Notas breves sobre números complexos e aplicações

Tamanho: px
Começar a partir da página:

Download "Notas breves sobre números complexos e aplicações"

Transcrição

1 Notas breves sobre números complexos e aplicações Complementos de Análise Matemática - ESI DMat - Universidade do Minho Dezembro de Definição O conjunto dos números complexos, denotado por C, pode-se definir como o conjunto dos pares ordenados de números reais x, y (x, y). (1) Os pares da forma (x, 0) identificam-se com os números reais. Assim, o conjunto dos números reais R é um subconjunto de C. Os pares da forma (0, y) são denominados imaginários ou complexos puros. A notação usual para representar o número complexo z = (x, y) é z = x + iy, (2) onde o símbolo i é fixo e representa a unidade imaginária 1. O conjunto dos números complexos pode, então, representar-se por C = {x + iy : x, y R}. Os números reais x e y em (2) denominam-se, respectivamente, parte real e parte imaginária de z. Escreve-se Re z = x e Im z = y. (3) Dois números complexos x + iy e u + iv são iguais se e só se x = u e y = v. Dado um número complexo z = x + iy o módulo de z é z = x 2 + y 2 (4) e o seu conjugado é x iy denotando-se z, isto é z = x iy. (5) 2 Interpretação Geométrica Atendendo a (1), é natural representar-se cada número complexo z = x + iy por um ponto do plano com coordenadas cartesianas x e y. Assim, cada ponto do plano corresponde a um único número complexo e vice-versa. Quando o plano xoy é usado para representar os números complexos adopta o nome de plano de Argand ou plano complexo z. O eixo x é o eixo real e o y o eixo imaginário. 1 Em engenharia é usual representar a unidade imaginária por j. 1

2 3 Forma Polar Além das coordenadas cartesianas (x, y), podem também ser usadas coordenadas polares (r, θ) para representar graficamente os números complexos. Atendendo à trigonometria do triângulo rectângulo, sendo z = x + i y, tem-se x = z cos θ e y = z sin θ pelo que a forma polar de z é z = r cos θ + i r sin θ = r(cos θ + i sin θ) (6) com r = z. A cada valor de θ, com z = z (cos θ+i sin θ), dá-se o nome de argumento de z e escreve-se arg(z). Geometricamente, o módulo de z, z, é o comprimento do segmento de recta que une os pontos (0, 0) e (x, y). O argumento θ, medido em radianos, é a mediada do ângulo formado por esse segmento de recta e o eixo real. Desta forma, existe um número infinito de valores de θ que diferem de um múltiplo de 2π. O único valor de arg(z) tal que π < arg(z) π define-se como o valor principal do argumento de z e denota-se por Arg(z). Considerando o número complexo z escrito na forma polar (6), o seu conjugado é z = r (cos θ i sin θ). 4 Forma exponencial Frequentemente é conveniente escrever e iθ, ou exp(iθ), para denotar cos θ + i sin θ, que aparece na forma polar (6) de um número complexo. Um número complexo z pode, assim, ser expresso na forma exponencial z = z e iθ. (7) A equação e iθ = cos θ + i sin θ, (8) que define o símbolo e iθ, é conhecida por Fórmula de Euler. Para demonstrar a fórmula de Euler relembramos que e z = + n=0 2 z n n!

3 e que para z = iθ tem-se e iθ = == + (iθ) n n! n=0 + θ 2n (2n)! + i + n=0 n=0 = cos θ + i sin θ θ2n+1 ( 1) n (2n + 1)! Note-se que, para θ = π vem e iπ = 1. Tem-se também, e 2πi = 1 e e iπ/2 = i. A igualdade 1 + e iπ = 0 é conhecida por Igualdade de Euler. Deduz-se, da Equação de Euler, que e iθ = cos( θ) + i sin( θ) = cos θ i sin θ. Combinando as expressões de e iθ e e iθ temos, então sin θ = eiθ e iθ 2i e cos θ = eiθ + e iθ. 2 Atendendo à paridade das funções trigonométricas sin e cos, o conjugado de um número complexo z é, na forma exponencial, z = z e iθ. 5 Estrutura algébrica de C Como foi visto na Secção 1, dados dois números complexos z 1 = x + iy e z 2 = u + iv, e por extensão das correspondentes operações sobre os números reais, a adição e multiplicação em C definem-se da seguinte forma adição : z 1 + z 2 = (x + u) + i(y + v) multiplicação : z 1 z 2 = (xu yv) + i(xv + yu). (9) Fazendo, na equação (9), x = u = 0 e y = v = 1 obtém-se a identidade i 2 = 1. (10) Propriedade 5.1. Propriedades da adição e multiplicação em C. Sejam z 1, z 2, z 3 C. Então 1. Propriedade comutativa z 1 + z 2 = z 2 + z 1 e z 1 z 2 = z 2 z 1 2. Propriedade associativa z 1 + (z 2 + z 3 ) = (z 1 + z 2 ) + z 3 e z 1 (z 2 z 3 ) = (z 1 z 2 ) z 3 3

4 3. Propriedade distributiva z 1 (z 2 + z 3 ) = z 1 z 2 + z 1 z 3. O elemento neutro da adição é 0 = (0, 0) enquanto o elemento neutro da multiplicação é 1 = (1, 0). Assim, para todo o z C, tem-se 0 + z = z e 1 z = z. Os números 0 e 1 são os únicos com esta propriedade. Cada número complexo z = x + iy admite um simétrico relativamente à adição da forma z = x iy que verifica z + ( z) = 0. Este simétrico é único. De modo análogo todo o número complexo z = x + iy não nulo admite inverso relativamente à multiplicação z 1 tal que z z 1 = 1 z 1 = 1 z = x x 2 + y 2 + i[ y x 2 + y 2 ]. Note-se que é conveniente expressar a adição na forma cartesiana enquanto que o produto se torna mais simples na forma polar ou exponencial. Pode provar-se facilmente que o produto entre z 1 = r 1 (cos θ 1 + i sin θ 1 ) e z 2 = r 2 (cos θ 2 + i sin θ 2 ) é dado por z 1 z 2 = r 1 r 2 [cos(θ 1 + θ 2 ) + i sin(θ 1 + θ 2 )] = r 1 r 2 exp( i(θ 1 + θ 2 )). e por consequência, arg(z 1 z 2 ) = arg(z 1 ) + arg(z 2 ) e z 1 z 2 = z 1 z 2. Além disso, também o inverso de z = r(cos θ + i sin θ) toma uma forma mais simples z 1 = 1 [cos( θ) + i sin( θ)] r = r 1 e iθ. 6 Potências e raízes Como foi visto na Secção 5, z 1 z 2 = r 1 r 2 exp( i(θ 1 + θ 2 )). Por indução matemática, prova-se que se z k = r k e θ k, com k = 1, 2,..., n, então z 1 z 2...z n = r 1 r 2...r n exp( i (θ 1 + θ θ n )). Em particular, se z k = z = re iθ, z 0, tem-se, para qualquer número inteiro n z n = r n exp(inθ). (11) 4

5 Se n = 0, define-se z 0 = 1. Se n = 1,..., n define-se z n = (z 1 ) n. Observe-se que, se r = 1, a igualdade (11) vem que escrita como (e iθ ) n = e inθ (cos θ + i sin θ) n = cos(nθ) + i sin(nθ), n = 0, ±1,..., ±n é a Fórmula de Moivre. Dado um número complexo z = re iθ e um inteiro n 2, as n raízes complexas de z são os números w k = n r exp ( i θ + 2kπ n ), k = 0, 1,..., n 1. Diz-se, neste caso, que w k é uma raiz índice n de z. 7 Funções complexas (de variável real). Exponencial complexa Uma função complexa de (uma) variável real é uma função da forma f(x) = f 1 (x) + if 2 (x), onde f 1 e f 2 são funções reais de variável real. As funções f 1 e f 2 são chamadas, respectivamente, parte real e parte imaginária da função f e escreve-se f 1 = Re f e f 2 = Im f. Duas funções complexas (de variável real) são iguais se e só se as respectivas parte real e parte imaginária são iguais. As operações familiares de álgebra e cálculo extendem-se a funções complexas de variável real de um modo natural. Por exemplo, se f(x) = f 1 (x) + if 2 (x), então df dx (x) = df 1 dx (x)+idf 2 dx (x) e b b f(x)dx = a a b f 1 (x)dx+i f 2 (x)dx. a De entre as funções complexas de variável real, tem particular importância a função exponencial complexa definida do seguinte modo: e (a+ib)x = e ax (cos bx + i sin bx). (12) Todas as regras usuais para operar com exponenciais continuam a ser válidas para a exponencial de expoente complexo. Um caso particular da função exponencial foi vista em na Secção 6. Fazendo, em (12), a = 0 e θ = bx, obtém-se a Equação de Euler (8) e iθ = cos θ + i sin θ. Consideram-se agora aplicações dos números complexos à resolução de equações diferenciais. 5

6 8 Equações diferenciais ordinárias Consideremos a equação diferencial ordinária (EDO) d 2 y dx 2 + y = 0. Procurando soluções da forma e mx chegamos à equação característica m = 0, cujas soluções são m = ±i. De facto, as funções f dadas por f(x) = e ±ix são solução desta EDO. A sua solução geral em C pode escrever-se na forma y(x) = C 1 e ix + C 2 e ix. onde C 1, C 2 C. Mas estamos interessados em soluções reais e portanto pretendemos C 2 = C 1. Então, sabendo que z + z = 2 Re(z) e usando a fórmula de Euler pode-se deduzir y(x) = 2 Re (C 1 e ix ) = A 1 cos x + A 2 sin x. onde A 1 = α e A 2 = 2β para C 1 = α + iβ, sendo α, β números reais arbitrários. De uma forma geral, dada uma EDO a d2 y dx 2 + b dy + cy = 0, dx com a, b, c R tais que b 2 4ac < 0, então as soluções da equação característica são m = b 4ac b 2a ± i 2, 2a que por brevidade escrevemos m = ρ ± iω (ou seja ρ = b/2a e ω = 4ac b 2 /2a). Neste caso, a solução geral da EDO y(x) = C 1 e (ρ+iω)x + C 2 e (ρ iω)x, onde C 1, C 2 C, pode-se escrever em R na forma y(x) = 2Re (C 1 e (ρ+iω)x ) = e ρx (A 1 cos ωx + A 2 sin ωx). onde A 1 = α e A 2 = 2β para C 1 = α + iβ, sendo α, β números reais arbitrários. 6

7 9 Equações com derivadas parciais Consideremos a seguinte equação diferencial com derivadas parciais (EDP) u t = σ 2 u, x R, t > 0 (13) x2 onde σ R +, a função u depende de x e t e está sujeita à condição inicial u(x, 0) = f(x), (14) com f L. Para resolver este problema usamos a transformada de Fourier que recordamos, para f L, é dada por F{f(x)} = ˆf(ξ) = 1 + f(x)e iξx dx. 2π Uma das importantes propriedades da Transformada de Fourier é { d n } f(x) F dx n = (iξ) n ˆf(ξ), que pode ser usada, neste caso, para obter { 2 } u F x 2 = ξ 2 û(ξ, t) { } u F = t) t tû(ξ, Aplicando a transformada de Fourier à EDP (13), obtem-se a seguinte EDO, para ξ fixo, tû(ξ, t) = σξ2 û(ξ, t), cuja solução geral é dada por Usamos agora a condição inicial (14) para escrever û(ξ, t) = ˆf(ξ)e σξ2t = ˆf(ξ)F û(ξ, t) = C 0 e σξ2t. C 0 = 1 + e iξx u(x, 0)dx = ˆf(ξ) 2π { } 1 e x2 4σt = 2σt { } 1 2 σπt F e x2 4σt f(x), onde foram também usados a transformada de Fourier da função gaussiana e o produto de convolução. Finalmente, usando a transformada inversa de obtemos 1 + u(x, t) = 2 e (x y)2 4σt f(y)dy. σπt como solução formal do problema dado. 7

8 10 Exercícios 1. Represente no plano complexo os seguintes números: (a) 1 + i (b) 1 i (c) 3 (d) 3 (e) 1 i 3 (f) 1 + i 3 (g) 4i (h) 4i 2. Mostre que: a) Re (z + w) = Re z + Re w, b) z = 0 se e só se z = Mostre que 1 i = i. 4. Escreva os números complexos do Exercício 1 na forma polar. 5. Escreva os seguintes números complexos na forma x + iy : (a) e 3iπ (b) e 2iπ/3 (c) 3e iπ/4 (d) πe iπ/3 (e) e 2πi/6 (f) e iπ/2 (g) e iπ (h) 2e 3+iπ/6 6. Mostre que o número complexo z = 1 + i satisfaz a equação z 2 + 2z + 2 = Resolva as seguintes equações em C a) 2z 2 + z + 3 = 0, b) z 2 (3 2i)z + 1 3i = 0, c) z 3 3z 2 + 6z 4 = Encontre, em C, as três soluções da equação z 3 = Considere a equação z = 0. a) Calcule, em C, as quatro raízes da equação dada. b) Use o resultado para deduzir a factorização 10. Mostre que: a) e x+iy = e x, z = (z 2 2z + 1)(z 2 + 2z + 1). b) arg e x+iy = y + 2nπ, n Z. 11. Mostre que, para todo o número complexo z, se tem: e z+πi = e z. 8

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que:

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que: Números Complexos e Polinômios Prof. Gustavo Sarturi [!] Esse documento está sob constantes atualizações, qualquer erro de ortografia, cálculo, favor comunicar. Última atualização: 01/11/2018. 1 Números

Leia mais

ANÁLISE MATEMÁTICA 3 NÚMEROS COMPLEXOS

ANÁLISE MATEMÁTICA 3 NÚMEROS COMPLEXOS ANÁLISE MATEMÁTICA 3 NÚMEROS COMPLEXOS APÊNDICE Maria do Rosário de Pinho e Maria Margarida Ferreira Setembro 1998 Faculdade de Engenharia da Universidade do Porto Licenciatura em Engenharia Electrotécnica

Leia mais

NÚMEROS COMPLEXOS CAPÍTULO

NÚMEROS COMPLEXOS CAPÍTULO NÚMEROS COMPLEXOS CAPÍTULO 1 Neste capítulo, exploramos as estruturas algébrica e geométrica do sistema dos números complexos, para o que supomos conhecidas várias propriedades correspondentes dos números

Leia mais

1 Números Complexos e Plano Complexo

1 Números Complexos e Plano Complexo UNIVERSIDADE FEDERAL DE SANTA CATARINA Centro de Ciências Físicas e Matemáticas Departamento de Matemática SEMESTRE CÓDIGO DISCIPLINA TURMA 09-1 MTM5327 Variável Complexa 0549 Professor Lista de Exercícios

Leia mais

TURMA:12.ºA/12.ºB. O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz)

TURMA:12.ºA/12.ºB. O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz) GUIA DE ESTUDO NÚMEROS COMPLEXOS TURMA:12.ºA/12.ºB 2017/2018 (ABRIL/MAIO) Números Complexos O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz) A famosa igualdade de Euler i e 10 A

Leia mais

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I FUNÇÕES Profa. Dra. Amanda L. P. M. Perticarrari amanda.perticarrari@unesp.br Conteúdo Função Variáveis Traçando Gráficos Domínio e Imagem Família de Funções Funções Polinomiais Funções Exponenciais

Leia mais

Complementos sobre Números Complexos

Complementos sobre Números Complexos Complementos sobre Números Complexos Ementa 1 Introdução Estrutura Algébrica e Completude 1 O Corpo dos números complexos Notações 3 Interpretação Geométrica e Completude de C 4 Forma Polar de um Número

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1. (1) Descreva as regiões do plano complexo definidas por z i c z, onde c é um número real não negativo.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1. (1) Descreva as regiões do plano complexo definidas por z i c z, onde c é um número real não negativo. Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1 NÚMEROS COMPLEXOS E FUNÇÕES COMPLEXAS Números Complexos 1) Descreva as regiões

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 1 NÚMEROS E FUNÇÕES COMPLEXAS (1) Calcule i, i e i e represente estes números geometricamente.

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

Introdução: Um pouco de História

Introdução: Um pouco de História Números Complexos Introdução: Um pouco de História Houve um momento na História da Matemática em que a necessidade de expressar a raiz de um número negativo se tornou fundamental. Em equações quadráticas

Leia mais

NÚMEROS COMPLEXOS CAPÍTULO

NÚMEROS COMPLEXOS CAPÍTULO NÚMEROS COMPLEXOS CAPÍTULO 1 Neste capítulo, exploramos as estruturas algébrica e geométrica do sistema dos números complexos, para o que supomos conhecidas várias propriedades correspondentes dos números

Leia mais

Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ

Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ Michael Paluch Instituto Superior Técnico Universidade de Lisboa 18 Fevereiro de 2019 Método de

Leia mais

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais : Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence

Leia mais

Instituto Superior de Engenharia de Lisboa Licenciatura em Engenharia Informática e de Computadores

Instituto Superior de Engenharia de Lisboa Licenciatura em Engenharia Informática e de Computadores Instituto Superior de Engenharia de Lisoa Licenciatura em Engenharia Informática e de Computadores Processamento de Imagem e Biometria Apontamentos sore números complexos Artur Ferreira {aferreira@deetc.isel.ipl.pt}

Leia mais

A origem de i ao quadrado igual a -1

A origem de i ao quadrado igual a -1 A origem de i ao quadrado igual a -1 No estudo dos números complexos deparamo-nos com a seguinte igualdade: i 2 = 1. A justificativa para essa igualdade está geralmente associada à resolução de equações

Leia mais

Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa.

Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa. UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE MATEMÁTICA Campus Apucarana Prof. Dr. Márcio Hiran Simões Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa.

Leia mais

Eletrotécnica II Números complexos

Eletrotécnica II Números complexos Eletrotécnica II Números complexos Prof. Danilo Z. Figueiredo Curso Superior de Tecnologia em Instalações Elétricas Faculdade de Tecnologia de São Paulo Tópicos Aspectos históricos: a solução da equação

Leia mais

Seção 11: EDOLH com coeficientes constantes

Seção 11: EDOLH com coeficientes constantes Seção 11: EDOLH com coeficientes constantes Observação fundamental: Se L(y) = y + py + qy, com p, q constantes então L(e λt ) = ( λ + pλ + q ) e λt. Portanto a EDO L(y) = 0 pode ter solução da forma y

Leia mais

Conjunto dos Números Complexos

Conjunto dos Números Complexos Conjunto dos Unidade Imaginária Seja a equação: x + 0 Como sabemos, no domínio dos números reais, esta equação não possui solução, criou-se então um número cujo quadrado é. Esse número, representado pela

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e Lista Especial de Exercícios de Física Matemática I Soluções (Número complexo, sequência de Cauchy, função exponencial e movimento hamônico simples) IFUSP - 8 de Agosto de 08 Exercício Se z x + iy, x,

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. Como a multiplicação de um número complexo por i corresponde

Leia mais

! " # $ % & ' # % ( # " # ) * # +

!  # $ % & ' # % ( #  # ) * # + a Aula 69 AMIV ' * + Fórmula de De Moivre Dado z = ρe e Concluímos por indução que = ρ cos θ + i sen θ C temos z = ρe ρe = ρ e z = zz = ρe ρ e = ρ e z = ρ e para qualquer n N e como ρ e ρ e = ρ e pôr n

Leia mais

Álgebra. Exercícios de auto-avaliação

Álgebra. Exercícios de auto-avaliação Universidade Eduardo Mondlane Faculdade de Ciências Departamento de Matemática e Informática Álgebra Para Estudantes do Ensino à Distância do Curso de Licenciatura em Matemática, ano 01 Unidade 1 Números

Leia mais

Capítulo 1 Como motivação para a construção dos números complexos aconselha-se o visionamento do quinto do capítulo do documentário Dimensions, disponível em http://www.dimensions-math.org/ Slides de apoio

Leia mais

Variável Complexa

Variável Complexa Variável Complexa 2017.2 Aula1 Utilizamos o símbolo C para denotar o plano real R 2 equipado com as seguintes operações: z 1 + z 2 = (x 1 + x 2, y 1 + y 2 ) adição z 1 z 2 = (x 1 x 2 y 1 y 2,, x 1 y 2

Leia mais

Instituto Superior de Engenharia de Lisboa Engenharia Informática e de Computadores Teoria dos Sinais e dos Sistemas

Instituto Superior de Engenharia de Lisboa Engenharia Informática e de Computadores Teoria dos Sinais e dos Sistemas Instituto Superior de Engenharia de Lisboa Engenharia Informática e de Computadores Teoria dos Sinais e dos Sistemas Resumo dos conceitos matemáticos mais utilizados Artur Ferreira {arturj@isel.pt} 1 Outubro

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, sejam z 1 = 1 3i19 1 + i e z = 3k cis ( 3π, com k R + Sabe-se

Leia mais

Lista 1 - Métodos Matemáticos II Respostas

Lista 1 - Métodos Matemáticos II Respostas Lista 1 - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Potências e raízes Propostas de resolução Exercícios de exames e testes intermédios 1. Escrevendo 1 + i na f.t. temos 1 + i ρ cis θ, onde: ρ 1 + i 1 + 1 1 + 1 tg

Leia mais

1 a Lista de Exercícios

1 a Lista de Exercícios 1 a Lista de Exercícios Prof. Ms. Ricardo Leite Matemática para Engenharia Unisal September 8, 01 Exercise 1. AVILA, G. Variáveis Complexas e Aplicações, 000. Pág. 8 Exercício 8 Dados três vértices de

Leia mais

m c k 0 c 4mk 4mk <0 (radicando NÚMEROS E FUNÇÕES COMPLEXAS CONTEXTUALIZAÇÃO

m c k 0 c 4mk 4mk <0 (radicando NÚMEROS E FUNÇÕES COMPLEXAS CONTEXTUALIZAÇÃO CONTEXTUALIZAÇÃO NÚMEROS E FUNÇÕES COMPLEXAS Números complexos ocorrem frequentemente na análise de vibrações, vindos da solução de equações diferenciais através de suas equações características. Em particular,

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, a expressão i + i 1 + i 2 +...i 218 é

Leia mais

Lista 2 - Métodos Matemáticos II Respostas

Lista 2 - Métodos Matemáticos II Respostas Lista - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele fornecer

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. A operação multiplicar por i corresponde a fazer uma

Leia mais

Aula 6 Forma trigonométrica ou polar e forma exponencial de um número complexo

Aula 6 Forma trigonométrica ou polar e forma exponencial de um número complexo Aula 6 Forma trigonométrica ou polar e forma exponencial de um número complexo MÓDULO - AULA 6 Autores: Celso Costa e Roberto Geraldo Tavares Arnaut Objetivos 1 Entender a forma trigonométrica e exponencial

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. Como a multiplicação de um número complexo por i corresponde

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Tarefa Intermédia nº 9 versão A

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Tarefa Intermédia nº 9 versão A Escola Secundária com º ciclo D. Dinis 1º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II Tarefa Intermédia nº 9 versão A Nome: Nº Turma Data: 0/06/01 Classificação: A Professora: 1. Sabe-se

Leia mais

Funções do Plano Complexo(MAT162) Notas de Aulas Prof Carlos Alberto S Soares

Funções do Plano Complexo(MAT162) Notas de Aulas Prof Carlos Alberto S Soares Funções do Plano Complexo(MAT62) Notas de Aulas 2-209 Prof Carlos Alberto S Soares O Plano Complexo Considerando a nossa definição de número complexo, é claro que existe uma correspondênca biunívoca entre

Leia mais

EXAMES DE ANÁLISE MATEMÁTICA III

EXAMES DE ANÁLISE MATEMÁTICA III EXAMES DE ANÁLISE MATEMÁTICA III Jaime E. Villate Faculdade de Engenharia Universidade do Porto 22 de Fevereiro de 1999 Resumo Estes são alguns dos exames e testes da disciplina de Análise Matemática III,

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. A operação multiplicar por i corresponde a fazer uma

Leia mais

Números Complexos. Prof. Eng. Antonio Carlos Lemos Júnior. Controle de Sistemas Mecânicos 1

Números Complexos. Prof. Eng. Antonio Carlos Lemos Júnior. Controle de Sistemas Mecânicos 1 Números omplexos Prof. Eng. Antonio arlos Lemos Júnior 1 AGENDA Revisão de conceitos matemáticos Números complexos Exercícios Números complexos Objetivo: O objetivo desta seção é fazer uma pequena revisão

Leia mais

AULA 1: PRÉ-CÁLCULO E FUNÇÕES

AULA 1: PRÉ-CÁLCULO E FUNÇÕES MATEMÁTICA I AULA 1: PRÉ-CÁLCULO E FUNÇÕES Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Conjuntos numéricos A reta real Intervalos Numéricos Valor absoluto de um número

Leia mais

REVISÃO DE NÚMEROS COMPLEXOS

REVISÃO DE NÚMEROS COMPLEXOS REVISÃO DE NÚMEROS COMPLEXOS Ettore A. de Barros. INTRODUÇÃO. Definições Um número compleo pode ser definido pelo par ordenado, de números reais e,, O par, é identificado com o número real, e o par, é

Leia mais

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de

Leia mais

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo Capítulo 1 Números Complexos 11 Unidade Imaginária O fato da equação x 2 + 1 = 0 (11) não ser satisfeita por nenhum número real levou à denição dos números complexos Para solucionar (11) denimos a unidade

Leia mais

Curso: MAT 221- CÁLCULO DIFERENCIAL E INTEGRAL IV Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 2008

Curso: MAT 221- CÁLCULO DIFERENCIAL E INTEGRAL IV Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 2008 Curso: MAT 22- CÁLCULO DIFERENCIAL E INTEGRAL IV Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 2008 APRESENTAÇÃO Um objetivo do curso: Um estudo da exponenciação, subdividido nos

Leia mais

Conteúdo. 2 Polinômios Introdução Operações... 13

Conteúdo. 2 Polinômios Introdução Operações... 13 Conteúdo 1 Conjunto dos números complexos 1 1.1 Introdução.......................................... 1 1.2 Operações (na forma algébrica).............................. 2 1.3 Conjugado..........................................

Leia mais

Variável Complexa

Variável Complexa Variável Complexa 2015.2 Aula1 Utilizamos o símbolo C para denotar o plano real R 2 equipado com as seguintes operações: z 1 + z 2 = (x 1 + x 2, y 1 + y 2 ) adição z 1 z 2 = (x 1 x 2 y 1 y 2,, x 1 y 2

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA. Fundação CECIERJ Consórcio CEDERJ. Matemática do 3º Ano 3º Bimestre Plano de Trabalho 1

FORMAÇÃO CONTINUADA EM MATEMÁTICA. Fundação CECIERJ Consórcio CEDERJ. Matemática do 3º Ano 3º Bimestre Plano de Trabalho 1 FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 3º Bimestre 2014 Plano de Trabalho 1 Conjunto dos Números Complexos Tarefa: 001 PLANO DE TRABALHO 1 Cursista: CLÁUDIO

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Exercícios de exames e testes intermédios 1. Na figura ao lado, estão representados, no plano complexo, uma circunferência

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT32 12 a Lista de exercícios

Leia mais

Instituto de Física de São Carlos, USP FCM502 Números Complexos

Instituto de Física de São Carlos, USP FCM502 Números Complexos Instituto de Física de São Carlos, USP FCM50 Números Complexos Setembro de 016 I. A UNIDADE IMAGINÁRIA Os números complexos foram introduzidos na matemática para resolver equações algébricas que não têm

Leia mais

J. Sebastião e Silva, Compêndio de Matemática, 3º Volume DE MATEMATICA. SOLUÇÕES DOS EXERCfCIOS DO NúMERO ANTERIOR: (-5, 13), (O, 1/2), (5, - 25/2);

J. Sebastião e Silva, Compêndio de Matemática, 3º Volume DE MATEMATICA. SOLUÇÕES DOS EXERCfCIOS DO NúMERO ANTERIOR: (-5, 13), (O, 1/2), (5, - 25/2); COMP~NDIO DE MATEMATICA Por outro lado, se a é um número real, tem-se: az = (ax) + i(ay), isto é: donde: 11. O vector correspondente ao produto dum número real a por um número complexo z é o produto de

Leia mais

1 a Lista de Exercícios de Métodos Matemáticos II

1 a Lista de Exercícios de Métodos Matemáticos II a Lista de Exercícios de Métodos Matemáticos II. Simplifique: [ ] + i a Re + i i b Im 4 i + i 6 i + i d i 4 e eπi i e πi f e +πi. Encontre todos os valores de C tais que: a i 0 b + i + i d 6 + 64 0 e i

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões

MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Exercícios de exames e testes intermédios 1. Na figura ao lado, estão representadas, no plano complexo, as imagens geométricas

Leia mais

Exercício Obtenha, em cada caso, o módulo, o argumento e a forma trigonométrica de z: a) z = 1 + i. setor Aula 31. ρ = 1 2 +( 3 ) 2 ρ= 2.

Exercício Obtenha, em cada caso, o módulo, o argumento e a forma trigonométrica de z: a) z = 1 + i. setor Aula 31. ρ = 1 2 +( 3 ) 2 ρ= 2. setor 0 00408 Aula NÚMEROS COMPLEXOS: PLANO DE ARGAND-GAUSS Até este ponto, usamos, para representar um número complexo a expressão a + b i, em que a e b são números reais e i é a unidade imaginária Com

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Álgebra Linear e Geometria Analítica Curso: Engenharia Electrotécnica Ano: 1 o Semestre: 1 o Ano Lectivo: 007/008 Ficha

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

Polinômios sobre domínios e corpos

Polinômios sobre domínios e corpos Polinômios sobre domínios e corpos Maria Lúcia Torres Villela Universidade Federal Fluminense Instituto de Matemática Maio de 2008 Revisto em agosto de 2009 Sumário Introdução... 3 Parte 1 - Números Complexos...

Leia mais

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c Números Reais Víctor Arturo Martínez León (victor.leon@unila.edu.br) 1 Os números racionais Os números racionais são os números da forma a, sendo a e b inteiros e b 0; o conjunto b dos números racionais

Leia mais

Números Complexos. Números complexos: Forma Algébrica: Representação geométrica. 1. Identifique Re(z) e Im(z) nos seguintes complexos:

Números Complexos. Números complexos: Forma Algébrica: Representação geométrica. 1. Identifique Re(z) e Im(z) nos seguintes complexos: Números Complexos Números complexos: Forma Algébrica: Representação geométrica 1. Identifique Re(z) e Im(z) nos seguintes complexos: a) z = 3 + 2i b) z = i + 2 c)z = 1 i d)z = 2i ln 2 e) z = 4 f) z = 2i

Leia mais

Aula 4 Números Complexos - Forma

Aula 4 Números Complexos - Forma Aula 4 Números Complexos - Forma algébrica MÓDULO - AULA 4 Autores: Celso Costa e Roberto Geraldo Tavares Arnaut Objetivos 1) Entender o contexto que originou o aparecimento dos números complexos. ) Compreender

Leia mais

Parte II. Análise funcional II

Parte II. Análise funcional II Parte II Análise funcional II 12 Capítulo 5 Produto de Operadores. Operadores inversos Neste capítulo vamos introduzir a noção de produto de operadores assim como a de operador invertível. Para tal precisamos

Leia mais

1 [30] A figura ao lado mostra o zoom da discretização de uma função

1 [30] A figura ao lado mostra o zoom da discretização de uma função TT9 Matemática Aplicada I Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P, 3 mar 22 Prof. Nelson Luís Dias NOME: GABARITO Assinatura: 3] A figura ao lado mostra o zoom da discretização

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρ cis α, onde: ρ = i i = + ) = tg α = = ;

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

Números Complexos. Cálculo Diferencial e Integral III WELLINGTON JOSÉ CORRÊA. Campo Mourão, Paraná. Brasil. Universidade Tecnológica Federal do Paraná

Números Complexos. Cálculo Diferencial e Integral III WELLINGTON JOSÉ CORRÊA. Campo Mourão, Paraná. Brasil. Universidade Tecnológica Federal do Paraná Ministério da Educação Universidade Tecnológica Federal do Paraná ampus ampo Mourão Números omplexos álculo Diferencial e Integral III WELLINGTON JOSÉ ORRÊA ampo Mourão, Paraná Brasil Sumário Wellington

Leia mais

Análise Matemática IV

Análise Matemática IV . Análise Matemática IV o Exame - 9 de Janeiro de 006 LEA, LEC, LEEC, LEFT, LEN e LMAC Resolução y 4y + 4y = e t (D ) y = e t (D ) 3 y = 0 y = c e t + c te t + c 3 t e t, c, c, c 3 R. Substituindo estas

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρe iα, onde: ρ = i i = + ) = tg α = = ; como

Leia mais

... Onde usar os conhecimentos os sobre...

... Onde usar os conhecimentos os sobre... IX NÚMEROS COMPLEXOS E POLINÔMIOS Por que aprender sobre Números Complexos?... Ao estudar os Números Complexos percebemos que sua ligação à geometria nos dá uma perspectiva mais rica dos métodos geométricos

Leia mais

Solução Comentada da Prova de Matemática

Solução Comentada da Prova de Matemática Solução Comentada da Prova de Matemática 01. Considere, no plano cartesiano, os pontos P(0,1) e Q(,3). A) Determine uma equação para a reta mediatriz do segmento de reta PQ. B) Determine uma equação para

Leia mais

( x)(x 2 ) n = 1 x 2 = x

( x)(x 2 ) n = 1 x 2 = x Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x

Leia mais

dia 10/08/2010

dia 10/08/2010 Número complexo Origem: Wikipédia, a enciclopédia livre. http://pt.wikipedia.org/wiki/n%c3%bamero_complexo dia 10/08/2010 Em matemática, os números complexos são os elementos do conjunto, uma extensão

Leia mais

Conteúdo. 1 Tópicos sobre Números Complexos Polinómios Funções Racionais... 11

Conteúdo. 1 Tópicos sobre Números Complexos Polinómios Funções Racionais... 11 Conteúdo Tópicos sobre Números Complexos........................... Polinómios........................................ 5 3 Funções Racionais.................................... Números Complexos. Polinómios.

Leia mais

Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Mais exercícios de.º ano: www.prof000.pt/users/roliveira0/ano.htm Escola Secundária de Francisco Franco Matemática.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 000). Seja C o conjunto

Leia mais

Revisão números Complexos

Revisão números Complexos ELETRICIDADE Revisão números Complexos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul Números complexos No passado, os matemáticos esbarraram em uma situação oriunda da resolução de uma

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL Capítulo V

Exercícios de MATEMÁTICA COMPUTACIONAL Capítulo V Exercícios de MATEMÁTICA COMPUTACIONAL Capítulo V Integração Numérica 1. Considere o integral: 1 0 e x2 dx a) Determine o seu valor aproximado, considerando 4 subintervalos e utilizando: i. A regra dos

Leia mais

Funções. Para começarmos, precisamos de algumas definições: Dessa forma, já temos conteúdo suficiente para definirmos o assunto principal:

Funções. Para começarmos, precisamos de algumas definições: Dessa forma, já temos conteúdo suficiente para definirmos o assunto principal: Funções 1 Introdução Para começarmos, precisamos de algumas definições: Par ordenado: conjunto de dois números reais em que a ordem dos elementos importa, ou seja, (1, 2) (2, 1). Utilizaremos essa definição

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015 MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO Matemática EXERCÍCIOS DE PROVAS DE EXAME NACIONAIS 000-00 COMPLEXOS 1º ANO Parte 1 Escolha múltipla 1 Seja w um número complexo diferente de zero, cuja imagem geométrica

Leia mais

Sessão 1: Generalidades

Sessão 1: Generalidades Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar

Leia mais

Universidade Federal de Viçosa. Departamento de Matemática

Universidade Federal de Viçosa. Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas - CCE Departamento de Matemática Notas de Aulas Disciplina:MAT 206 - Fundamentos de Matemática II Simone Maria de Moraes Viçosa Minas

Leia mais

P L A N I F I C A Ç Ã O A N U A L

P L A N I F I C A Ç Ã O A N U A L P L A N I F I C A Ç Ã O A N U A L DEPARTAMENTO: MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS ÁREA DISCIPLINAR: Matemática DISCIPLINA: Matemática A NÍVEL DE ENSINO: Secundário CURSO: Ciências e Tecnologias ANO:12º

Leia mais

Curso de Matemática Aplicada.

Curso de Matemática Aplicada. Aula 1 p.1/25 Curso de Matemática Aplicada. Margarete Oliveira Domingues PGMET/INPE Sistema de números reais e complexos Aula 1 p.2/25 Aula 1 p.3/25 Conjuntos Conjunto, classe e coleção de objetos possuindo

Leia mais

Capítulo Propriedades das operações com vetores

Capítulo Propriedades das operações com vetores Capítulo 6 1. Propriedades das operações com vetores Propriedades da adição de vetores Sejam u, v e w vetores no plano. Valem as seguintes propriedades. Comutatividade: u + v = v + u. Associatividade:

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Analisando cada uma das afirmações temos (A) z z = z z é uma afirmação verdadeira

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

LISTA 0 - GABARITO. ( n p )ap b n p, n N {0}. (Passo de indução) Suponhamos a fórmula válida para m N e provemo-la para m=1. = a

LISTA 0 - GABARITO. ( n p )ap b n p, n N {0}. (Passo de indução) Suponhamos a fórmula válida para m N e provemo-la para m=1. = a Curso: MAT 43 - CÁLCULO para CIÊNCIAS BIOLÓGICAS - FCFUSP Professor Oswaldo Rio Branco de Oliveira Período: Primeiro Semestre de 200 LISTA 0 - GABARITO. Binômio de Newton (a+b) n pn p0 ( n p )ap b n p,

Leia mais

ficha 5 transformações lineares

ficha 5 transformações lineares Exercícios de Álgebra Linear ficha 5 transformações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 5 Notação

Leia mais

Análise Matemática IV Problemas para as Aulas Práticas

Análise Matemática IV Problemas para as Aulas Práticas Análise Matemática IV Problemas para as Aulas Práticas 4 de Abril de 5 Semana 3. Determine os valores dos seguintes integrais: a) z dz em que é o semicírculo percorrido em sentido directo unindo i a i.

Leia mais

Números complexos na forma algébrica

Números complexos na forma algébrica Números complexos na forma algébrica A gênese do complexos Durante dois mil anos a matemática cresceu sem se importar com o fato de que as raízes quadradas dos negativos não podiam ser calculadas. Os gregos,

Leia mais

Preliminares de Cálculo

Preliminares de Cálculo Preliminares de Cálculo Profs. Ulysses Sodré e Olivio Augusto Weber Londrina, 21 de Fevereiro de 2008, arquivo: precalc.tex... Conteúdo 1 Números reais 2 1.1 Algumas propriedades do corpo R dos números

Leia mais

P L A N I F I C A Ç Ã O A N U A L

P L A N I F I C A Ç Ã O A N U A L P L A N I F I C A Ç Ã O A N U A L DEPARTAMENTO: MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS ÁREA DISCIPLINAR: 500 - MATEMÁTICA DISCIPLINA: Matemática A NÍVEL DE ENSINO: Secundário CURSO: Ciências e Tecnologias

Leia mais

Álgebra Linear I - Aula 3. Roteiro

Álgebra Linear I - Aula 3. Roteiro Álgebra Linear I - Aula 3 1. Produto escalar. Ângulos. 2. Desigualdade triangular. Roteiro 1 Produto escalar Considere dois vetores ū = (u 1, u 2, u 3 ) e v = (v 1, v 2, v 3 ) de R 3. O produto escalar

Leia mais