Conjunto dos Números Complexos
|
|
|
- Ângela Beretta Pacheco
- 9 Há anos
- Visualizações:
Transcrição
1 Conjunto dos Unidade Imaginária Seja a equação: x + 0 Como sabemos, no domínio dos números reais, esta equação não possui solução, criou-se então um número cujo quadrado é. Esse número, representado pela letra i, denominado unidade imaginária é definido por: Voltando à equação: i x i x + 0 x x ± x i A partir disso, surge a necessidade de um novo conjunto de números denominado conjunto dos números complexos, que indicaremos por C. A Forma Algébrica Todo número complexo pode ser escrito na forma z a + bi com a,b R, denominada forma algébrica. Temos ainda que a é chamado de parte real de z, denotamos por Re ( z ), e b chamado de parte imaginária de z, denotamos por Im ( z ), veja: a Re ( z) R z a + bi b Im ( z) R Observação : Se a 0, dizemos que z é imaginário puro. Observação : Se b 0, então z é um número real. Exemplo : z 3 + 5i Exemplo : z i Exemplo 3: z 3 6 ( ) Re z 3 Im z 5 ( ) Re z 0 Im z ( 3 ) Re z 6 Im z3 0 Igualdade de Dois números complexos são iguais se, e somente se, suas partes reais e imaginárias forem respectivamente iguais, ou seja, a c a + bi c + di b d
2 Exemplo: Determinar x e y de modo que x + y + 6i 5 + ( x + 4y) i. Solução: De acordo com o que vimos, para que dois números complexos sejam iguais, devemos ter suas partes reais e imaginárias respectivamente iguais. Então, fazendo z x + y + 6i e z 5 + ( x + 4y) i, temos: Re ( z ) x + y Re ( z ) 5 e Im ( z ) 6 Im ( z ) x + 4y Igualando as partes real e imaginária de z e z teremos o sistema abaixo: x + y 5 Isolando x na segunda equação: x + 4y 6 x 6 4y Substituindo este resultado na primeira: 6 4y + y 5 8y + y 5 7y 7 y Voltando a uma das equações do sistema: x 6 4 x Conjugado de um Número Complexo Seja z a + bi um número complexo qualquer, define-se como complexo conjugado de z o número complexo z a bi Ou seja, as partes reais são iguais e as partes imaginárias são simétricas. Exemplo: Os números complexos 3 + i e 3 i são conjugados. Observação: O conjugado do conjugado de um número complexo é o próprio número, ou seja, z z Operações com Adição e subtração Para somarmos ou subtrairmos números complexos somamos ou subtraímos as partes reais e imaginárias separadamente. Sejam então, z a + bi e z c + di, dois números complexos quaisquer, temos que: z + z a + bi + c + di z + z a + c + b + d i E z z a + bi c + di z z a c + b d i Exemplo : Dados dois números complexos z + 3i e w 6 + 4i, calcular z + w. Solução: De acordo com o que vimos: z + w i z + w 8 + 7i Observação: A soma de um complexo com seu conjugado é um número real:
3 z + z a + bi + a bi z + z a Multiplicação Para multiplicarmos dois números complexos usamos a regra da multiplicação de binômios. Sejam então, z a + bi e z c + di, dois números complexos quaisquer, temos que: z z a + bi c + di z z ac + adi + bci + bdi z z ac + adi + bci bd z z ac bd + ad + bc i Exemplo : Sejam dois números complexos w + 4i e w + 3i. Calcular o valor de ww. Solução: Basta multiplicarmos os binômios aplicando a propriedade distributiva da multiplicação: w w + 4i + 3i + 6i + 4i + i 0 + 0i Divisão Para efetuar a divisão de dois números complexos, colocamos o quociente sobre a forma de fração e fazemos a racionalização, multiplicando numerador e denominador pelo conjugado do denominador. Ou seja, z z z z z z z Exemplo: Sejam os dois complexos z 3 + i e z + i. Calcular a divisão z. Solução: Como vimos, para dividir números complexos precisamos racionalizar o denominador: z 3 + i z + i Racionalizando: z 3 + i 3 + i ( i) 3 3i + i i 5 i z + i + i i i + i i Potências de i Calculando-se as potências de expoentes naturais de i, notamos que se repetem com um período quatro unidades, veja: i i i 5 9 i i i i i i 6 0 i i i 3 7 i i i i i i Ou seja, basta tomarmos o resto da divisão do expoente por 4 como o novo expoente. Exemplo : Calcule o valor de i 3. Solução: Primeiro dividimos 3 por 4 para descobrir o resto: Como o resto vale 3 teremos: 3 3 i i i 3
4 Plano de Argand-Gauss É o plano que no eixo das abscissas representa a parte real de z e, no eixo das ordenadas, a parte imaginária de z. Im ( z) b a + bi ρ 0 θ a Re ( z) Módulo e Argumento de um Número Complexo Olhando para a figura anterior podemos destacar alguns elementos: A distância da origem do plano até o ponto a + bi chamamos de módulo do complexo (representado pela letra grega ρ) e calculamos seu valor usando o Teorema de Pitágoras no triângulo retângulo formado por ρ, a e b: z ρ a + b O ângulo formado pela semirreta e o eixo das abscissas (representado pela letra grega θ), medido no sentido anti-horário, é denominado argumento do número complexo z. Ou seja, θ arg z,0 θ π Observamos ainda que como o triângulo é retângulo valem as seguintes relações: a b cos θ e senθ ρ ρ Estas relações serão úteis na determinação da forma conhecida como Polar ou Trigonométrica. Forma Trigonométrica ou Polar Como vimos anteriormente, um número complexo qualquer da forma z a + bi pode ser representado em um plano chamado Plano de Argand-Gauss. A partir daí sabemos que valem as relações: a b cos θ e senθ ρ ρ Escrevendo a e b em função do argumento θ: a ρcos θ e b ρsenθ Substituindo a e b na expressão original de z: z ρ cos θ + ρ senθ i Colocando ρ em evidência: z ρ ( cos θ + i senθ ) 4
5 Que é chamada de forma trigonométrica ou polar. Exemplo: Passar para a forma trigonométrica o número complexo: z + 3i. Solução: Primeiro calculamos o módulo de z: Re ( z) z + 3i Im ( z) 3 Então: ρ + 3 ρ 4 ρ Agora calculamos o argumento: a a ρ cos θ cos θ cos θ ρ b 3 b ρ sen θ sen θ sen θ ρ Ou seja, o ângulo θ tem o seno e o cosseno positivo, portanto θ está no primeiro quadrante do círculo trigonométrico. Então: π θ 3 Colocando na forma trigonométrica teremos: π π z cos + isen 3 3 Operações com Complexos na Forma Trigonométrica Sejam dois números complexos z e z representados na forma trigonométrica abaixo: z cos isen z ρ cos θ + isenθ ρ ( θ + θ ) e Multiplicação Efetuando a multiplicação: zz ρ ( cos θ + isenθ ) ρ ( cos θ + isenθ ) Aplicando a propriedade distributiva: z z ρ ρ cos θ cos θ + cos θ isenθ + isenθ cos θ + i senθ senθ Separando a parte real da parte complexa: z z ρ ρ cos θ cos θ senθ senθ + i cos θ senθ + senθ cos θ Lembrando que: E cos ( a + b) cos a cos b senasenb sen ( a + b) sena cos b senbcos a É fácil verificar que o produto será dado por: z z ρ ρ cos ( θ + θ ) + isen ( θ + θ ) Divisão Efetuando a divisão: 5
6 ( cos isen ) z ρ θ + θ z ρ cos θ + isen θ Racionalizando o denominador: z ρ ( cos θ + isenθ ) cos θ isenθ z ρ cos θ + isenθ cos θ isenθ Aplicando a propriedade distributiva: z ρ cos θ cos θ cos θ isenθ + isenθ cos θ i senθ senθ z ρ ( cos θ ) i cos θsenθ + isenθ cos θ i ( senθ ) Separando a parte real da parte complexa: z ρ cos θ cos θ + senθ senθ + i cos θ senθ + senθ cos θ z ρ ( cos θ ) i cos θsenθ + isenθ cos θ + ( senθ ) Lembrando que: E cos ( a + b) cos a cos b senasenb sen ( a + b) sena cos b senbcos a sen x + cos x É fácil verificar que a divisão será dada por: z ρ cos θ θ + isen θ θ z ρ Potenciação Fórmula de De Moivre Considere um complexo z qualquer escrito na forma polar, utilizando a propriedade da multiplicação na forma trigonométrica. Podemos mostrar que, para uma potência de ordem n, teremos: n n z ρ cos nθ + isen nθ Esta expressão é chamada de fórmula de De Moivre, com n natural e diferente de zero. A Expressão de Euler Existe outra maneira de representar um número complexo que pode ser demonstrada através de uma expansão em série de Fourier da função e x. O número complexo z na forma trigonométrica pode ser representado como abaixo: iθ ρ e ρ cos θ + i senθ Esta forma é útil para operações de multiplicação e divisão, pois precisamos apenas utilizar as propriedades de potência. Exercícios de Fixação ) Se você dividir o número 4 em duas parcelas, o produto destas é 9. Calcule as parcelas. z k + 5 4i seja imaginário ) Determine k de modo que o número complexo puro. 3) Sendo z x + 4 y i e z 3 0i, determine x e y, para que z z. 4) Determine o número complexo z que satisfaz a igualdade z z + i
7 5) Calcule os números complexos que satisfazem o sistema 6) Determine o conjugado do número complexo + 5i 7) Resolva: + 3i. z z ) Obtenha z tal que + + i. i + i ) Calcule o valor de i + i. i 0) Calcule o módulo do determinante ) Determine o conjunto solução da equação i i + i i 0 + i z. i. z + z zz 3 + 3i. z + z 3. z z 3i ) Sabendo que zz 4, calcule o módulo de z. 3 + i 3) Determine o número complexo z na forma trigonométrica. + i w w π π 4) Seja a matriz A, em que w cos + isen. Calcule o valor de w 3 3 det A. 5) Obtenha o módulo do número complexo ( + 3i) i 6) Se z, calcule a parte real e imaginária de z. i a 7) Calcule a e b reais, sabendo que: + i 3 b + i. 3 i i π π 8) É dado o número complexo w cos + isen. Calcule: i + i 9) Se i é a unidade imaginária, então vale quanto? 7 8 i i ) Qual o valor da expressão: i + i + i + i i. i ) Qual o valor de? 5 3 i i w + w + w + w + w. 7
8 ) ( ± 5i) ) 5 3) x ± e y 4 Gabarito 8 4) + i 3 9 5) z + i e z i 6) + i 3 7) + i ) z + i 9) i 0) 3 + 3i ) { } ) 6 3) z cos π + isenπ 4) 5) 00 6) e 0 7) a 5 e b 5 8) 9) i 0) i ) 8
ESCOLA TÉCNICA ESTADUAL FREDERICO GUILHERME SCHMIDT
PRODUTOS NOTÁVEIS Quadrado da soma de dois termos (a + b) 2 = a 2 + 2ab + b 2 quadrado do segundo termo primeiro termo 2 x (primeiro termo) x (segundo termo) quadrado do primeiro termo segundo termo Quadrado
A origem de i ao quadrado igual a -1
A origem de i ao quadrado igual a -1 No estudo dos números complexos deparamo-nos com a seguinte igualdade: i 2 = 1. A justificativa para essa igualdade está geralmente associada à resolução de equações
1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que:
Números Complexos e Polinômios Prof. Gustavo Sarturi [!] Esse documento está sob constantes atualizações, qualquer erro de ortografia, cálculo, favor comunicar. Última atualização: 01/11/2018. 1 Números
Introdução: Um pouco de História
Números Complexos Introdução: Um pouco de História Houve um momento na História da Matemática em que a necessidade de expressar a raiz de um número negativo se tornou fundamental. Em equações quadráticas
Trabalho feito e apresentado para a disciplina de matemática em: Instituto Estadual de Educação - 3º ano(306)
Trabalho feito e apresentado para a disciplina de matemática em: Instituto Estadual de Educação - 3º ano(306) Colocado na internet Estude e se baseie nesse trabalho para os seus, mas não copie. Plágio
TURMA:12.ºA/12.ºB. O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz)
GUIA DE ESTUDO NÚMEROS COMPLEXOS TURMA:12.ºA/12.ºB 2017/2018 (ABRIL/MAIO) Números Complexos O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz) A famosa igualdade de Euler i e 10 A
Números Complexos. é igual a a) 2 3 b) 3. d) 2 2 2
Números Complexos 1. (Epcar (Afa) 01) Considerando os números complexos z 1 e z, tais que: z 1 é a raiz cúbica de 8i que tem afixo no segundo quadrante z é raiz da equação x x 1 0 Pode-se afirmar que z1
MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem
Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :
Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence
MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Potências e raízes Propostas de resolução Exercícios de exames e testes intermédios 1. Escrevendo 1 + i na f.t. temos 1 + i ρ cis θ, onde: ρ 1 + i 1 + 1 1 + 1 tg
... Onde usar os conhecimentos os sobre...
IX NÚMEROS COMPLEXOS E POLINÔMIOS Por que aprender sobre Números Complexos?... Ao estudar os Números Complexos percebemos que sua ligação à geometria nos dá uma perspectiva mais rica dos métodos geométricos
Exercício Obtenha, em cada caso, o módulo, o argumento e a forma trigonométrica de z: a) z = 1 + i. setor Aula 31. ρ = 1 2 +( 3 ) 2 ρ= 2.
setor 0 00408 Aula NÚMEROS COMPLEXOS: PLANO DE ARGAND-GAUSS Até este ponto, usamos, para representar um número complexo a expressão a + b i, em que a e b são números reais e i é a unidade imaginária Com
MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem
Revisão números Complexos
ELETRICIDADE Revisão números Complexos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul Números complexos No passado, os matemáticos esbarraram em uma situação oriunda da resolução de uma
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. A operação multiplicar por i corresponde a fazer uma
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. Como a multiplicação de um número complexo por i corresponde
GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).
GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos
PLANO DE AULA. Escola: Escola de Educação Básica Professora Maria Solange Lopes de Borba
Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense - Campus Sombrio Curso de Licenciatura em Matemática PLANO DE AULA Dados de identificação Escola:
Números Complexos 2017
Números Complexos 07. (Eear 07) Se i é a unidade imaginária, então i i i é um número complexo que pode ser representado no plano de Argand-Gauss no quadrante. a) primeiro b) segundo c) terceiro d) quarto.
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. A operação multiplicar por i corresponde a fazer uma
Números complexos na forma algébrica
Números complexos na forma algébrica A gênese do complexos Durante dois mil anos a matemática cresceu sem se importar com o fato de que as raízes quadradas dos negativos não podiam ser calculadas. Os gregos,
Conjunto dos números complexos
NÚMEROS COMPLEXOS Conjunto dos números complexos I C R Q Z N Número imaginário x² + 1 = 0 x² = 1 x = ± 1 Número imaginário i x = ± i x² + 4 = 0 x² = 4 x = ± 4 x = ± 1 4 x = ± 2i Número imaginário i = 1
FORMAÇÃO CONTINUADA EM MATEMÁTICA. Fundação CECIERJ Consórcio CEDERJ. Matemática do 3º Ano 3º Bimestre Plano de Trabalho 1
FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 3º Bimestre 2014 Plano de Trabalho 1 Conjunto dos Números Complexos Tarefa: 001 PLANO DE TRABALHO 1 Cursista: CLÁUDIO
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. Como a multiplicação de um número complexo por i corresponde
PLANO DE AULA. Escola: Escola de Educação Básica Professora Maria Solange Lopes de Borba
Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense - Campus Sombrio Curso de Licenciatura em Matemática PLANO DE AULA Dados de identificação Escola:
Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 3º ano Números Complexos
Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 3º ano Números Complexos Tarefa 01 Cursista: Maria Amelia de Moraes Corrêa Tutora: Maria Cláudia Padilha Tostes 1 S u m á
NÚMEROS COMPLEXOS (C)
Professor: Casso Kechalosk Mello Dscplna: Matemátca Aluno: N Turma: Data: NÚMEROS COMPLEXOS (C) Quando resolvemos a equação de º grau x² - 6x + = 0 procedemos da segunte forma: b b ± 4ac 6 ± 6 4 6 ± 6
! " # $ % & ' # % ( # " # ) * # +
a Aula 69 AMIV ' * + Fórmula de De Moivre Dado z = ρe e Concluímos por indução que = ρ cos θ + i sen θ C temos z = ρe ρe = ρ e z = zz = ρe ρ e = ρ e z = ρ e para qualquer n N e como ρ e ρ e = ρ e pôr n
Pré-Cálculo ECT2101 Slides de apoio Funções II
Pré-Cálculo ECT2101 Slides de apoio Funções II Prof. Ronaldo Carlotto Batista 8 de abril de 2017 Funções Trigonométricas As funções trigonométricas são denidas no círculo unitário: sen (θ) = y r, cos (θ)
1 Números Complexos e Plano Complexo
UNIVERSIDADE FEDERAL DE SANTA CATARINA Centro de Ciências Físicas e Matemáticas Departamento de Matemática SEMESTRE CÓDIGO DISCIPLINA TURMA 09-1 MTM5327 Variável Complexa 0549 Professor Lista de Exercícios
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA Números Complexos: uma proposta geométrica PRODUTO DA DISSERTAÇÃO SEQUÊNCIA DIDÁTICA
Complementos sobre Números Complexos
Complementos sobre Números Complexos Ementa 1 Introdução Estrutura Algébrica e Completude 1 O Corpo dos números complexos Notações 3 Interpretação Geométrica e Completude de C 4 Forma Polar de um Número
Aula 4 Números Complexos - Forma
Aula 4 Números Complexos - Forma algébrica MÓDULO - AULA 4 Autores: Celso Costa e Roberto Geraldo Tavares Arnaut Objetivos 1) Entender o contexto que originou o aparecimento dos números complexos. ) Compreender
Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)
R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a
Para se adicionar (ou subtrair) frações com o mesmo denominador devemos somar (ou subtrair) os numeradores e conservar o denominador comum. = - %/!
Pontifícia Universidade Católica de Goiás Professor: Ms. Edson Vaz de Andrade Fundamentos de Matemática No estudo de Física frequentemente nos deparamos com a necessidade de realizar cálculos matemáticos
NÚMEROS COMPLEXOS
NÚMEROS COMPLEXOS - 016 1. (EFOMM 016) O número complexo, z z (cos θ i sen θ), sendo i a unidade imaginária e 0 θ π, que satisfaz a inequação z i e que possui o menor argumento θ, é a) b) c) d) 5 5 z i
1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3
Complexos 06. (Espcex 0) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 b) 6 c) 5 d) e) x 8 0 tem área igual a. (Unicamp 0) Chamamos de unidade imaginária e denotamos por
NÚMEROS COMPLEXOS CAPÍTULO
NÚMEROS COMPLEXOS CAPÍTULO 1 Neste capítulo, exploramos as estruturas algébrica e geométrica do sistema dos números complexos, para o que supomos conhecidas várias propriedades correspondentes dos números
Objetivos. em termos de produtos internos de vetores.
Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes
Universidade Federal de Viçosa. Departamento de Matemática
Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas - CCE Departamento de Matemática Notas de Aulas Disciplina:MAT 206 - Fundamentos de Matemática II Simone Maria de Moraes Viçosa Minas
Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.
Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício
Conteúdo. 2 Polinômios Introdução Operações... 13
Conteúdo 1 Conjunto dos números complexos 1 1.1 Introdução.......................................... 1 1.2 Operações (na forma algébrica).............................. 2 1.3 Conjugado..........................................
SOCIEDADE EDUCACIONAL DO AMANHÃ. Profª: EDNALVA DOS SANTOS
SOCIEDADE EDUCACIONAL DO AMANHÃ Profª: EDNALVA DOS SANTOS 1 Frações O que são? 2 Para representar os números fracionários foi criado um símbolo, que é a fração. Sendo a e b números naturais e b 0 (b diferente
MATEMÁTICA II. Aula 14. 4º Bimestre. Números Complexos Professor Luciano Nóbrega
1 MATEMÁTICA II Aula 14 Números Complexos Professor Luciano Nóbrega 4º Bimestre www.professorlucianonobrega.wordpress.com 2 INTRODUÇÃO Vamos relembrar os Conjuntos Numéricos: N: conjunto dos números naturais:
Lista de Revisão para Substitutiva e A.P.E. Matrizes Determinantes Sistemas Lineares Números Complexos Polinômios
Nome: nº Data: / _ / 017 Professor: Gustavo Bueno Silva - Ensino Médio - 3º ano Lista de Revisão para Substitutiva e A.P.E. Matrizes Determinantes Sistemas Lineares Números Complexos Polinômios 3 3 a a
POLINÔMIOS. 1. Função polinomial. 2. Valor numérico. 3. Grau de um polinômio. 4. Polinômios idênticos
POLINÔMIOS 1. Função polinomial É a função P() = a 0 + a 1 + a + a +... + a n n, onde a 0, a 1, a,..., a n são os coeficientes e os termos do polinômio são : a 0 ; a 1 ; a ; a ;... ; a n n. Valor numérico
z = a bi é o conjugado do complexo z = a + bi. O conjugado de um complexo é
SINTESE DOS CONTEÚDOS DE ºANO COMPLEXOS = i i = Forma algébrica de um n.º complexo = a+bi, com a, b R. a é a parte real de e escreve-se: Re() = a; b é o coeficiente da parte imaginária e escreve-se Im()
PLANO DE ENSINO E APRENDIZAGEM
SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO DE ENSINO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A)
1, o valor de (x + y) 2 é. (1 i) é: z= i i é igual a a) 2. b) 0. c) 3. d) 1. 1 i. π. 3. z 1 é igual a
1 (Unicamp 014) O módulo do número complexo 014 1987 z= i i é igual a a) b) 0 c) d) 1 (Unicamp 01) Chamamos de unidade imaginária e denotamos por i o número complexo tal que i = 1 Então i 0 + i 1 + i +
Aula 6 Forma trigonométrica ou polar e forma exponencial de um número complexo
Aula 6 Forma trigonométrica ou polar e forma exponencial de um número complexo MÓDULO - AULA 6 Autores: Celso Costa e Roberto Geraldo Tavares Arnaut Objetivos 1 Entender a forma trigonométrica e exponencial
Universidade Federal de Viçosa. Departamento de Matemática
Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas - CCE Departamento de Matemática Notas de Aulas Disciplina:MAT 206 - Fundamentos de Matemática II Simone Maria de Moraes Viçosa Minas
ANÁLISE MATEMÁTICA 3 NÚMEROS COMPLEXOS
ANÁLISE MATEMÁTICA 3 NÚMEROS COMPLEXOS APÊNDICE Maria do Rosário de Pinho e Maria Margarida Ferreira Setembro 1998 Faculdade de Engenharia da Universidade do Porto Licenciatura em Engenharia Electrotécnica
REVISÃO DE NÚMEROS COMPLEXOS
REVISÃO DE NÚMEROS COMPLEXOS Ettore A. de Barros. INTRODUÇÃO. Definições Um número compleo pode ser definido pelo par ordenado, de números reais e,, O par, é identificado com o número real, e o par, é
MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas
MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, sejam z 1 = 1 3i19 1 + i e z = 3k cis ( 3π, com k R + Sabe-se
Álgebra. Exercícios de auto-avaliação
Universidade Eduardo Mondlane Faculdade de Ciências Departamento de Matemática e Informática Álgebra Para Estudantes do Ensino à Distância do Curso de Licenciatura em Matemática, ano 01 Unidade 1 Números
Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente
Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação
216 e) 10 1 = 10 f) (-0,4) 0 = 1 g) (-4,3) 1 = - 4,3
1 Prof. Ranildo Lopes U. E. PROFª HELENA CARVALHO Obrigado pela preferência de nossa ESCOLA! Pegue o material no http://uehelenacarvalho.wordpress.com ESTUDANDO A POTENCIAÇÃO E SUAS PROPRIEDADES POTENCIAÇÃO
GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA
GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA Realizada em 6 de outubro de 010 Questão 01 GABARITO DISCURSIVA A base de um prisma reto ABCA 1 B 1 C 1 é um triângulo com o lado AB igual ao lado
b) Determine o conjunto de todos os valores de z para os quais (z + i)/(1 + iz) é um número real.
1 Projeto Jovem Nota 10 Números Complexos Lista 2 Professor Marco Costa 1. (Fuvest 2003) Nos itens abaixo, z denota um número complexo e i a unidade imaginária (i = -1). Suponha z i. a) Para quais valores
Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano
Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Os números irracionais Ao longo
Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:
Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015
MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
ESC. SEC. ALBERTO SAMPAIO BRAGA TRIGONOMETRIA E COMPLEXOS (EM 20 AULAS)
º ANO ESC. SEC. ALBERTO SAMPAIO BRAGA PROPOSTA DE PLANIFICAÇÃO DA UNIDADE DIDÁCTICA TRIGONOMETRIA E COMPLEXOS (EM 0 AULAS) 00/004 ESAS 00_004 Página º ANO CONTEÚDO DA UNIDADE DIDÁCTICA TRIGONOMETRIA E
Notas breves sobre números complexos e aplicações
Notas breves sobre números complexos e aplicações Complementos de Análise Matemática - ESI DMat - Universidade do Minho Dezembro de 2005 1 Definição O conjunto dos números complexos, denotado por C, pode-se
SE18 - Matemática. LMAT 6B1-1 - Números Complexos: Forma T rigonométrica. Questão 1
SE18 - Matemática LMAT 6B1-1 - Números Complexos: Forma T rigonométrica Questão 1 (Mackenzie 1996) Na figura a seguir, P e Q são, respectivamente, os afixos de dois complexos z 1 e z 2. Se a distância
Números Complexos - Parte I. Interpretação Geométrica dos Números Complexos. z = a+bi
Polos Olímpicos de Treinamento Curso de Álgebra - Nível 2 Prof. Marcelo Mendes Aula 16 Números Complexos - Parte I Introdução e Forma Algébrica São as expressões da forma a + bi, em que a e b são números
Preparar o Exame Matemática A
07. { {. 07. Como o polinómio tem coeficientes reais e é uma das suas raízes, então também é raiz de. Recorrendo à regra de Ruffini vem,. Utilizando a fórmula resolvente na equação, vem: ssim, as restantes
Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:
Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto
NIVELAMENTO 2012/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase
NIVELAMENTO 0/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase Instituto Superior Tupy Nivelamento de Matemática Básica. Adição e Subtração Regra:. REGRAS DOS SINAIS Sinais iguais: Adicionamos os algarismos
Capítulo Propriedades das operações com vetores
Capítulo 6 1. Propriedades das operações com vetores Propriedades da adição de vetores Sejam u, v e w vetores no plano. Valem as seguintes propriedades. Comutatividade: u + v = v + u. Associatividade:
Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11
www.matematicaemexercicios.com Integrais (volume ) Índice AULA 6 Integrais trigonométricas 3 AULA 7 Substituição trigonométrica 6 AULA 8 Frações parciais 8 AULA 9 Área entre curvas AULA Volumes 3 www.matematicaemexercicios.com
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, a expressão i + i 1 + i 2 +...i 218 é
Nº de Questões. FATORAÇÃO Fatorar um polinômio significa escrever esse polinômio como uma multiplicação de dois ou mais fatores.
COLÉGIO SETE DE SETEMBRO Rua Ver. José Moreira, 80 Fone 301-301 Paulo Afonso BA Aluno Ano 8º Turma Curso Ensino Fundamental II Nº de Questões Tipo de Prova Bimestre Data Nota 09 --- I 01/09/01 Disciplina
Números Complexos. Matemática Básica. Números Complexos. Números Complexos: Um Pouco de História. Humberto José Bortolossi.
Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Números Complexos Parte 8 Parte 08 Matemática Básica 1 Parte 08 Matemática Básica 2 Números
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões
MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Exercícios de exames e testes intermédios 1. Na figura ao lado, estão representados, no plano complexo, uma circunferência
Capítulo 1: Fração e Potenciação
1 Capítulo 1: Fração e Potenciação 1.1. Fração Fração é uma forma de expressar uma quantidade sobre o todo. De início, dividimos o todo em n partes iguais e, em seguida, reunimos um número m dessas partes.
30 o 50 o 70 o 90 o 110 o 130 o 150 o 170 o 190 o 210 o 230 o 250 o 270 o 290 o 310 o 330 o 350 o
Fasores 1- FASORES Fasores, são na realidade vetores que giram e uma determinada velocidade em um círculo trigonométrico, dando origem as funções senoidais. Então toda função senoidal pode ser representada
ADA 1º BIMESTRE CICLO I MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL 2018
ADA 1º BIMESTRE CICLO I MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL 018 ITEM 1 DA ADA Observe potência a seguir: ( ) O resultado dessa potenciação é igual a (A) 8 1. (B) 1 8. (C) 1 81 81 (D) 1 Dada uma potência
SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 2018 GABARITO
SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 018 GABARITO Física Inglês Português Matemática 1 C 1 * 1 D 1 B B B E C 3 B 3 B 3 D 3 D 4 E 4 C 4 A 4 E 5 A 5 B 5 C 5 C 6 C 6 E 6 E 6 A 7 E 7
MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução
MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρ cis α, onde: ρ = i i = + ) = tg α = = ;
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II
ESCOLA SECUNDÁRIA COM º CICLO D DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 4 1 Resolva o exercício 11 da página 80 do seu manual Considere
Funções do Plano Complexo(MAT162) Notas de Aulas Prof Carlos Alberto S Soares
Funções do Plano Complexo(MAT62) Notas de Aulas 2-209 Prof Carlos Alberto S Soares O Plano Complexo Considerando a nossa definição de número complexo, é claro que existe uma correspondênca biunívoca entre
REVISÃO DE ÁLGEBRA. Apareceu historicamente em processos de contagem. Obs.: dependendo da conveniência, o zero pode pertencer aos naturais.
REVISÃO DE ÁLGEBRA 1ª. AULA CONJUNTOS BÁSICOS: Conjuntos dos números naturais: * + Apareceu historicamente em processos de contagem. Obs.: dependendo da conveniência, o zero pode pertencer aos naturais.
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios
parciais primeira parte
MÓDULO - AULA 3 Aula 3 Técnicas de integração frações parciais primeira parte Objetivo Aprender a técnica de integração conhecida como frações parciais. Introdução A técnica que você aprenderá agora lhe
Matemática 1 a QUESTÃO
Matemática a QUESTÃO IME-007/008 Temos que: i) sen 3 x + cos 3 x = (senx + cosx) (sen x senxcosx + cos x) = (senx + cosx) ( senxcosx) ii) sen xcos x = ( + senxcosx) ( senxcosx) Então, a equação dada é
Análise de Circuitos I I
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS DE SÃO JOSÉ CURSO TÉCNICO INTEGRADO EM TELECOMUNICAÇÕES
Matemática. Operações Básicas. Professor Dudan.
Matemática Operações Básicas Professor Dudan www.acasadoconcurseiro.com.br Matemática OPERAÇÕES MATEMÁTICAS Observe que cada operação tem nomes especiais: Adição: + 4 = 7, em que os números e 4 são as
m c k 0 c 4mk 4mk <0 (radicando NÚMEROS E FUNÇÕES COMPLEXAS CONTEXTUALIZAÇÃO
CONTEXTUALIZAÇÃO NÚMEROS E FUNÇÕES COMPLEXAS Números complexos ocorrem frequentemente na análise de vibrações, vindos da solução de equações diferenciais através de suas equações características. Em particular,
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A º Ano Versão Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,
1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:
Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados
