Teoria de Eletricidade Aplicada

Tamanho: px
Começar a partir da página:

Download "Teoria de Eletricidade Aplicada"

Transcrição

1 1/24 Teoria de Eletricidade Aplicada Representação Vetorial de Ondas Senoidais Prof. Jorge Cormane Engenharia de Energia

2 2/24 SUMÁRIO 1. Introdução 2. Números Complexos 3. Funções Exponenciais Complexas

3 3/24 INTRODUÇÃO Associar um número complexo a uma senoide é um artificio conveniente, que permite analisar a resposta estacionária de circuitos lineares em corrente alternada

4 4/24 NÚMEROS COMPLEXOS Definição: Um número complexo (z) é definido como a soma de um número real e um número imaginário, da forma z = x +jy, onde x e y são número reais e j = 1.

5 5/24 NÚMEROS COMPLEXOS Representação dos números complexos: Coordenadas Retangulares z = }{{} x +j y }{{} Re Im Coordenadas Polares x = z cos(θ) z = x 2 +y 2 z = z θ = z e jθ y = z sin(θ) θ = tan 1 ( y ) x e jθ = cos(θ) +j sin(θ)

6 6/24 NÚMEROS COMPLEXOS O Plano Complexo é uma representação geométrica do conjunto dos números complexos: Im y= z sin(θ) θ z x= z cos(θ) (x,y) O plano complexo associa o número complexo x +jy do plano ao ponto (x, y) e a distância euclidiana "segmento de reta"do ponto até a origem do sistema de coordenadas z. Re

7 7/24 NÚMEROS COMPLEXOS Operações (Soma e Subtração) z 1 = x 1 +jy 1 z 2 = x 2 +jy 2 z 1 ±z 2 = (x 1 +jy 1 ) ± (x 2 +jy 2 ) = (x 1 +x 2 ) ±j(y 1 +y 2 ) Dica: executar as operações de SOMA e SUBTRAÇÃO de números complexos em Coordenadas Retangulares

8 8/24 NÚMEROS COMPLEXOS Operações (Multiplicação) z 1 = z 1 θ 1 z 2 = z 2 θ 2 z 1 z 2 = z 1 z 2 θ 1 + θ 2 A MULTIPLICAÇÃO é mais fácil de ser realizada na forma polar

9 9/24 NÚMEROS COMPLEXOS Operações (Divisão) z 1 = z 1 θ 1 z 2 = z 2 θ 2 z 1 z 2 = z 1 z 2 θ 1 θ 2 A DIVISÃO é mais fácil de ser realizada na forma polar

10 10/24 NÚMEROS COMPLEXOS Operações (Potenciação) z n = z n nθ j 1 = j = 1 90 j 0 = 1 = 1 0 j 1 = j = 1 90 j 2 = 1 = j 3 = j j 2 = j. j n+4 = j n

11 11/24 NÚMEROS COMPLEXOS Operações (Conjugado) z = x jy = z θ z +z = 2Re{z} z z = j2im{z} (z 1 +z 2 ) = z 1 +z 2 zz = z 2 (z 1 z 2 ) = z 1 z 2 O conjugado de um número complexo é seu simétrico no plano complexo em relação ao eixo real.

12 12/24 NÚMEROS COMPLEXOS Inverso multiplicativo (para z 0) 1 z = 1 z θ = 1 z θ 1 z = 1 x+jy = (x jy) (x+jy)(x jy) = x jy = z x 2 +y 2 z 2

13 NÚMEROS COMPLEXOS Exercícios Aula Considerando os números complexos mostrados a seguir, interprete geometricamente as operações: i. z = z 1 +z 2, ii. z = z 1 z 2 e iii. z 1. z 1 = z 1 θ 1 e z 2 = z 2 π 2 + θ 1 Exercícios Aula Calcular os valores de x e y. 15 x +jy = 20ej π 4 13/24

14 NÚMEROS COMPLEXOS Exercícios Aula Calcular os valores de r e θ. (r θ)( 3 +j5) = j25 Exercícios Aula Calcular os valores de x e y na equação 15 x +jy = 20ej π 4 14/24

15 15/24 NÚMEROS COMPLEXOS Exercícios Aula Resolver as operações e j π 3 (40 50 ) + (3 j4) (2 +j4)(3 j5) [ 10 +j6 ] 1 2 j j Exercícios Aula Resolver o sistema de equações lineares [ 10 +j6 2 j j ][ ] x1 x 2 [ e j π] = 2 0

16 16/24 FUNÇÕES FUNÇÕES EXPONENCIAIS COMPLEXAS Uma senoide é um sinal na forma de uma seno ou cosseno: x (t) = Ae jωt ω = 2πf = 2π T f - frequência [Hz] T - Período [s] A - amplitude ω - frequência angular [rad/s] φ - ângulo de fase [rad ou º]

17 17/24 FUNÇÕES FUNÇÕES EXPONENCIAIS COMPLEXAS As fórmulas de Euler e seus corolários permitem transitar entre as funções senoidais e exponenciais complexas Formulas de Euler e jθ = cosθ +j sinθ e jθ = cosθ j sinθ Corolários cosθ = ejθ +e jθ 2 sinθ = ejθ e jθ 2j

18 18/24 FUNÇÕES FUNÇÕES EXPONENCIAIS COMPLEXAS As funções senoidais podem ser expressas como a soma de dos termos exponenciais complexas f (t) = A cos ( ωt + φ ) = 1 [Ae j(ωt+φ) +Ae j(ωt+φ)] }{{} 2 e jθ +e jθ 2 = 1 Ae jφ 2 }{{} e jωt +Ae }{{ jφ } e jωt = 1 [Fe ] jωt +F e jωt 2 F F onde, F = Ae jθ e F = Ae jθ são números complexos ou Constantes Complexas

19 19/24 FUNÇÕES EXPONENCIAIS COMPLEXAS As exponenciais complexas são representadas graficamente no plano complexo da forma a seguir: Para um valor dado de t Im A A j j t Fe Ae t Re ( t ) * j j t F e Ae À medida que t aumenta j Fe t 2 Fe * j t 2 Im Fe j * j F e t 4 j Fe t 0 Re t * j Fe 4 t 0 Os dois segmentos giram em sentidos opostos e são chamados de "Fasores girantes"

20 20/24 FUNÇÕES EXPONENCIAIS COMPLEXAS Observa-se que para todo t, a função f (t) é uma função REAL representada como: a metade da soma dos dois fasores girantes Im 1 2 j * j Fe Fe f t Re a projeção de quaisquer dos fasores no eixo real Im j ReFe f t Re

21 21/24 FUNÇÕES EXPONENCIAIS COMPLEXAS F t 2 Im Ft 4 F t 0 Re Por convenção, mostra-se unicamente o fasor girante no sentido anti-horário. Adicionalmente, omite-se a parte e jω de F por causa de que eles sempre giram com a mesma frequência

22 22/24 FUNÇÕES EXPONENCIAIS COMPLEXAS O termo FASOR, a menos que seguido de um adjetivo que modifique, é entendido como sendo "o valor do fasor girante em sentido anti-horário no instante t = 0" O termo fasor é usado em vez de vetor porque o ângulo indica uma fase temporal e não uma orientação espacial.

23 FUNÇÕES EXPONENCIAIS COMPLEXAS Exercícios Aula Calcular a soma do sinal resultante x 1 (t) = 2cos(6t +60 ) x 2 (t) = 4sin(6t 60 ) Exercícios Aula Uma fonte de tensão senoidal v(t) possui uma amplitude de 100V e um período de T = 1 ms. O valor de v(t) em t = 0 é 10V. Determine uma expressão para v(t). 23/24

24 24/24 DÚVIDAS?

Fontes senoidais. Fontes senoidais podem ser expressar em funções de senos ou cossenos A função senoidal se repete periodicamente

Fontes senoidais. Fontes senoidais podem ser expressar em funções de senos ou cossenos A função senoidal se repete periodicamente Aula 23 Fasores I Fontes senoidais Exemplo de representações de fontes senoidais Fontes senoidais podem ser expressar em funções de senos ou cossenos A função senoidal se repete periodicamente v t = V

Leia mais

FASORES E NÚMEROS COMPLEXOS

FASORES E NÚMEROS COMPLEXOS Capítulo FSORES E NÚMEROS COMPLEXOS. Introdução.1 Fasor.1.1 Representação Fasorial de uma Onda Senoidal e Co-senoidal.1. Diagramas Fasoriais. Sistema de Números Complexos..1 Plano Complexo.. Operador j.3

Leia mais

Análise de Circuitos 2

Análise de Circuitos 2 Análise de Circuitos 2 Introdução (revisão) Prof. César M. Vargas Benítez Departamento Acadêmico de Eletrônica, Universidade Tecnológica Federal do Paraná (UTFPR) 1 Análise de Circuitos 2 - Prof. César

Leia mais

Fasores e Números Complexos

Fasores e Números Complexos Fasores e Números Complexos Evandro Bastos dos Santos 21 de Maio de 2017 1 Introdução Vamos relembrar das aulas anteriores em que vimos que uma corrente ou tensão alternada pode ser representada por funções

Leia mais

ANÁLISE DE CIRCUITOS ELÉTRICOS II

ANÁLISE DE CIRCUITOS ELÉTRICOS II ANÁLISE DE CIRCUITOS ELÉTRICOS II Módulo III FASORES E IMPEDÂNCIA Números Complexos Forma Retangular: 2 Números Complexos Operações com o j: 3 Números Complexos Forma Retangular: z = x+jy sendo j=(-1)

Leia mais

Experiência 4 - Sinais Senoidais e Fasores

Experiência 4 - Sinais Senoidais e Fasores ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Edição 2017 Cinthia Itiki, Inés Pereyra, Marcelo Carreño Experiência

Leia mais

ANÁLISE DE SINAIS DINÂMICOS

ANÁLISE DE SINAIS DINÂMICOS ANÁLISE DE SINAIS DINÂMICOS Paulo S. Varoto 7 . - Classificação de Sinais Sinais dinâmicos são geralmente classificados como deterministicos e aleatórios, como mostra a figura abaixo: Periódicos Determinísticos

Leia mais

FASORES E NÚMEROS COMPLEXOS

FASORES E NÚMEROS COMPLEXOS e(t) θ3 θ 0 π/ π 3π/ π ωt[rad] FASORES E NÚMEROS COMPLEXOS Q = E I sen(θ) SሬԦ = E I θ I* I cos( θ) E θ E θ I sen( θ) I DEPARTAMENTO DA ÁREA DE ELETRO-ELETRÔNICA COORDENAÇÃO DE ELETROTÉCNICA Prof. Rupert

Leia mais

Teoria de Eletricidade Aplicada

Teoria de Eletricidade Aplicada 1/34 Teoria de Eletricidade Aplicada Considerações sobre a Corrente Alternada (CA) Prof. Jorge Cormane Engenharia de Energia 2/34 SUMÁRIO 1. Introdução 2. Formas de Onda 3. Funções Senoidais 4. Valor Médio

Leia mais

BC 1519 Circuitos Elétricos e Fotônica

BC 1519 Circuitos Elétricos e Fotônica BC 1519 Circuitos Elétricos e Fotônica Circuitos em Corrente Alternada 013.1 1 Circuitos em Corrente Alternada (CA) Cálculos de tensão e corrente em regime permanente senoidal (RPS) Conceitos de fasor

Leia mais

ELETROTÉCNICA (ENE078)

ELETROTÉCNICA (ENE078) UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenharia Civil ELETROTÉCNICA (ENE078) PROF. RICARDO MOTA HENRIQUES E-mail: [email protected] Aula Número: 20 Revisão da aula passada... Circuitos

Leia mais

INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA

INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA -1-20. 8 Curso Técnico em Eletrotécnica Os Dispositivos Básicos e os 1.. Sequência de conteúdos: 1. Revisão; 2.. Vitória-ES

Leia mais

Análise de Circuitos I I

Análise de Circuitos I I MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS DE SÃO JOSÉ CURSO TÉCNICO INTEGRADO EM TELECOMUNICAÇÕES

Leia mais

Frequência de corte 𝕍 𝒋𝝎 𝑉𝑠 𝑡 = 2 cos 𝜔𝑡 + 0𝑜 𝑉 𝐶 = 1𝜇𝐹 𝑅 = 1𝐾Ω 𝜔𝑐 𝝎 (𝒓𝒂𝒅/𝒔𝒆𝒈)

Frequência de corte 𝕍 𝒋𝝎 𝑉𝑠 𝑡 = 2 cos 𝜔𝑡 + 0𝑜 𝑉 𝐶 = 1𝜇𝐹 𝑅 = 1𝐾Ω 𝜔𝑐 𝝎 (𝒓𝒂𝒅/𝒔𝒆𝒈) Aula 25 Revisão P3 Frequência de corte V jω Vs t = 2 cos ωt + 0 o V C = 1μF R = 1KΩ ω c ω (rad/seg) Frequência de corte V C = V S 1 jωc R + 1 jωc = V S 1 1 + jωrc V R = V S R R + 1 jωc = V S jωrc 1 + jωrc

Leia mais

Números Complexos. Prof. Eng. Antonio Carlos Lemos Júnior. Controle de Sistemas Mecânicos 1

Números Complexos. Prof. Eng. Antonio Carlos Lemos Júnior. Controle de Sistemas Mecânicos 1 Números omplexos Prof. Eng. Antonio arlos Lemos Júnior 1 AGENDA Revisão de conceitos matemáticos Números complexos Exercícios Números complexos Objetivo: O objetivo desta seção é fazer uma pequena revisão

Leia mais

Sistemas Lineares. Aula 9 Transformada de Fourier

Sistemas Lineares. Aula 9 Transformada de Fourier Sistemas Lineares Aula 9 Transformada de Fourier Séries de Fourier A Série de Fourier representa um sinal periódico como uma combinação linear de exponenciais complexas harmonicamente relacionadas. Como

Leia mais

ELETRICIDADE APLICADA RESUMO DE AULAS PARA A 2ª PROVA

ELETRICIDADE APLICADA RESUMO DE AULAS PARA A 2ª PROVA ELETRICIDADE APLICADA RESUMO DE AULAS PARA A 2ª PROVA Eletricidade Aplicada I 12ª Aula Corrente Alternada Corrente Alternada: Introdução A expressão em função do tempo é: v(t)=v máx sen(wt+a). V máx é

Leia mais

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry. Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores Correntes e Tensões Alternadas Senoidais Prof. Clóvis Antônio Petry. Florianópolis, julho de 2007. Bibliografia

Leia mais

Capítulo 5 Teoria dos Circuitos de Corrente Alternada em Estado Permanente

Capítulo 5 Teoria dos Circuitos de Corrente Alternada em Estado Permanente Capítulo 5 Teoria dos Circuitos de Corrente Alternada em Estado Permanente Sumário Álgebra dos Números Complexos Representação de Funções Senoidais do Tempo Impedância e Admitância Diagramas Fasoriais

Leia mais

Circuitos RC com corrente alternada. 5.1 Material. resistor de 10 Ω; capacitor de 2,2 µf.

Circuitos RC com corrente alternada. 5.1 Material. resistor de 10 Ω; capacitor de 2,2 µf. Circuitos RC com corrente alternada 5 5.1 Material resistor de 1 Ω; capacitor de, µf. 5. Introdução Como vimos na aula sobre capacitores, a equação característica do capacitor ideal é dada por i(t) = C

Leia mais

LINHAS DE TRANSMISSÃO DE ENERGIA LTE. Aula 4 Conceitos Básicos da Transmissão em Corrente Alternada

LINHAS DE TRANSMISSÃO DE ENERGIA LTE. Aula 4 Conceitos Básicos da Transmissão em Corrente Alternada LINHAS DE TRANSMISSÃO DE ENERGIA LTE Aula 4 Conceitos Básicos da Transmissão em Corrente Alternada Tópicos da Aula Tensões e Correntes Variantes no Tempo Sistema em Regime Permanente Senoidal Interpretação

Leia mais

Eletrotécnica II Números complexos

Eletrotécnica II Números complexos Eletrotécnica II Números complexos Prof. Danilo Z. Figueiredo Curso Superior de Tecnologia em Instalações Elétricas Faculdade de Tecnologia de São Paulo Tópicos Aspectos históricos: a solução da equação

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 59070 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 6 00 Superposição de Movimentos Periódicos Há muitas situações em física que envolvem a ocorrência simultânea de duas ou mais

Leia mais

UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE

UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE 1) CORRENTE ALTERNADA: é gerada pelo movimento rotacional de um condutor ou um conjunto de condutores no interior de um campo magnético (B)

Leia mais

RESOLUÇÃO DA LISTA II P3

RESOLUÇÃO DA LISTA II P3 RESOLUÇÃO DA LISTA II P3 9.25) Determine a expressão em regime permanente i o (t) no circuito abaixo se v s = 750cos (5000t)mV Z L = jωl = 40 0 3 5000 Z L = 200j Z C = jωc = j 5000 0,4 0 6 Z C = 500j Sabemos

Leia mais

Aula 26. Introdução a Potência em CA

Aula 26. Introdução a Potência em CA Aula 26 Introdução a Potência em CA Valor eficaz - RMS Valor eficaz de uma corrente periódica é a CC que libera a mesma potência média para um resistor que a corrente periódica Potência média para um circuito

Leia mais

Circuitos Elétricos I

Circuitos Elétricos I Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Circuitos Elétricos I Prof. José Azcue; Dr. Eng. Excitação Senoidal e Fasores Impedância Admitância 1 Propriedades das Senóides

Leia mais

Circuitos com excitação Senoidal

Circuitos com excitação Senoidal MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO

Leia mais

Circuitos Elétricos I

Circuitos Elétricos I Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Circuitos Elétricos I Prof. Dr. José Luis Azcue Puma Excitação Senoidal e Fasores Impedância Admitância 1 Propriedades das Senóides

Leia mais

Prof. Daniel Hasse. Princípios de Comunicações

Prof. Daniel Hasse. Princípios de Comunicações Prof. Daniel Hasse Princípios de Comunicações AULA 3 Análise de Fourier Prof. Daniel Hasse Sinais e espectros Os sinais são compostos de várias componentes senoidais (Série de Fourier) Generalização ransformada

Leia mais

Introdução aos Circuitos Elétricos

Introdução aos Circuitos Elétricos 1 / 47 Introdução aos Circuitos Elétricos Séries e Transformadas de Fourier Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia 2 / 47 Séries e Transformadas

Leia mais

Regime permanente senoidal e Fasores

Regime permanente senoidal e Fasores Regime permanente senoidal e Fasores Flávio R. M. Pavan, 2017 Revisão técnica: Magno T. M. Silva e Flávio A. M. Cipparrone 1 Introdução O estudo de circuitos elétricos em regime permanente senoidal (RPS)

Leia mais

Aula 24. Fasores II Seletores de frequência

Aula 24. Fasores II Seletores de frequência Aula 24 Fasores II Seletores de frequência Revisão (j = ) Os números complexos podem ser expressos em 3 formas: Considere que: Retangular Polar cos φ = CA h = x r x = r cos(φ) sen φ = CO h = y r y = r

Leia mais

Capítulo 12. Potência em Regime Permanente C.A.

Capítulo 12. Potência em Regime Permanente C.A. Capítulo Potência em Regime Permanente C.A. . Potência Média Em circuitos lineares cujas entradas são funções periódicas no tempo, as tensões e correntes em regime permanente produzidas são periódicas.

Leia mais

Aula 11. Revisão de Fasores e Introdução a Laplace

Aula 11. Revisão de Fasores e Introdução a Laplace Aula Revisão de Fasores e Introdução a Laplace Revisão - Fasor Definição: Fasor é a representação complexa da magnitude e fase de uma senoide. V = V m e jφ = V m φ v t = V m cos(wt + φ) = R(V e jwt ) Impedância

Leia mais

Eletricidade Aula 6. Corrente Alternada

Eletricidade Aula 6. Corrente Alternada Eletricidade Aula 6 Corrente Alternada Comparação entre Tensão Contínua e Alternada Vídeo 7 Característica da tensão contínua A tensão contínua medida em qualquer ponto do circuito não muda conforme o

Leia mais

Método da Resposta da Freqüência

Método da Resposta da Freqüência Método da Resposta da Freqüência Introdução; Gráfico de Resposta de Freqüência; Medidas de Resposta de Freqüência; Especificação de Desempenho no Domínio da Freqüência; Diagrama Logarítmicos e de Magnitude

Leia mais

2/47. da matemática é ainda de grande importância nas várias áreas da engenharia. Além disso, lado de Napoleão Bonaparte. 1/47

2/47. da matemática é ainda de grande importância nas várias áreas da engenharia. Além disso, lado de Napoleão Bonaparte. 1/47 Introdução aos Circuitos Elétricos Séries e Transformadas de Fourier Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia Sinais: conjunto de dados ou informação

Leia mais

Análise de circuitos em regime permanente sinusoidal

Análise de circuitos em regime permanente sinusoidal Análise de circuitos em regime permanente sinusoidal 3º ANO 2º SEM. 2005/ Prof. Dr. Ricardo Mendes Corrente Alternada Monofásica - noções fundamentais, amplitude e valor icaz, representação em notação

Leia mais

ELETROTÉCNICA. Impedância

ELETROTÉCNICA. Impedância ELETROTÉCNICA Impedância 1 Números complexos As equações algébricas do tipo x =-3não possuem soluções no campo dos números reais. Tais equações podem ser resolvidas somente com a introdução de uma unidade

Leia mais

Métodos Matemáticos para Engenharia

Métodos Matemáticos para Engenharia Métodos Matemáticos para Engenharia Transformada de Laplace Docentes: > Prof. Fabiano Araujo Soares, Dr. Introdução Muitos parâmetros em nosso universo interagem através de equações diferenciais; Por exemplo,

Leia mais

Introdução ao Processamento Digital de Imagens. Aula 6 Propriedades da Transformada de Fourier

Introdução ao Processamento Digital de Imagens. Aula 6 Propriedades da Transformada de Fourier Introdução ao Processamento Digital de Imagens Aula 6 Propriedades da Transformada de Fourier Prof. Dr. Marcelo Andrade da Costa Vieira [email protected] Uma linha de uma imagem formada por uma sequência

Leia mais

Parte A: Circuitos RC com corrente alternada

Parte A: Circuitos RC com corrente alternada Circuitos RC e RL com Corrente Alternada 6 Parte A: Circuitos RC com corrente alternada 6.1 Material osciloscópio; multímetro digital; gerador de sinais; resistor de 10 Ω; capacitor de 2,2 µf. 6.2 Introdução

Leia mais

Circuitos RC e RL com Corrente Alternada

Circuitos RC e RL com Corrente Alternada Experimento 6 Circuitos RC e RL com Corrente Alternada Parte A: Circuitos RC com corrente alternada 6.1 Material osciloscópio; multímetro digital; gerador de sinais; resistor de 10 Ω; capacitor de 2,2

Leia mais

1 Números Complexos e Plano Complexo

1 Números Complexos e Plano Complexo UNIVERSIDADE FEDERAL DE SANTA CATARINA Centro de Ciências Físicas e Matemáticas Departamento de Matemática SEMESTRE CÓDIGO DISCIPLINA TURMA 09-1 MTM5327 Variável Complexa 0549 Professor Lista de Exercícios

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Aula 10 - Espaço de Estados (II) e Circuitos sob Excitação

Leia mais

Capítulo 10. Excitação Senoidal e Fasores

Capítulo 10. Excitação Senoidal e Fasores Capítulo 0 Excitação Senoidal e Fasores 0. Propriedades das Senóides: Onda senoidal: ( t) sen( t) v ω Aplitude Freqüência angular ω [rad/s] - π/ω π/ω t Senóide é ua função periódica: Período: T π/ω Freqüência:

Leia mais

REVISÃO DE NÚMEROS COMPLEXOS

REVISÃO DE NÚMEROS COMPLEXOS REVISÃO DE NÚMEROS COMPLEXOS Ettore A. de Barros. INTRODUÇÃO. Definições Um número compleo pode ser definido pelo par ordenado, de números reais e,, O par, é identificado com o número real, e o par, é

Leia mais

! " # $ % & ' # % ( # " # ) * # +

!  # $ % & ' # % ( #  # ) * # + a Aula 69 AMIV ' * + Fórmula de De Moivre Dado z = ρe e Concluímos por indução que = ρ cos θ + i sen θ C temos z = ρe ρe = ρ e z = zz = ρe ρ e = ρ e z = ρ e para qualquer n N e como ρ e ρ e = ρ e pôr n

Leia mais

FNT AULA 6 FUNÇÃO SENO E COSSENO

FNT AULA 6 FUNÇÃO SENO E COSSENO FNT AULA 6 FUNÇÃO SENO E COSSENO CIRCUNFERÊNCIA TRIGONOMÉTRICA Chama-se circunferência trigonométrica a circunferência de raio unitário (R=1), com centro na origem de um sistema cartesiano. +1 R = 1 360º

Leia mais

Vamos considerar um gerador de tensão alternada ε(t) = ε m sen ωt ligado a um resistor de resistência R. A tensão no resistor é igual à fem do gerador

Vamos considerar um gerador de tensão alternada ε(t) = ε m sen ωt ligado a um resistor de resistência R. A tensão no resistor é igual à fem do gerador Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III - Prof. Dr. Ricardo uiz Viana Referências bibliográficas: H. 36-1, 36-3, 36-4, 36-5, 36-6 S. 32-2, 32-3, 32-4,

Leia mais

ELETRICIDADE APLICADA

ELETRICIDADE APLICADA CAPÍTULO II SISTEMA ELÉTRICO BRASILEIRO 2.4 Faturas de Energia em Média Tensão MT 31 - Fator de Potência: Indica o fator de potência, aparece quando a unidade consumidora for faturada na modalidade Convencional.

Leia mais

Máquinas Elétricas I PRINCÍPIO DE FUNCIONAMENTO

Máquinas Elétricas I PRINCÍPIO DE FUNCIONAMENTO Máquinas Elétricas I PRINCÍPIO DE FUNCIONAMENTO 1. PARTES PRINCIPAIS As Máquinas elétricas tem duas partes principais (Figuras 1): Estator Parte estática da máquina. Rotor Parte livre para girar Figura

Leia mais

1 a Lista de Exercícios

1 a Lista de Exercícios 1 a Lista de Exercícios Prof. Ms. Ricardo Leite Matemática para Engenharia Unisal September 8, 01 Exercise 1. AVILA, G. Variáveis Complexas e Aplicações, 000. Pág. 8 Exercício 8 Dados três vértices de

Leia mais

Revisão números Complexos

Revisão números Complexos ELETRICIDADE Revisão números Complexos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul Números complexos No passado, os matemáticos esbarraram em uma situação oriunda da resolução de uma

Leia mais

Vítor H. Nascimento. 14 de março de 2015

Vítor H. Nascimento. 14 de março de 2015 PSI-3211 Circuitos Elé tricos I Nú meros Complexos, Sinais Senoidais, e Fasores Vítor H. Nascimento 14 de março de 2015 1 Introdução Números complexos são muito utilizados no estudo (e projeto) de sistemas

Leia mais

Sinais e Sistemas. Sinais e Sistemas Fundamentos. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros

Sinais e Sistemas. Sinais e Sistemas Fundamentos. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros Sinais e Sistemas Sinais e Sistemas Fundamentos Renato Dourado Maia Faculdade de Ciência e Tecnologia de Montes Claros Fundação Educacional Montes Claros Conjuntos de Números e Equações Números Inteiros

Leia mais

Introdução a Corrente Alternada

Introdução a Corrente Alternada Introdução a Corrente Alternada Tensão Continua Uma tensão é chamada de continua ou constante quando o seu valor não se altera com o tempo. Exemplo de geradores que geram tensão continua são as pilhas

Leia mais

Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente

Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente Experimento 10 ircuitos em série em corrente alternada: diferença de fase entre voltagem e corrente 1. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos em presença de uma fonte de

Leia mais

TURMA:12.ºA/12.ºB. O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz)

TURMA:12.ºA/12.ºB. O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz) GUIA DE ESTUDO NÚMEROS COMPLEXOS TURMA:12.ºA/12.ºB 2017/2018 (ABRIL/MAIO) Números Complexos O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz) A famosa igualdade de Euler i e 10 A

Leia mais

Características da Tensão e da Corrente Alternada

Características da Tensão e da Corrente Alternada Características da Tensão e da Corrente Alternada Evandro Bastos dos Santos 9 de Abril de 2017 1 Introdução Até aqui vimos como funciona circuitos de corrente contínua. Hoje veremos que existem circuitos

Leia mais

Conjunto dos Números Complexos

Conjunto dos Números Complexos Conjunto dos Unidade Imaginária Seja a equação: x + 0 Como sabemos, no domínio dos números reais, esta equação não possui solução, criou-se então um número cujo quadrado é. Esse número, representado pela

Leia mais

CIRCUITOS ELÉTRICOS. Aula 01 - Sinais Alternados e Senóides

CIRCUITOS ELÉTRICOS. Aula 01 - Sinais Alternados e Senóides CIRCUITOS ELÉTRICOS Aula 01 - Sinais Alternados e Senóides Porque nosso sistema elétrico é de corrente alternada? Contexto histórico: Até 1882 corrente contínua predominava Vantagens CC: Armazenar energia

Leia mais

Experimento 4 Circuitos RLC com corrente alternada: ressonância

Experimento 4 Circuitos RLC com corrente alternada: ressonância Experimento 4 Circuitos RLC com corrente alternada: ressonância 1. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos RLC na presença de uma fonte de alimentação de corrente alternada.

Leia mais

Eletrotécnica geral. A tensão alternada é obtida através do 3 fenômeno do eletromagnetismo, que diz:

Eletrotécnica geral. A tensão alternada é obtida através do 3 fenômeno do eletromagnetismo, que diz: Análise de circuitos de corrente alternada Chama-se corrente ou tensão alternada aquela cuja intensidade e direção variam periodicamente, sendo o valor médio da intensidade durante um período igual a zero.

Leia mais

CIRCUITOS ELÉTRICOS. Aula 03 RESISTORES EM CORRENTE ALTERNADA E CIRCUITOS RL

CIRCUITOS ELÉTRICOS. Aula 03 RESISTORES EM CORRENTE ALTERNADA E CIRCUITOS RL CIRCUITOS ELÉTRICOS Aula 03 RESISTORES EM CORRENTE ALTERNADA E CIRCUITOS RL Mas como sempre, primeiro a revisão... Indutância L Capacidade de armazenar energia magnética por meio do campo criado pela corrente.

Leia mais

30 o 50 o 70 o 90 o 110 o 130 o 150 o 170 o 190 o 210 o 230 o 250 o 270 o 290 o 310 o 330 o 350 o

30 o 50 o 70 o 90 o 110 o 130 o 150 o 170 o 190 o 210 o 230 o 250 o 270 o 290 o 310 o 330 o 350 o Fasores 1- FASORES Fasores, são na realidade vetores que giram e uma determinada velocidade em um círculo trigonométrico, dando origem as funções senoidais. Então toda função senoidal pode ser representada

Leia mais

Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente

Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente Experimento 0 ircuitos em série em corrente alternada: diferença de fase entre voltagem e corrente. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos em presença de uma fonte de alimentação

Leia mais

Sistemas de Controle 2

Sistemas de Controle 2 Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Cap.10 Técnicas de Resposta em Frequência Prof. Dr. Marcos Lajovic Carneiro 10. Técnicas de Resposta de Frequência

Leia mais

ANÁLISE DE SINAIS E SISTEMAS AULA 4: SINAIS EXPONENCIAIS; SINAIS SENOIDAIS; SINAIS SENOIDAIS AMORTECIDOS; SINAIS EXPONENCIAIS COMPLEXOS:

ANÁLISE DE SINAIS E SISTEMAS AULA 4: SINAIS EXPONENCIAIS; SINAIS SENOIDAIS; SINAIS SENOIDAIS AMORTECIDOS; SINAIS EXPONENCIAIS COMPLEXOS: ANÁLISE DE SINAIS E SISTEMAS AULA 4: SINAIS EXPONENCIAIS; SINAIS SENOIDAIS; SINAIS SENOIDAIS AMORTECIDOS; SINAIS EXPONENCIAIS COMPLEXOS: 1 SINAIS EXPONECIAIS São sinais da forma x() t Ae t em que A e são

Leia mais

APRENDIZAGEM INDUSTRIAL

APRENDIZAGEM INDUSTRIAL CETEL- Centro Tecnológico de Eletroeletrônica César Rodrigues APRENDIZAGEM INDUSTRIAL Disciplina: Fundamentos de Telecomunicações SISTEMAS ELÉTRICOS ESPECTROS DE SINAIS Forma de Onda Forma de onda é a

Leia mais

I φ= V φ R. Fazendo a mesma análise para um circuito indutivo, se aplicarmos uma tensão v(t) = V m sen(ωt + I (φ 90)= V φ X L

I φ= V φ R. Fazendo a mesma análise para um circuito indutivo, se aplicarmos uma tensão v(t) = V m sen(ωt + I (φ 90)= V φ X L Impedância Em um circuito de corrente alternada puramente resistivo, vimos que, se uma tensão v(t) = V m sen(ωt + ), a corrente que fluirá no resistor será i(t) = I m sen(ωt + ), onde I m = V m /R. Representando

Leia mais

Conjunto dos números complexos

Conjunto dos números complexos NÚMEROS COMPLEXOS Conjunto dos números complexos I C R Q Z N Número imaginário x² + 1 = 0 x² = 1 x = ± 1 Número imaginário i x = ± i x² + 4 = 0 x² = 4 x = ± 4 x = ± 1 4 x = ± 2i Número imaginário i = 1

Leia mais

Aula 18: Projeto de controladores no domínio da frequência

Aula 18: Projeto de controladores no domínio da frequência Aula 18: Projeto de controladores no domínio da frequência prof. Dr. Eduardo Bento Pereira Universidade Federal de São João del-rei [email protected] 26 de outubro de 2017. prof. Dr. Eduardo Bento Pereira

Leia mais

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I FUNÇÕES Profa. Dra. Amanda L. P. M. Perticarrari [email protected] Conteúdo Função Variáveis Traçando Gráficos Domínio e Imagem Família de Funções Funções Polinomiais Funções Exponenciais

Leia mais

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA ELÉTRICA Princípios de Comunicações Aulas 7 e 8 Milton Luiz Neri Pereira (UNEMAT/FACET/DEE) 3. Série de Fourier

Leia mais

Movimento harmônico. Prof. Juliano G. Iossaqui. Londrina, 2017

Movimento harmônico. Prof. Juliano G. Iossaqui. Londrina, 2017 Vibrações Movimento harmônico Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui (UTFPR) Aula 02 Londrina, 2017 1

Leia mais

Cap. 2 Hart, Eletrônica de Potência. Cálculos de potência

Cap. 2 Hart, Eletrônica de Potência. Cálculos de potência Cap. 2 Hart, Eletrônica de Potência Cálculos de potência Material auxiliar Revisão de circuitos RL Me Salva! RLC10 - Indutores: Introdução https://www.youtube.com/watch?v=yaicexbwtgg Me Salva! RLC11 -

Leia mais

Módulo I Ondas Planas

Módulo I Ondas Planas Módulo I Ondas Planas Vetor de Poynting Transmissão de potência Em algum ponto, distante do ponto de transmissão teremos o ponto de recepção. Vetor de Poynting Em toda aplicação prática, a onda EM é gerada

Leia mais

onde V R 2 Ex: a norma do vetor W (-1,2) é: No Scilab, a norma é obtida através da função norm(w). No Geogebra, pelo comando comprimento[w]

onde V R 2 Ex: a norma do vetor W (-1,2) é: No Scilab, a norma é obtida através da função norm(w). No Geogebra, pelo comando comprimento[w] A norma de um vetor ( V ) ) é utilizada para calcular comprimento de um vetor. Segue do Teorema de Pitágoras que a norma de um vetor pode ser calculada usando as suas componentes, pela fórmula: onde V

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento

Leia mais

Exp 3 Comparação entre tensão contínua e tensão alternada

Exp 3 Comparação entre tensão contínua e tensão alternada Reprografia proibida Exp 3 Comparação entre tensão contínua e tensão alternada Característica da tensão contínua Quando a tensão, medida em qualquer ponto de um circuito, não muda conforme o tempo passa,

Leia mais

Álgebra Linear I - Aula 2. Roteiro

Álgebra Linear I - Aula 2. Roteiro Álgebra Linear I - Aula 2 1. Produto escalar. Ângulos. 2. Desigualdade triangular. 3. Projeção ortugonal de vetores. Roteiro 1 Produto escalar Considere dois vetores = (u 1, u 2, u 3 ) e v = (v 1, v 2,

Leia mais

LISTA DE EXERCÍCIOS Nº 2

LISTA DE EXERCÍCIOS Nº 2 LISTA DE EXERCÍCIOS Nº 2 Questões 1) A Figura 1a apresenta o retrato de uma onda propagante ao longo do sentido positivo do eixo x em uma corda sob tensão. Quatro elementos da corda são designados por

Leia mais

AULA LAB 01 SINAIS SENOIDAIS

AULA LAB 01 SINAIS SENOIDAIS CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA DEPARTAMENTO DE ELETRÔNICA Retificadores (ENG - 20301) AULA LAB 01 SINAIS SENOIDAIS 1 INTRODUÇÃO Esta aula de laboratório tem por objetivo consolidar

Leia mais

Eletricidade Aplicada. Aulas Teóricas Professor: Jorge Andrés Cormane Angarita

Eletricidade Aplicada. Aulas Teóricas Professor: Jorge Andrés Cormane Angarita Eletricidade Aplicada Aulas eóricas Professor: Jorge Andrés Cormane Angarita Análise da Potência Eletricidade Aplicada Introdução Existem duas formas de calcular a potência fornecida ou recebida por um

Leia mais