρ e = ρ e z = ρ e para qualquer n N e como ρ e ρ e = ρ e pôr n
FNT AULA 6 FUNÇÃO SENO E COSSENO
FNT AULA 6 FUNÇÃO SENO E COSSENO CIRCUNFERÊNCIA TRIGONOMÉTRICA Chama-se circunferência trigonométrica a circunferência de raio unitário (R=1), com centro na origem de um sistema cartesiano. +1 R = 1 360º
Vamos considerar um gerador de tensão alternada ε(t) = ε m sen ωt ligado a um resistor de resistência R. A tensão no resistor é igual à fem do gerador
Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III - Prof. Dr. Ricardo uiz Viana Referências bibliográficas: H. 36-1, 36-3, 36-4, 36-5, 36-6 S. 32-2, 32-3, 32-4,
ELETRICIDADE APLICADA
CAPÍTULO II SISTEMA ELÉTRICO BRASILEIRO 2.4 Faturas de Energia em Média Tensão MT 31 - Fator de Potência: Indica o fator de potência, aparece quando a unidade consumidora for faturada na modalidade Convencional.
Máquinas Elétricas I PRINCÍPIO DE FUNCIONAMENTO
Máquinas Elétricas I PRINCÍPIO DE FUNCIONAMENTO 1. PARTES PRINCIPAIS As Máquinas elétricas tem duas partes principais (Figuras 1): Estator Parte estática da máquina. Rotor Parte livre para girar Figura
1 a Lista de Exercícios
1 a Lista de Exercícios Prof. Ms. Ricardo Leite Matemática para Engenharia Unisal September 8, 01 Exercise 1. AVILA, G. Variáveis Complexas e Aplicações, 000. Pág. 8 Exercício 8 Dados três vértices de
Revisão números Complexos
ELETRICIDADE Revisão números Complexos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul Números complexos No passado, os matemáticos esbarraram em uma situação oriunda da resolução de uma
Vítor H. Nascimento. 14 de março de 2015
PSI-3211 Circuitos Elé tricos I Nú meros Complexos, Sinais Senoidais, e Fasores Vítor H. Nascimento 14 de março de 2015 1 Introdução Números complexos são muito utilizados no estudo (e projeto) de sistemas
Sinais e Sistemas. Sinais e Sistemas Fundamentos. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros
Sinais e Sistemas Sinais e Sistemas Fundamentos Renato Dourado Maia Faculdade de Ciência e Tecnologia de Montes Claros Fundação Educacional Montes Claros Conjuntos de Números e Equações Números Inteiros
Introdução a Corrente Alternada
Introdução a Corrente Alternada Tensão Continua Uma tensão é chamada de continua ou constante quando o seu valor não se altera com o tempo. Exemplo de geradores que geram tensão continua são as pilhas
Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente
Experimento 10 ircuitos em série em corrente alternada: diferença de fase entre voltagem e corrente 1. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos em presença de uma fonte de
TURMA:12.ºA/12.ºB. O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz)
GUIA DE ESTUDO NÚMEROS COMPLEXOS TURMA:12.ºA/12.ºB 2017/2018 (ABRIL/MAIO) Números Complexos O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz) A famosa igualdade de Euler i e 10 A
Características da Tensão e da Corrente Alternada
Características da Tensão e da Corrente Alternada Evandro Bastos dos Santos 9 de Abril de 2017 1 Introdução Até aqui vimos como funciona circuitos de corrente contínua. Hoje veremos que existem circuitos
Conjunto dos Números Complexos
Conjunto dos Unidade Imaginária Seja a equação: x + 0 Como sabemos, no domínio dos números reais, esta equação não possui solução, criou-se então um número cujo quadrado é. Esse número, representado pela
CIRCUITOS ELÉTRICOS. Aula 01 - Sinais Alternados e Senóides
CIRCUITOS ELÉTRICOS Aula 01 - Sinais Alternados e Senóides Porque nosso sistema elétrico é de corrente alternada? Contexto histórico: Até 1882 corrente contínua predominava Vantagens CC: Armazenar energia
Experimento 4 Circuitos RLC com corrente alternada: ressonância
Experimento 4 Circuitos RLC com corrente alternada: ressonância 1. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos RLC na presença de uma fonte de alimentação de corrente alternada.
Eletrotécnica geral. A tensão alternada é obtida através do 3 fenômeno do eletromagnetismo, que diz:
Análise de circuitos de corrente alternada Chama-se corrente ou tensão alternada aquela cuja intensidade e direção variam periodicamente, sendo o valor médio da intensidade durante um período igual a zero.
CIRCUITOS ELÉTRICOS. Aula 03 RESISTORES EM CORRENTE ALTERNADA E CIRCUITOS RL
CIRCUITOS ELÉTRICOS Aula 03 RESISTORES EM CORRENTE ALTERNADA E CIRCUITOS RL Mas como sempre, primeiro a revisão... Indutância L Capacidade de armazenar energia magnética por meio do campo criado pela corrente.
30 o 50 o 70 o 90 o 110 o 130 o 150 o 170 o 190 o 210 o 230 o 250 o 270 o 290 o 310 o 330 o 350 o
Fasores 1- FASORES Fasores, são na realidade vetores que giram e uma determinada velocidade em um círculo trigonométrico, dando origem as funções senoidais. Então toda função senoidal pode ser representada
Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente
Experimento 0 ircuitos em série em corrente alternada: diferença de fase entre voltagem e corrente. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos em presença de uma fonte de alimentação
Sistemas de Controle 2
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Cap.10 Técnicas de Resposta em Frequência Prof. Dr. Marcos Lajovic Carneiro 10. Técnicas de Resposta de Frequência
ANÁLISE DE SINAIS E SISTEMAS AULA 4: SINAIS EXPONENCIAIS; SINAIS SENOIDAIS; SINAIS SENOIDAIS AMORTECIDOS; SINAIS EXPONENCIAIS COMPLEXOS:
ANÁLISE DE SINAIS E SISTEMAS AULA 4: SINAIS EXPONENCIAIS; SINAIS SENOIDAIS; SINAIS SENOIDAIS AMORTECIDOS; SINAIS EXPONENCIAIS COMPLEXOS: 1 SINAIS EXPONECIAIS São sinais da forma x() t Ae t em que A e são
APRENDIZAGEM INDUSTRIAL
CETEL- Centro Tecnológico de Eletroeletrônica César Rodrigues APRENDIZAGEM INDUSTRIAL Disciplina: Fundamentos de Telecomunicações SISTEMAS ELÉTRICOS ESPECTROS DE SINAIS Forma de Onda Forma de onda é a
I φ= V φ R. Fazendo a mesma análise para um circuito indutivo, se aplicarmos uma tensão v(t) = V m sen(ωt + I (φ 90)= V φ X L
Impedância Em um circuito de corrente alternada puramente resistivo, vimos que, se uma tensão v(t) = V m sen(ωt + ), a corrente que fluirá no resistor será i(t) = I m sen(ωt + ), onde I m = V m /R. Representando
Conjunto dos números complexos
NÚMEROS COMPLEXOS Conjunto dos números complexos I C R Q Z N Número imaginário x² + 1 = 0 x² = 1 x = ± 1 Número imaginário i x = ± i x² + 4 = 0 x² = 4 x = ± 4 x = ± 1 4 x = ± 2i Número imaginário i = 1
Aula 18: Projeto de controladores no domínio da frequência
Aula 18: Projeto de controladores no domínio da frequência prof. Dr. Eduardo Bento Pereira Universidade Federal de São João del-rei [email protected] 26 de outubro de 2017. prof. Dr. Eduardo Bento Pereira
MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari
MATEMÁTICA I FUNÇÕES Profa. Dra. Amanda L. P. M. Perticarrari [email protected] Conteúdo Função Variáveis Traçando Gráficos Domínio e Imagem Família de Funções Funções Polinomiais Funções Exponenciais
FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS
FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA ELÉTRICA Princípios de Comunicações Aulas 7 e 8 Milton Luiz Neri Pereira (UNEMAT/FACET/DEE) 3. Série de Fourier
Movimento harmônico. Prof. Juliano G. Iossaqui. Londrina, 2017
Vibrações Movimento harmônico Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui (UTFPR) Aula 02 Londrina, 2017 1
Cap. 2 Hart, Eletrônica de Potência. Cálculos de potência
Cap. 2 Hart, Eletrônica de Potência Cálculos de potência Material auxiliar Revisão de circuitos RL Me Salva! RLC10 - Indutores: Introdução https://www.youtube.com/watch?v=yaicexbwtgg Me Salva! RLC11 -
Módulo I Ondas Planas
Módulo I Ondas Planas Vetor de Poynting Transmissão de potência Em algum ponto, distante do ponto de transmissão teremos o ponto de recepção. Vetor de Poynting Em toda aplicação prática, a onda EM é gerada
onde V R 2 Ex: a norma do vetor W (-1,2) é: No Scilab, a norma é obtida através da função norm(w). No Geogebra, pelo comando comprimento[w]
A norma de um vetor ( V ) ) é utilizada para calcular comprimento de um vetor. Segue do Teorema de Pitágoras que a norma de um vetor pode ser calculada usando as suas componentes, pela fórmula: onde V
Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia
Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento
Exp 3 Comparação entre tensão contínua e tensão alternada
Reprografia proibida Exp 3 Comparação entre tensão contínua e tensão alternada Característica da tensão contínua Quando a tensão, medida em qualquer ponto de um circuito, não muda conforme o tempo passa,
Álgebra Linear I - Aula 2. Roteiro
Álgebra Linear I - Aula 2 1. Produto escalar. Ângulos. 2. Desigualdade triangular. 3. Projeção ortugonal de vetores. Roteiro 1 Produto escalar Considere dois vetores = (u 1, u 2, u 3 ) e v = (v 1, v 2,
LISTA DE EXERCÍCIOS Nº 2
LISTA DE EXERCÍCIOS Nº 2 Questões 1) A Figura 1a apresenta o retrato de uma onda propagante ao longo do sentido positivo do eixo x em uma corda sob tensão. Quatro elementos da corda são designados por
AULA LAB 01 SINAIS SENOIDAIS
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA DEPARTAMENTO DE ELETRÔNICA Retificadores (ENG - 20301) AULA LAB 01 SINAIS SENOIDAIS 1 INTRODUÇÃO Esta aula de laboratório tem por objetivo consolidar
Eletricidade Aplicada. Aulas Teóricas Professor: Jorge Andrés Cormane Angarita
Eletricidade Aplicada Aulas eóricas Professor: Jorge Andrés Cormane Angarita Análise da Potência Eletricidade Aplicada Introdução Existem duas formas de calcular a potência fornecida ou recebida por um
