Revisão números Complexos
|
|
|
- Luca Madeira Castelhano
- 9 Há anos
- Visualizações:
Transcrição
1 ELETRICIDADE Revisão números Complexos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul
2 Números complexos No passado, os matemáticos esbarraram em uma situação oriunda da resolução de uma equação do 2º grau... Por exemplo: x 2 2. x 5 0 Aplicando báskara: x Note que ao desenvolver o teorema nos deparamos com a raiz quadrada de um número negativo, sendo impossível a resolução dentro do conjunto dos números Reais, pois não existe número negativo que elevado ao quadrado tenha como resultado número negativo. A resolução destas raízes só foi possível com a criação e adequação dos números complexos, por Leonhard Euler.
3 Conjuntos Numéricos Q N R C I O conjunto dos números Reais é um subconjunto dos Complexos
4 Números Complexos Número Complexo: C : z a bi, a e br e i -1 Unidade imaginária Voltando ao problema... x Como, ( 1) i 4i x 1 2i 1 x 1 2i 2
5 Números Complexos z = a + bi (forma retangular) Parte real Parte imaginária Um número complexo na Forma Retangular (ou algébrica ou cartesiana) é composto por uma parte real e uma parte imaginária Se a parte real de um número complexo é NULA, ele é um número imaginário puro. Analogamente, se a parte imaginária de um número complexo é NULA, ele é um número real puro. Dois números complexos, z e w, para serem iguais, devem ter suas partes reais e imaginárias, respectivamente, iguais. Prof. Marcio Kimpara
6 Números Complexos Q N R im C I Im Imaginário puro
7 Anote i = unidade imaginária i = corrente elétrica Mas, em circuitos elétricos Logo, para não confundir: j unidade imaginária -1 Doravante, utilizaremos a letra j para representar a unidade imaginária z = a + bi z = a + bj
8 Forma geométrica Plano de Argand Gauss (Plano Complexo) = a + jb Im b P P = (a,b) θ a Re FORMA POLAR Um número complexo na Forma Polar é um número composto por um vetor e um ângulo.
9 Transformação a jb a b.cos. sen θ b a 2 b arctan b a 2 a
10 Exemplos Representar os números complexos no plano cartesiano e converter para a forma polar: a) C = 60 + j80 b) C = 5 j5 c) C = -3 j4 * Resolvidos no quadro
11 Operações com números complexos CONJUGADO COMPLEXO O conjugado de um número complexo, representado por * (ou ), pode ser determinado simplesmente pela mudança do sinal da parte imaginária na forma retangular ou do sinal do ângulo na forma polar. Seja: = x + jy = z θ Então o conjugado * é dado por: * = x jy = z θ
12 Operações com números complexos ADIÇÃO E SUBTRAÇÃO A adição (soma) ou subtração algébrica de números complexos deve ser feita sempre na forma retangular. Não se somam ou se subtraem números complexos na forma polar. Soma e Subtração algébrica de números complexos são feitas na forma retangular. A regra para soma ou subtração de números complexos na forma retangular é: Somam-se ou subtraem-se algebricamente as partes reais e as partes imaginárias, separadamente. Assim:
13 Operações com números complexos MULTIPLICAÇÃO A multiplicação dos números complexos deve ser feita na forma polar. Não é recomendável a multiplicação na forma retangular, embora possa ser feita. Multiplicação de números complexos é feita na forma polar. Portanto, a regra para multiplicação de números complexos na forma polar é: Multiplicam-se os módulos e somam-se algebricamente os ângulos Assim:
14 Operações com números complexos DIVISÃO A multiplicação dos números complexos deve ser feita na forma polar. Pode-se realizar a divisão na forma retangular, porém o processo é muito mais trabalhoso. Divisão de números complexos é feita na forma polar. A regra para a divisão de números complexos na forma polar é: Dividem-se os módulos e subtraem-se algebricamente os ângulos Assim:
15 Exemplos 1) Efetuar as operações algébricas com números complexos, sendo C1 = 3 + j4 e C2 = 5 + j6. a) C3 = C1 + C2 b) C3 = C1 - C2 c) C3 = C1 + C2* 2) Efetuar as operações algébricas com números complexos, sendo C1 = e C2 = a) C3 = C1/C2 b) C3 = C2/C1 c) C3 = C1 x C2 * Resolvidos no quadro
A origem de i ao quadrado igual a -1
A origem de i ao quadrado igual a -1 No estudo dos números complexos deparamo-nos com a seguinte igualdade: i 2 = 1. A justificativa para essa igualdade está geralmente associada à resolução de equações
Eletrotécnica II Números complexos
Eletrotécnica II Números complexos Prof. Danilo Z. Figueiredo Curso Superior de Tecnologia em Instalações Elétricas Faculdade de Tecnologia de São Paulo Tópicos Aspectos históricos: a solução da equação
Introdução: Um pouco de História
Números Complexos Introdução: Um pouco de História Houve um momento na História da Matemática em que a necessidade de expressar a raiz de um número negativo se tornou fundamental. Em equações quadráticas
Conjunto dos Números Complexos
Conjunto dos Unidade Imaginária Seja a equação: x + 0 Como sabemos, no domínio dos números reais, esta equação não possui solução, criou-se então um número cujo quadrado é. Esse número, representado pela
ELETROTÉCNICA (ENE078)
UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenharia Civil ELETROTÉCNICA (ENE078) PROF. RICARDO MOTA HENRIQUES E-mail: [email protected] Aula Número: 20 Revisão da aula passada... Circuitos
INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA
INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA -1-20. 8 Curso Técnico em Eletrotécnica Os Dispositivos Básicos e os 1.. Sequência de conteúdos: 1. Revisão; 2.. Vitória-ES
NÚMEROS COMPLEXOS. Prof. Edgar Zuim (*)
NÚMEROS COMPLEXOS Prof. Edgar Zuim (*) 1 Conteúdo 1 - Introdução... 3 - Relações do fasor com a forma retangular... 4 3 - Operações com números complexos... 5 4 - Conversões de forma retangular/polar e
1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que:
Números Complexos e Polinômios Prof. Gustavo Sarturi [!] Esse documento está sob constantes atualizações, qualquer erro de ortografia, cálculo, favor comunicar. Última atualização: 01/11/2018. 1 Números
MATEMÁTICA II. Aula 14. 4º Bimestre. Números Complexos Professor Luciano Nóbrega
1 MATEMÁTICA II Aula 14 Números Complexos Professor Luciano Nóbrega 4º Bimestre www.professorlucianonobrega.wordpress.com 2 INTRODUÇÃO Vamos relembrar os Conjuntos Numéricos: N: conjunto dos números naturais:
Análise de Circuitos 2
Análise de Circuitos 2 Introdução (revisão) Prof. César M. Vargas Benítez Departamento Acadêmico de Eletrônica, Universidade Tecnológica Federal do Paraná (UTFPR) 1 Análise de Circuitos 2 - Prof. César
TURMA:12.ºA/12.ºB. O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz)
GUIA DE ESTUDO NÚMEROS COMPLEXOS TURMA:12.ºA/12.ºB 2017/2018 (ABRIL/MAIO) Números Complexos O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz) A famosa igualdade de Euler i e 10 A
ESCOLA TÉCNICA ESTADUAL FREDERICO GUILHERME SCHMIDT
PRODUTOS NOTÁVEIS Quadrado da soma de dois termos (a + b) 2 = a 2 + 2ab + b 2 quadrado do segundo termo primeiro termo 2 x (primeiro termo) x (segundo termo) quadrado do primeiro termo segundo termo Quadrado
Análise de Circuitos I I
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS DE SÃO JOSÉ CURSO TÉCNICO INTEGRADO EM TELECOMUNICAÇÕES
Números Complexos. Prof. Eng. Antonio Carlos Lemos Júnior. Controle de Sistemas Mecânicos 1
Números omplexos Prof. Eng. Antonio arlos Lemos Júnior 1 AGENDA Revisão de conceitos matemáticos Números complexos Exercícios Números complexos Objetivo: O objetivo desta seção é fazer uma pequena revisão
m c k 0 c 4mk 4mk <0 (radicando NÚMEROS E FUNÇÕES COMPLEXAS CONTEXTUALIZAÇÃO
CONTEXTUALIZAÇÃO NÚMEROS E FUNÇÕES COMPLEXAS Números complexos ocorrem frequentemente na análise de vibrações, vindos da solução de equações diferenciais através de suas equações características. Em particular,
Conjunto dos números complexos
NÚMEROS COMPLEXOS Conjunto dos números complexos I C R Q Z N Número imaginário x² + 1 = 0 x² = 1 x = ± 1 Número imaginário i x = ± i x² + 4 = 0 x² = 4 x = ± 4 x = ± 1 4 x = ± 2i Número imaginário i = 1
ELETRICIDADE APLICADA RESUMO DE AULAS PARA A 2ª PROVA
ELETRICIDADE APLICADA RESUMO DE AULAS PARA A 2ª PROVA Eletricidade Aplicada I 12ª Aula Corrente Alternada Corrente Alternada: Introdução A expressão em função do tempo é: v(t)=v máx sen(wt+a). V máx é
REVISÃO DE NÚMEROS COMPLEXOS
REVISÃO DE NÚMEROS COMPLEXOS Ettore A. de Barros. INTRODUÇÃO. Definições Um número compleo pode ser definido pelo par ordenado, de números reais e,, O par, é identificado com o número real, e o par, é
Números Complexos - Forma Algébrica
Matemática - 3ª série Roteiro 07 Caderno do Aluno Números Complexos - Forma Algébrica I - Introdução ao Estudo dos Números Complexos Desafio: 1) Um cubo tem volume equivalente à soma dos volumes de dois
Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :
Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence
ELETROTÉCNICA. Impedância
ELETROTÉCNICA Impedância 1 Números complexos As equações algébricas do tipo x =-3não possuem soluções no campo dos números reais. Tais equações podem ser resolvidas somente com a introdução de uma unidade
FASORES E NÚMEROS COMPLEXOS
Capítulo FSORES E NÚMEROS COMPLEXOS. Introdução.1 Fasor.1.1 Representação Fasorial de uma Onda Senoidal e Co-senoidal.1. Diagramas Fasoriais. Sistema de Números Complexos..1 Plano Complexo.. Operador j.3
Números Complexos 2017
Números Complexos 07. (Eear 07) Se i é a unidade imaginária, então i i i é um número complexo que pode ser representado no plano de Argand-Gauss no quadrante. a) primeiro b) segundo c) terceiro d) quarto.
Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 3º ano Números Complexos
Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 3º ano Números Complexos Tarefa 01 Cursista: Maria Amelia de Moraes Corrêa Tutora: Maria Cláudia Padilha Tostes 1 S u m á
PLANIFICAÇÃO ANUAL DE MATEMÁTICA - 7º ANO
PLANIFICAÇÃO ANUAL DE MATEMÁTICA - 7º ANO 1º Período... 53 Ano Lectivo 17/ 18 PROGRESSÃO 2º Período... 40 Turma: A e C 7º Ano 3º Período... 30 Professor: João Constantino N.º aulas Proposta de Testes 1º
ANÁLISE DE CIRCUITOS ELÉTRICOS II
ANÁLISE DE CIRCUITOS ELÉTRICOS II Módulo III FASORES E IMPEDÂNCIA Números Complexos Forma Retangular: 2 Números Complexos Operações com o j: 3 Números Complexos Forma Retangular: z = x+jy sendo j=(-1)
FORMAÇÃO CONTINUADA EM MATEMÁTICA. Fundação CECIERJ Consórcio CEDERJ. Matemática do 3º Ano 3º Bimestre Plano de Trabalho 1
FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 3º Bimestre 2014 Plano de Trabalho 1 Conjunto dos Números Complexos Tarefa: 001 PLANO DE TRABALHO 1 Cursista: CLÁUDIO
Disciplina de MATEMÁTICA 7.º ANO
GRUPO DE MATEMÁTICA ANO LETIVO 2018 / 2019 Disciplina de MATEMÁTICA 7.º ANO Professores: Sandra Almeida 7ºA, B Margarida Guégués 7ºC 2 PLANIFICAÇÃO ANUAL DE MATEMÁTICA - 7º ANO Professor: Sandra Almeida
Números complexos na forma algébrica
Números complexos na forma algébrica A gênese do complexos Durante dois mil anos a matemática cresceu sem se importar com o fato de que as raízes quadradas dos negativos não podiam ser calculadas. Os gregos,
1 Números Complexos e Plano Complexo
UNIVERSIDADE FEDERAL DE SANTA CATARINA Centro de Ciências Físicas e Matemáticas Departamento de Matemática SEMESTRE CÓDIGO DISCIPLINA TURMA 09-1 MTM5327 Variável Complexa 0549 Professor Lista de Exercícios
FASORES E NÚMEROS COMPLEXOS
e(t) θ3 θ 0 π/ π 3π/ π ωt[rad] FASORES E NÚMEROS COMPLEXOS Q = E I sen(θ) SሬԦ = E I θ I* I cos( θ) E θ E θ I sen( θ) I DEPARTAMENTO DA ÁREA DE ELETRO-ELETRÔNICA COORDENAÇÃO DE ELETROTÉCNICA Prof. Rupert
dia 10/08/2010
Número complexo Origem: Wikipédia, a enciclopédia livre. http://pt.wikipedia.org/wiki/n%c3%bamero_complexo dia 10/08/2010 Em matemática, os números complexos são os elementos do conjunto, uma extensão
Teoria de Eletricidade Aplicada
1/24 Teoria de Eletricidade Aplicada Representação Vetorial de Ondas Senoidais Prof. Jorge Cormane Engenharia de Energia 2/24 SUMÁRIO 1. Introdução 2. Números Complexos 3. Funções Exponenciais Complexas
SE18 - Matemática. LMAT 6B1-1 - Números Complexos: Forma T rigonométrica. Questão 1
SE18 - Matemática LMAT 6B1-1 - Números Complexos: Forma T rigonométrica Questão 1 (Mackenzie 1996) Na figura a seguir, P e Q são, respectivamente, os afixos de dois complexos z 1 e z 2. Se a distância
PLANO DE AULA. Escola: Escola de Educação Básica Professora Maria Solange Lopes de Borba
Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense - Campus Sombrio Curso de Licenciatura em Matemática PLANO DE AULA Dados de identificação Escola:
Índice. Equações algébricas. Números racionais. Figuras geométricas. Semelhança. Generalidades sobre funções. Funções, sequências e sucessões
Índice Números racionais. Números inteiros. Adição de números inteiros 8. Subtração de números inteiros 0. Números racionais 5. Adição algébrica de números racionais 6. Multiplicação de números racionais
DIREÇÃO DE ENSINO EMENTA DE DISCIPLINA - MATEMÁTICA AUTOMAÇÃO INDUSTRIAL ELETRÔNICA ELETROMECÂNICA MEIO AMBIENTE
Instituto Federal de Educação Ciência e Tecnologia Fluminense Campus Macaé DIREÇÃO DE ENSINO EMENTA DE DISCIPLINA - MATEMÁTICA Nível Curso Série CH Semanal CH Anual Ensino Médio Integrado AUTOMAÇÃO INDUSTRIAL
... Onde usar os conhecimentos os sobre...
IX NÚMEROS COMPLEXOS E POLINÔMIOS Por que aprender sobre Números Complexos?... Ao estudar os Números Complexos percebemos que sua ligação à geometria nos dá uma perspectiva mais rica dos métodos geométricos
CSE-MME Revisão de Métodos Matemáticos para Engenharia
CSE-MME Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia
Números Complexos. Matemática Básica. Números Complexos. Números Complexos: Um Pouco de História. Humberto José Bortolossi.
Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Números Complexos Parte 8 Parte 08 Matemática Básica 1 Parte 08 Matemática Básica 2 Números
30 o 50 o 70 o 90 o 110 o 130 o 150 o 170 o 190 o 210 o 230 o 250 o 270 o 290 o 310 o 330 o 350 o
Fasores 1- FASORES Fasores, são na realidade vetores que giram e uma determinada velocidade em um círculo trigonométrico, dando origem as funções senoidais. Então toda função senoidal pode ser representada
1 a Lista de Exercícios
1 a Lista de Exercícios Prof. Ms. Ricardo Leite Matemática para Engenharia Unisal September 8, 01 Exercise 1. AVILA, G. Variáveis Complexas e Aplicações, 000. Pág. 8 Exercício 8 Dados três vértices de
Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ
Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ Michael Paluch Instituto Superior Técnico Universidade de Lisboa 18 Fevereiro de 2019 Método de
PLANO DE AULA. Escola: Escola de Educação Básica Professora Maria Solange Lopes de Borba
Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense - Campus Sombrio Curso de Licenciatura em Matemática PLANO DE AULA Dados de identificação Escola:
Números Complexos. é igual a a) 2 3 b) 3. d) 2 2 2
Números Complexos 1. (Epcar (Afa) 01) Considerando os números complexos z 1 e z, tais que: z 1 é a raiz cúbica de 8i que tem afixo no segundo quadrante z é raiz da equação x x 1 0 Pode-se afirmar que z1
NÚMEROS COMPLEXOS ANA CRISTINA DA SILVA FERREIRA
FORMAÇÃO CONTINUADA NÚMEROS COMPLEXOS ANA CRISTINA DA SILVA FERREIRA FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO ESTADUAL PADRE MANUEL DA NÓBREGA PROFESSORA
Professor: Marcelo de Moura Costa
PLANO COMPLEXO HISTÓRICO A associação entre complexos e pontos reais no plano foi feita inicialmente por Caspar Wessel (745-88), Jean Robert Argand (768-8) e Carl Friedrick Gauss (777-855). Embora Wessel
Formação Continuada em Matemática. Matemática 3º ano - 3º Bimestre / Plano de Trabalho 1. Números Complexos
Formação Continuada em Matemática Matemática 3º ano - 3º Bimestre / 2014 Plano de Trabalho 1 Números Complexos Tarefa 1 Cursista: Marciele Euzébio de Oliveira Nascimento Grupo:1 Tutora:Bianca Coloneze
PLANIFICAÇÃO ANUAL MATEMÁTICA 7.ºANO
Escola Básica do 2.º e 3.º Ciclos Infante D. Pedro 1.º Período Apresentação. Avaliação Diagnóstica Atividades de recuperação e avaliação 54 aulas 40 aulas 9 aulas 2.º Período 4s 3s 8 aulas 3.º Período
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. Tema III Trigonometria e Números Complexos. Tarefa intermédia nº 9
ESCOLA SECUNDÁRIA COM º CICLO D. DINIS 1º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Trigonometria e Números Complexos Tarefa intermédia nº 9 1. Considere os números complexos z = + i, w = 1 i e t =
ELETROTÉCNICA (ENE078)
UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenhara Cvl ELETROTÉCNICA (ENE078) PROF. RICARDO MOTA HENRIQUES E-mal: [email protected] Aula Número: 19 Importante... Crcutos com a corrente
Trabalho feito e apresentado para a disciplina de matemática em: Instituto Estadual de Educação - 3º ano(306)
Trabalho feito e apresentado para a disciplina de matemática em: Instituto Estadual de Educação - 3º ano(306) Colocado na internet Estude e se baseie nesse trabalho para os seus, mas não copie. Plágio
Estudando Números Complexos com Applets
DIRETORIA DE PESQUISA E PÓS-GRADUAÇÃO/GERÊNCIA DE PESQUISA PROJETO: TECNOLOGIAS DE INFORMAÇÃO E COMUNICAÇÃO NO PROCESSO DE ENSINO E APRENDIZAGEM DE MATEMÁTICA Estudando Números Complexos com Applets Débora
1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3
Complexos 06. (Espcex 0) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 b) 6 c) 5 d) e) x 8 0 tem área igual a. (Unicamp 0) Chamamos de unidade imaginária e denotamos por
Aula 4 Números Complexos - Forma
Aula 4 Números Complexos - Forma algébrica MÓDULO - AULA 4 Autores: Celso Costa e Roberto Geraldo Tavares Arnaut Objetivos 1) Entender o contexto que originou o aparecimento dos números complexos. ) Compreender
Notas breves sobre números complexos e aplicações
Notas breves sobre números complexos e aplicações Complementos de Análise Matemática - ESI DMat - Universidade do Minho Dezembro de 2005 1 Definição O conjunto dos números complexos, denotado por C, pode-se
Fundamentos Tecnológicos
Fundamentos Tecnológicos Equações Algébricas e Equação de 1º Grau Início da aula 06 Equações Algébricas Expressões Algébricas - Definição Expressões algébricas são expressões matemáticas que apresentam
O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados.
1. Análise Vetorial O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados. Os princípios eletromagnéticos são encontrados em diversas aplicações:
Programa Anual MATEMÁTICA
Programa Anual MATEMÁTICA A proposta A compreensão de ensino, presente no Material Didático Positivo, empenha-se com o valor formativo e instrumental desta área de conhecimento. Assim, concentra seus esforços
CONJUNTOS NUMÉRICOS. O que são?
CONJUNTOS NUMÉRICOS O que são? Os Naturais Os números Naturais surgiram da necessidade de contar as coisas. Eles são todos os números inteiros positivos, incluindo o zero. É representado pela letra maiúscula
Aula 2 Vetores de força
Aula 2 Vetores de força slide 1 Escalares e vetores Um escalar é qualquer quantidade física positiva ou negativa que pode ser completamente especificada por sua intensidade. Exemplos de quantidades escalares:
Mestrado em Ensino da Matemática. Ensino da Matemática II. Ensino da Matemática II - Tânia Lopes
Mestrado em Ensino da Matemática Ensino da Matemática II Conceito de números: Naturais; Inteiros; Racionais; Reais; E agora, Complexos. Equações de 2º grau Equações do 3º grau No século XVI, em Itália,
SUMÁRIO. Unidade 1 Matemática Básica
SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...
MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas
MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, sejam z 1 = 1 3i19 1 + i e z = 3k cis ( 3π, com k R + Sabe-se
BC 1519 Circuitos Elétricos e Fotônica
BC 1519 Circuitos Elétricos e Fotônica Circuitos em Corrente Alternada 013.1 1 Circuitos em Corrente Alternada (CA) Cálculos de tensão e corrente em regime permanente senoidal (RPS) Conceitos de fasor
Vetores. Prof. Marco Simões
Vetores Prof. Marco Simões Ao final dessa aula você deverá saber A diferença entre grandezas escalares e vetoriais Como representar uma grandeza vetorial O que são os componentes de um vetor Como efetuar
UTFPR - PR Matemática Aplicada Profª.: Rita de Cássia
CONJUNTO DOS NÚMEROS REAIS 0, 1, 2, 3, 4, ú. 3, 2, 1, 0, 1, 2, 3, ú.,, 0 ú. 2, 3, 5,,, ú. A diferença entre um número racional e um número irracional: Número Racional é todo número cuja representação decimal
PLANEJAMENTO Disciplina: Matemática Série: 7º Ano Ensino: Fundamental Prof.:
Disciplina: Matemática Série: 7º Ano Ensino: Fundamental Prof.: II ) Compreensão de fenômenos 1ª UNIDADE Números inteiros (Z) 1. Números positivos e números negativos 2. Representação geométrica 3. Relação
MINISTÉRIO DA EDUCAÇÃO
IDENTIFICAÇÃO Unidade Curricular: Geometria Analitica MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS
POLINÔMIOS. 1. Função polinomial. 2. Valor numérico. 3. Grau de um polinômio. 4. Polinômios idênticos
POLINÔMIOS 1. Função polinomial É a função P() = a 0 + a 1 + a + a +... + a n n, onde a 0, a 1, a,..., a n são os coeficientes e os termos do polinômio são : a 0 ; a 1 ; a ; a ;... ; a n n. Valor numérico
NÚMEROS COMPLEXOS CAPÍTULO
NÚMEROS COMPLEXOS CAPÍTULO 1 Neste capítulo, exploramos as estruturas algébrica e geométrica do sistema dos números complexos, para o que supomos conhecidas várias propriedades correspondentes dos números
Curso de Matemática Aplicada.
Aula 1 p.1/25 Curso de Matemática Aplicada. Margarete Oliveira Domingues PGMET/INPE Sistema de números reais e complexos Aula 1 p.2/25 Aula 1 p.3/25 Conjuntos Conjunto, classe e coleção de objetos possuindo
EQUAÇÕES POLINOMIAIS
EQUAÇÕES POLINOMIAIS Prof. Patricia Caldana Denominamos equações polinomiais ou algébricas, as equações da forma: P(x)=0, onde P(x) é um polinômio de grau n > 0. As raízes da equação algébrica, são as
Planificação Anual de Matemática 7º Ano
Temas transversais: Planificação Anual de Matemática 7º Ano Resolução de Problemas Resolver problemas usando números racionais, utilizando equações e funções em contextos matemáticos e não matemáticos,
Plano de Trabalho 1 Polinômios e Equações Algébricas ( REELABORAÇÃO)
Plano de Trabalho 1 Polinômios e Equações Algébricas ( REELABORAÇÃO) Aluno: Anderson Ribeiro da Silva Tutor: Cláudio Rocha de Jesus Grupo: 7 Curso: 3º Ano / Ensino Médio Duração: 400min INTRODUÇÃO Sabe-se
Experiência 4 - Sinais Senoidais e Fasores
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Edição 2017 Cinthia Itiki, Inés Pereyra, Marcelo Carreño Experiência
Colégio Adventista de Porto Feliz
Colégio Adventista de Porto Feliz Nome: Nº: Turma:7ºano Nota Alcançada: Disciplina: Matemática Professor(a): Rosemara 1º Bimestre Data: /03/2016 Conteúdo: POTENCIAÇÃO E RADICIAÇÃO DE NÚMEROS INTEIROS Valor
Cálculo Diferencial e Integral I
Cálculo Diferencial e Integral I Prof. Lino Marcos da Silva Atividade 1 - Números Reais Objetivos De um modo geral, o objetivo dessa atividade é fomentar o estudo de conceitos relacionados aos números
GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA
GABARITO DE MATEMÁTICA INSTITUTO MILITAR DE ENGENHARIA Realizada em 6 de outubro de 010 Questão 01 GABARITO DISCURSIVA A base de um prisma reto ABCA 1 B 1 C 1 é um triângulo com o lado AB igual ao lado
1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13
Sumário CAPÍTULO 1 Construindo retas e ângulos 1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13 2. Partes da reta 14 Construindo segmentos congruentes com régua e compasso 15
