MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução"

Transcrição

1 MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. A operação multiplicar por i corresponde a fazer uma rotação de centro em O e amplitude radianos, pelo que a imagem geométrica de i está no primeiro quadrante a igual distância da origem do que a imagem geométirca de Imz) z 1 i A operação multiplicar por corresponde a fazer duplicar a distância à origem, mantendo o argumento do número complexo, pelo que i z 1 z i Rez) Finalmente, a imagem geométrica de um número complexo, e do seu simétrico correspondem a rotações de centro em O e amplitude radianos, pelo que i z Resposta: Opção D z i z 3 Exame 1, Ép. especial. As operações multiplicar por i e transformar no conjugado correspondem geometricamente a fazer uma rotação de centro em O e amplitude radianos e encontrar o ponto simétrico relativamente ao eixo real, respetivamente. i z 1 z Imz) z 1 z Assim, se considerarmos as operações inversas, pela ordem inversa, a partir da imagem geométrica de z, como indicado na figura), obtemos como resposta a imagem geométrica de z. z Rez) Ou, dizendo de outra forma, se z, temos que z z 1 e i i z 1 z, pelo que z. z 3 z 3. Se z + bi, então z bi Exame 13, Ép. especial Assim temos Re z) > e como b <, Im z) >, pelo que sabemos que representação geométrica de z pertence ao primeiro quadrante, logo Arg z) não pode ser α Por outro lado z + b, como b >, temos que z >, logo z não pode ser 3 Exame 13, a Fase Página 1 de 1

2 . Fazendo a simplificação temos: ) cos α) + i cos α cos α + i sen α cos α) + i sen α cos α + i sen α cos α) + i sen α) cos α + i sen α ) Porque cos α sen α Porque sen α sen α) cis α) cis α cis α α) Fazendo a divisão na forma trigonométrica cis α) Como queriamos mostrar 5. Temos que z 8) e sabemos que Arg z) α, pelo que podemos escrever que z 1 cis α Assim, temos que Exame 13, a Fase i z z do enunciado) i 1 cis α)) 1 cis α) calculado z e escrevendo z na f.t.) i 1 cis α α)) fazendo a divisão na f.t.) cis ) 1 cis 3α) escrevendo i na f.t.) 1 cis ) + 3α 1 cis 3α ) fazendo o produto na f.t.) Resposta: Opção A Exame 13, 1 a Fase 6. Sabemos que i 1, i 1 i, i 1 e i 3 i, e que é válida a igualdade i n i k, onde k é o resto da divisão inteira de n por. Assim, como 8n n+, temos que i 8n i 1 como 8n 1 8n + 3 n 1)+3 temos que i 8n 1 i 3 i como 8n 1 8n + n 1)+ temos que i 8n i 1 Temos que i 8n i 8n 1 + i 8n i i 3 + i 1 i) + 1) i 1 Logo a imagem geométrica de i 8n i 8n 1 + i 8n pertence ao terceiro quadrante. Exame 13, 1 a Fase Página de 1

3 7. Como z cis θ, então z cis θ). Como 3 < θ <, então 3 < θ <, ou seja θ ] 3, [ Imz) Logo z pertence ao o quadrante e z 1, ou seja z é da forma a + bi, com < a < 1 e 1 < b <. z 1 Rez) Assim z a ) + bi, em que a < e b <, pelo que z pertence ao 3 o quadrante. z z Teste Intermédio 1 o ano Sabemos que i 6 i 1 e que i 7 i 3 i. Logo i6 + i 7 i 1 + i) i 1 i) + i) i) + i) i i i 5i + i 5i i Teste Intermédio 1 o ano Se z e são inversos um do outro, temos que 1 z Por um lado 1 z i 1 i 1 i)1 i) 1 i 1 i 1 i 1 1 i Por outro lado. como , sabemos que i 11 i 3 i e assim k 1) + pi 11 k 1) + p i) k 1) p)i Como 1 z temos que 1 1 i k 1) p)i Logo 1 k 1 1 p k 1 p 3 k 1 p Assim temos que k + p Resposta: Opção D 1. Como z 3 + ki temos: z 1 z + i)3 + ki) 6 + ki + 3i + ki 6 1 k + ik + 3) 6 k) + k + 3)i Para que z 1 z seja um imaginário puro Re z 1 z ) Logo 6 k 6 k Resposta: Opção D Exame 1, Ép. especial Exame 1, a Fase 11. Sabemos que i 1, i 1 i, i 1 e i 3 i, e que é válida a igualdade i n i k, onde k é o resto da divisão inteira de n por. Assim, como n 6 n 8 + n )+ temos que i n 6 i 1 Devemos escrever cis cis 6 ) na f.a. para podermos somar as parcelas do numerador: ) 3 1 i ) cos ) + i sen )) ) )) cos i sen Página 3 de 1

4 Assim temos que: ) 3 i n 6 + cis ) 3 3 1) + 1 i ) ) i i ) ) cis cis cis cis cis ) cis 5 ) 1 cis 5 ) 1 cis 7 ) 1 ) 13 1 cis 1 Exame 1, a Fase 1. As operações dividir por i e dividir por 3 correspondem geometricamente a fazer uma rotação de centro em O e amplitude radianos e dividir a distância ao centro por 3, respetivamente. Imz) z Assim, podemos fazer as operações por qualquer ordem e, por isso, temos duas alternativas: i z 3 z 3 Resposta: Opção A e e z 3 z 1, ou então z 3 i z 1 z 3 z z 1 Rez) Exame 1, 1 a Fase 13. Como o ponto M é a imagem geométrica do número complexo z 1 que vamos designar por z 1 ρ 1 cis θ, em que < θ < porque M é um ponto do primeiro quadrante e Rez 1) > Imz 1 ). Como o ponto N é a imagem geométrica do número complexo z 1 z que vamos designar por z 1 z ρ cis α, em que 3 Rez 1 z ) > Imz 1 z ). < α < porque N é um ponto do segundo quadrante e Assim temos que: z 1 z ρ cis α z ρ cis α z 1 z ρ cis α ρ 1 cis θ z ρ ρ 1 cis α θ) S Imz) N R Q P M α θ Rez) Logo, como 3 < α < e < θ <, então, subtraindo um número positivo) inferior a a α, vem que: 3 < α θ < < α θ < < α θ < 3 E assim, temos que < Arg z ) < 3 Ou seja, o ponto R é o único que pode ser a imagem geométrica do número complexo z. Exame 11, Prova especial Página de 1

5 1. Para que z 1 seja igual ao conjugado de z, temos que se verificar a condição Rez 1 ) Rez ) Imz 1 ) Imz ) Logo: Rez 1 ) Rez ) Imz 1 ) Im 3k + 3p p 5k) 3k + 6 3p p 5k k + p k + 5k k + p + 5k k k + p k 1 + p 1 k 3 p 1 k Exame 11, Ép. especial 15. Pela observação da figura podemos adicionar geometricamente os afixos de z e de z e temos que z + z z 3 A operação multiplicar por i corresponde geometricamente a fazer uma rotação de centro em O e amplitude, pelo que z 3 i z 5. Logo z + z ) i z 3 i z 5. z z 5 Imz) z 3 z 1 z Rez) z 6 Exame 11, a Fase 16. Sabemos que i 1, i 1 i, i 1 e i 3 i, e que é válida a igualdade i n i k, onde k é o resto da divisão inteira de n por. Imz) Assim, como n n +, temos que i n i 1 como n + 1 n +1 temos que i n+1 i 1 i como n + n + temos que i n+ i 1 Assim temos que: z 3 z z 1 Rez) i n + i n+1 + i n+ 1 + i 1 i, pelo que, de acordo com a z figura, temos que i n + i n+1 + i n+ z Exame 11, 1 a Fase Página 5 de 1

6 17. Designando por, z 1 e z os números complexos cujas imagens geométricas são os pontos B, A e C, respetivamente, temos que z 1, porque os pontos A e B estão à mesma distância da origem; logo arg ) arg z ) 9, como arg z ) 3, temos que arg ) Assim temos que 5 cis 5 18 Teste Intermédio 1 o ano A operação multiplicar por i corresponde geometricamente a fazer uma rotação de centro em O e amplitude radianos. Imz) Q Assim temos que i z, sendo o número complexo que tem por imagem geométrica o ponto Q. R P Logo i z, ou seja o número complexo que tem por imagem geométrica o ponto T. S Rez) Resposta: Opção D T Exame 1, Ép. especial 19. z é um imaginário puro, se arg z + k, k Z Assim temos que: 8 θ + k, k Z θ 8 k, k Z θ 8 8 k, k Z θ 3 8 k, k Z Atribuíndo valores a k, temos: Se k, θ 3 8 Se k 1, θ Resposta: Opção D Exame 1, 1 a Fase. Como i 6 i + i 1 i 7 i +3 i 3 i 1 + i)3 + i) 3 + i + 6i + i 3 + 1) + 7i 1 + 7i Temos que: 1 + i)3 + i) i 6 + i 7 3i 1 + 7i 1) i 3i + 6i 3i + 6i) i 3i i i + 6i 3i i i 3 3 i Teste Intermédio 1 o ano Página 6 de 1

7 1. Como i cis, podemos fazer a multiplicação na forma trigonométrica: z i. cis θ) cis ) cis θ cis + θ Assim o conjugado de z é: ) ) z cis + θ cis ) θ Resposta: Opção A Exame 9, Ép. especial. Temos que i 3 i 1+3 i 3 i Calculando z1 temos: z1 3 i) 3 3i) + i) 9 1i + i 9 1i 5 1i ) 3 Como 8 cis 8i, calculando z na forma algébrica, temos: z z 1 + z1 + i ) cis 3 i) + 5 1i) + i) 8i 8 16i 8i 1 i i 1 i) i i i i i i i 1) 1) + i Exame 9, Ép. especial 3. Se arg z) 3 então arg z) 3 Escrevendo i na f.t. temos i cis Assim, sendo ρ z e por isso também ρ z ) e fazendo a divisão na f.t. temos que: i z ρ cis Logo arg cis 3 ) ρ cis )) 3 ρ cis + ) 3 3 ρ cis 6 + ) 6 ρ cis 5 6 ) i 5 z 6 Exame 9, 1 a Fase Página 7 de 1

8 . Como i 18 i + i 1, temos que: z 1 i 1 i i1 + i) i + i18 i 1) 1 i)1 + i) 1 i i i i i Escrevendo z 1 na f.t. temos z 1 ρ cis θ, onde: 1 ) ) 1 1 ρ z tg θ Logo z ; como sen θ > e cos θ >, θ é um ângulo do 1 1 o quadrante, logo θ cis Exame 9, 1 a Fase Imz) 5. A imagem geométrica do número complexo ρ cis α) é um número complexo tal que: z apenas os pontos B e C verificam esta condição) arg) argz) apenas os pontos A e B verificam esta condição) Assim o ponto B é a imagem geométrica de ρ cis α) A B C α P Rez) D Teste Intermédio 1 o ano Como i 35 i 8 +3 i 3 i, e + i) + i) + i) + i + i + i 1 + i 3 + i temos que: + i) i i 3 + i i) 1 + i i 6i 1 + i i i)1 i) 1 + i 1 + i)1 i) 8i i + i 1 i 1i 1i i Teste Intermédio 1 o ano Como cis i, temos que: z 1 1 i).1 + i) 1 i Na f.t.: z 1 cis Fazendo a divisão na f.t.: z 1 z 8 cis cis ) 8 cis )) 1 cis Exame 8, Ép. especial Página 8 de 1

9 8. Os números complexos z e z, têm argumentos que diferem de radianos, logo arg z) + arg z) Seja z um número complexo de argumento 6. Resposta: Opção D 9. Como i 18 i + i 1, temos que z 1 i i 1 i) 1) 3 1 i i i Exame 8, a Fase i i1 + i) i i 1 i 1 i)1 + i) 1 i) i i i Exame 8, a Fase 3. O número complexo 3i tem a sua representação geométrica sobre a parte positiva do eixo imaginário, pelo que faz um ângulo de radianos com o semieixo real positivo, logo argz) 1 Exame 8, 1 a fase 31. Sabemos que i 1, i 1 i, i 1 e i 3 i, e que é válida a igualdade i p i k, onde k é o resto da divisão inteira de p por. Assim, como i n i, temos que i n i i 3 i p+3, para p N. Logo i n+1 i p+3)+1 i p+ i p+1) i p+1)+ i 1 Resposta: Opção A 3. Como arg z 1 ) α, temos que z 1 ρ cis α Como z iz 1, temos que z iz 1 Como i cis 3, fazendo a multiplicação na f.t. temos que: z iz 1 cis 3 ) ) 3 ρ cis α) ρ) cis + α ] Assim, como α, [, temos que arg z ) 3 + α Exame 7, a fase Exame 7, a fase 33. Designando por, z 1 e z os números complexos cujas imagens geométricas são os pontos C, A e B, respetivamente, temos que z 1, porque os pontos A e C estão à mesma distância da origem; logo Como rad rad rad, então: 1 arg ) arg z ) Assim temos que 5 cis 3 5 Resposta: Opção D Exame 6, Ép. especial Página 9 de 1

10 3. Como cis i temos que z 1 i) + cis ) i) + i) i 1) 5 Escrevendo z 1 na f.t. temos z cis Fazendo a divisão na f.t. vem: z 1 z 5 cis 1 5 cis 7 ) 5 cis )) 5 cis Exame 6, a fase 35. Seja z a + bi com a R \ {} e b R \ {}, cuja imagem geométrica é o ponto A. Assim z a bi, cuja imagem geométrica é o ponto A, simétrico do ponto A relativamente ao eixo real. Logo z a bi) a + bi, cuja imagem geométrica é o ponto B, simétrico do ponto A relativamente ao eixo imaginário. 36. Escrevendo 1 na f.t. temos 1 ρ cis θ, onde: ρ Exame 5, Ép. especial tg θ ; como sen θ > e cos θ >, θ é um ângulo do 1o quadrante, logo θ Assim 1 cis Calcular o produto 1 na f.t., e escrevendo o resultado na f.a. vem: ) ) 1 cis cis ) cis 1 1) + 3 cis 1 + ) 1 ) )) ) 1 3 cos + i sen i 1 + 3i Podemos ainda escrever 3 na f.a.: 3 3 cis ) 3i cis 1 cis 3 Assim temos que: i 3 3i 1 + 3i 3i 1 + 3i) i 3i i i + 3i 3i i i i Exame 5, a fase Página 1 de 1

11 37. + i + i)1 + i) + i + i + i i i 1 i 1 i)1 + i) 1 i i + 3i 1 1 1) i 1 + 3i i 1 + i i Escrevendo na f.t. temos ρ cis θ, onde: 1 ) ) 1 1 ρ tg θ Assim 1 1 ; como sen θ > e cos θ >, θ é um ângulo do 1 1 o quadrante, logo θ cis 38. Exame 5, 1 a fase Como 3i) 3i) 16 1i 1i + 9i 16 i 9 7 i i + i i + 7 i i i + 7 i) i i i i + 7i i 7i + i i + i 7i 5i Se arg) α então ρ cis α, sendo ρ + 3) Assim 5 cis α) Como i cis, fazendo o produto na f.t., temos: i cis ) ) 5 cis α)) 5 cis α Exame, a fase 39. Como i 3 i 5+3 i 3 i temos que: z 1 + i i + i) 6 + i) 1 + i) z 1 i 1 i) 1 + i) 1 1i 1 1i i Escrevendo i na f.t. temos i ρ cis θ, onde: 6 1i + i + i 6 1i 1 i) 1 i ρ i ) + ) + tg θ 1 ; como sen θ < e cos θ <, θ é um ângulo do 3o quadrante, logo θ + 5 Assim z 1 + i 3 z cis 5. Para que z seja um número real arg z) arg z) Exame, 1 a fase Assim θ 5 θ 5 θ 5 θ + 5 θ 5 θ 6 5 Resposta: Opção A Exame 3, Prova para militares Página 11 de 1

12 1. Como Re ) > 1 então Re 1) > e Im ) Im 1), pelo que é razoável admitir que 1 z 1 z Imz) z 1 1 Como Re z 3 ) Re z 1 ) Im z 3 ) Im z 1 ), temos que z 3 z 1 1) Assim temos que z 3 z 1 1) 1 1 Rez) z 3 z Exame 3, a fase. Escrevendo z 1 na f.t. temos z 1 ρ cis θ, onde: ρ z 1 + ) + 8 tg θ 1 ; como sen θ < e cos θ >, θ é um ângulo do o quadrante, logo θ Assim z 1 cis 7 Fazendo a divisão na f.t. e escrevendo o quociente na f.a., temos: z cis 7 1 z 7 cis 5 cis 5 ) cis cis i Exame 3, 1 a fase - 1 a chamada 3. Como < Re z) < 1 < Im z) < 1 e Re z) Re z) Im z) Im z) Temos que, também, < Re z) < 1 < Im z) < 1 Logo a imagem geométrica de z também pertence ao interior do retângulo. Imz) Rez). 1 + i i 1 + i) i i i i + i i 1 i 1 Escrevendo na f.t. temos ρ cis θ, onde: ρ i Exame, a fase tg θ ; como sen θ > e cos θ >, θ é um ângulo do 1o quadrante, logo θ Assim cis, e por isso: arg ) 3 arg z 1), pelo que z 1 z, pelo que z Exame, 1 a fase - a chamada Página 1 de 1

13 5. Como i 3 i 5+3 i 3 i, temos que: z 1 + i 3 + i 1 + i + i) + i 5 i 5 + i) i) + i) 1 + 5i 1 + 5i 1 + 5i + i i 1) 5 6. Se + i, então i 1 i) + i) i) i i i 1) i i Escrevendo cis 3 na f.a., temos que: 3 cis cos 3 + i sen 3 ) Logo 1 cis 3 ) + i i Exame 1, Ép. especial Exame 1, a fase 7. Se a imagem geométrica de está no primeiro quadrante e pertence à bissetriz dos quadrantes ímpares, então arg ), e é da forma ρ cis Assim temos que ρ cis ) Logo ρ cis ρ cis ) ρ ρ cis )) 1 cis + ) cis cis Logo a representação geométrica de está sobre a parte positiva do eixo imaginário, como a imagem geométrica de z Imz) z Rez) Exame 1, 1 a fase - 1 a chamada Imz) 8. Se arg z) 5, então z tem a imagem geométrica no 1o quadrante. b z Se z a + bi, com a > b >, então z a bi, com a > b >, logo arg z) + 5 z a + 5 b 5 a Rez) Exame, 1 a fase - a chamada Página 13 de 1

14 9. Sabemos que z A se z < 1. Como 1 + 3i , sendo θ arg 1 + 3i) podemos escrever 1 + 3i cis θ, Assim temos que : 1 + 3i cis cis θ cis 6 6 Logo, como 1 + 3i cis 1, e 1 6 cis θ ) 1 6 cis θ ) i < 1, podemos afirmar que cis 6 pertence ao conjunto A. Exame, 1 a fase - 1 a chamada 5. A operação multiplicar por i corresponde geometricamente a fazer uma rotação de centro em O e amplitude radianos pelo que a imagem geométrica de i, está sobre a circunferência de centro na origem que contem. z i Imz) A operação multiplicar por corresponde a duplicar a distância à origem, mantendo o ângulo que com o sei-eixo real positivo. Assim temos que i z i Rez) Exame, Prova modelo Página 1 de 1

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferentes Para Números Complexos Capítulo II Aplicação 2: Complexos na Geometria Na rápida revisão do capítulo I desse artigo mencionamos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2015 - Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano 2015 - Época especial Prova Escrita de MATEMÁTICA A - 1o Ano 015 - Época especial Proposta de resolução GRUPO I 1. Como P A B = P A + P B P A B, substituindo os valores conhecidos, podemos calcular P A: 0,7 = P A + 0,4 0, 0,7

Leia mais

NUMEROS COMPLEXOS NA FORMA TRIGONOMÉTRICA

NUMEROS COMPLEXOS NA FORMA TRIGONOMÉTRICA NUMEROS COMPLEXOS NA FORMA TRIGONOMÉTRICA Na representação trigonométrica, um número complexo z = a + bi é determinado pelo módulo do vetor que o representa e pelo ângulo que faz com o semi-eixo positivo

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, considere z = + i19 cis θ Determine os valores de θ pertencentes

Leia mais

Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010

Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 65) ª fase 9 de Julho de 00 Grupo I. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é, existem tantas bolas roxas

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase Prova Escrita de MATEMÁTICA A - o Ano 205-2 a Fase Proposta de resolução GRUPO I. O valor médio da variável aleatória X é: µ a + 2 2a + 0, Como, numa distribuição de probabilidades de uma variável aleatória,

Leia mais

NÚMEROS COMPLEXOS (TUTORIAL: BÁSICO 01)

NÚMEROS COMPLEXOS (TUTORIAL: BÁSICO 01) MATEMÁTICA: Números Complexos - C; - Maior dos conjuntos - engloba todos os outros e acrescenta recursos especiais como raiz quadrada de número negativo; - Para darmos interpretação às raízes quadradas

Leia mais

Função. Adição e subtração de arcos Duplicação de arcos

Função. Adição e subtração de arcos Duplicação de arcos Função Trigonométrica II Adição e subtração de arcos Duplicação de arcos Resumo das Principais Relações I sen cos II tg sen cos III cotg tg IV sec cos V csc sen VI sec tg VII csc cotg cos sen Arcos e subtração

Leia mais

TRIGONOMETRIA CICLO TRIGONOMÉTRICO

TRIGONOMETRIA CICLO TRIGONOMÉTRICO TRIGONOMETRIA CICLO TRIGONOMÉTRICO Arcos de circunferência A e B dividem a circunferência em duas partes. Cada uma dessas partes é um arco de circunferência (ou apenas arco). A e B são denominados extremidades

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

=...= 1,0 = 1,00 = 1,000...

=...= 1,0 = 1,00 = 1,000... OPERAÇÕES COM NÚMEROS DECIMAIS EXATOS Os números decimais exatos correspondem a frações decimais. Por exemplo, o número 1,27 corresponde à fração127/100. 127 = 1,27 100 onde 1 representa a parte inteira

Leia mais

Unidade 10 Trigonometria: Conceitos Básicos. Arcos e ângulos Circunferência trigonométrica

Unidade 10 Trigonometria: Conceitos Básicos. Arcos e ângulos Circunferência trigonométrica Unidade 10 Trigonometria: Conceitos Básicos Arcos e ângulos Circunferência trigonométrica Arcos e Ângulos Quando em uma corrida de motocicleta um piloto faz uma curva, geralmente, o traçado descrito pela

Leia mais

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo: Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema

Leia mais

AULA DO CPOG. Progressão Aritmética

AULA DO CPOG. Progressão Aritmética AULA DO CPOG Progressão Aritmética Observe as seqüências numéricas: 2 4 6 8... 12 9 6 3... 5 5 5 5... Essas seqüências foram construídas de forma que cada termo (número), a partir do segundo, é a soma

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

. B(x 2, y 2 ). A(x 1, y 1 )

. B(x 2, y 2 ). A(x 1, y 1 ) Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x

Leia mais

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo Capítulo 1 Números Complexos 11 Unidade Imaginária O fato da equação x 2 + 1 = 0 (11) não ser satisfeita por nenhum número real levou à denição dos números complexos Para solucionar (11) denimos a unidade

Leia mais

MATEMÁTICA NÚMEROS COMPLEXOS. d) 2 e) 3

MATEMÁTICA NÚMEROS COMPLEXOS. d) 2 e) 3 MATEMÁTICA NÚMEROS COMPLEXOS 1. U. Católica Dom Bosco-MS O valor do número real x para que o conjugado do número complexo (x + i)(1 + xi) seja igual a i é: a) b) 1 c) 1 d) e) 1. UFCE Considere o número

Leia mais

Em cada uma dessas frases, há uma quantidade indicada em forma de fração. Veja:

Em cada uma dessas frases, há uma quantidade indicada em forma de fração. Veja: MATEMÁTICA BÁSICA 4 Frações Leitura Três quartos da população do estado X recebe até um salário mínimo A herança será dividida, cabendo um sétimo do total a cada um dos herdeiros A parede será azulejada

Leia mais

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 +

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 + 1 Introdução Comecemos esta discussão fixando um número primo p. Dado um número natural m podemos escrevê-lo, de forma única, na base p. Por exemplo, se m = 15 e p = 3 temos m = 0 + 2 3 + 3 2. Podemos

Leia mais

Sistemas de equações do 1 grau com duas variáveis LISTA 1

Sistemas de equações do 1 grau com duas variáveis LISTA 1 Sistemas de equações do 1 grau com duas variáveis LISTA 1 INTRODUÇÃO Alguns problemas de matemática são resolvidos a partir de soluções comuns a duas equações do 1º a duas variáveis. Nesse caso, diz-se

Leia mais

Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2

Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2 Trigonometria Relação fundamental C b a A c B Sabemos que a = b + c, dividindo os dois membros por a : a b c = + a a a sen + cos = Temos também que: b c senα= e cosα= a a Como b tgα= c, concluímos que:

Leia mais

XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível Segunda Fase Parte A PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima para essa

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:

Leia mais

Actividade de enriquecimento. Algoritmo da raiz quadrada

Actividade de enriquecimento. Algoritmo da raiz quadrada Actividade de enriquecimento Algoritmo da raiz quadrada Nota: Apresenta-se uma actividade de enriquecimento e de um possível trabalho conjunto com as disciplinas da área de informática: os alunos poderão

Leia mais

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares.

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares. Solução dos Exercícios de ALGA 2ª Avaliação EXEMPLO 8., pág. 61- Uma reta L passa pelos pontos P 0 (, -2, 1) e P 1 (5, 1, 0). Determine as equações paramétricas, vetorial e simétrica dessa reta. Determine

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

Unidade 3 Função Afim

Unidade 3 Função Afim Unidade 3 Função Afim Definição Gráfico da Função Afim Tipos Especiais de Função Afim Valor e zero da Função Afim Gráfico definidos por uma ou mais sentenças Definição C ( x) = 10. x + Custo fixo 200 Custo

Leia mais

Um triângulo é retângulo quando um de seus ângulos internos é reto. Observando o triângulo

Um triângulo é retângulo quando um de seus ângulos internos é reto. Observando o triângulo Capítulo 7 Trigonometria 7. Introdução à trigonometria A Trigonometria, que é uma palavra de origem grega: trigono (triangular) e metria (medida), tem por objetivo estabelecer relações entre os elementos

Leia mais

GABARITO PROVA AMARELA

GABARITO PROVA AMARELA GABARITO PROVA AMARELA 1 MATEMÁTICA 01 A 11 A 0 E 1 C 03 Anulada 13 Anulada 04 A 14 B 05 B 15 C 06 D 16 A 07 D 17 E 08 A 18 C 09 E 19 C 10 C 0 C GABARITO COMENTADO PROVA AMARELA 01. Utilizando que (-1)

Leia mais

FRAÇÃO. Número de partes pintadas 3 e números de partes em foi dividida a figura 5

FRAÇÃO. Número de partes pintadas 3 e números de partes em foi dividida a figura 5 Termos de uma fração FRAÇÃO Para se representar uma fração através de figuras, devemos dividir a figura em partes iguais, em que o numerador representar a parte considera (pintada) e o denominador representar

Leia mais

Função Seno. Gráfico da Função Seno

Função Seno. Gráfico da Função Seno Função Seno Dado um número real, podemos associar a ele o valor do seno de um arco que possui medida de radianos. Desta forma, podemos definir uma função cujo domínio é o conjunto dos números reais que,

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada TPC nº 6 (entregar no dia 14 01

Leia mais

Ondas EM no Espaço Livre (Vácuo)

Ondas EM no Espaço Livre (Vácuo) Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM

Leia mais

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 11 Resolver problema envolvendo o cálculo de perímetro de figuras planas. Os itens referentes a

Leia mais

As operações de adição, subtração e multiplicação são feitas de maneira natural, considerando-se o número complexo como um binômio.

As operações de adição, subtração e multiplicação são feitas de maneira natural, considerando-se o número complexo como um binômio. NÚMEROS COMPLEXOS Prof Eduardo Nagel. DEFINIÇÃO No conjunto dos números reais R, temos que a = a. a é sempre um número não negativo para todo a. Ou seja, não é possível extrair a rai quadrada de um número

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ) P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

Aula 9. Superfícies de Revolução. Seja C uma curva e r uma reta contidas num plano π.

Aula 9. Superfícies de Revolução. Seja C uma curva e r uma reta contidas num plano π. Aula 9 Superfícies de Revolução Seja C uma curva e r uma reta contidas num plano π. Fig. 1: Superfície de revolução S, geratriz C e eixo r contidos no plano π A superfície de revolução S de geratriz C

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Aula 01 Introdução a Geometria Plana Ângulos Potenciação Radiciação Introdução a Geometria Plana Introdução: No estudo da Geometria Plana, consideraremos três conceitos primitivos:

Leia mais

Exercícios de Revisão: Análise Complexa 1- Números Complexos

Exercícios de Revisão: Análise Complexa 1- Números Complexos Exercícios de Revisão: Análise Complexa - Números Complexos Exercícios Propostos Globais I... Soluções dos Exercícios Propostos Globais I... Introdução... 4 Definições e propriedades elementares... 4.

Leia mais

INICIADOS - 2ª Sessão ClubeMath 7-11-2009

INICIADOS - 2ª Sessão ClubeMath 7-11-2009 INICIADOS - 2ª Sessão ClubeMath 7-11-2009 Adivinhar o dia de aniversário de outra pessoa e o mês Temos uns cartões mágicos, que vão permitir adivinhar o dia de aniversário de qualquer pessoa e outros que

Leia mais

MATEMÁTICA II. Aula 5. Trigonometria na Circunferência Professor Luciano Nóbrega. 1º Bimestre

MATEMÁTICA II. Aula 5. Trigonometria na Circunferência Professor Luciano Nóbrega. 1º Bimestre 1 MATEMÁTICA II Aula 5 Trigonometria na Circunferência Professor Luciano Nóbrega 1º Bimestre 2 ARCOS e ÂNGULOS A medida de um arco é, por definição, a medida do ângulo central correspondente. As unidades

Leia mais

Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner. Projeto AIPRA (Processo CNPq 559912/2010-2)

Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner. Projeto AIPRA (Processo CNPq 559912/2010-2) Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner 1 ÍNDICE Uma palavra inicial... 2 Instruções iniciais... 3 Retângulo... 5 Quadrado... 6 Triângulo...

Leia mais

Números complexos são aqueles na forma a + bi, em que a e b são números reais e i é o chamado número imaginário.

Números complexos são aqueles na forma a + bi, em que a e b são números reais e i é o chamado número imaginário. 10. NÚMEROS COMPLEXOS 10.1 INTRODUÇÃO Números complexos são aqueles na forma a + bi, em que a e b são números reais e i é o chamado número imaginário. O número a é denominado parte real do número complexo

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

[RESOLUÇÃO] Economia I; 2012/2013 (2º semestre) Prova da Época Recurso 3 de Julho de 2013

[RESOLUÇÃO] Economia I; 2012/2013 (2º semestre) Prova da Época Recurso 3 de Julho de 2013 Economia I; 01/013 (º semestre) Prova da Época Recurso 3 de Julho de 013 [RESOLUÇÃO] Distribuição das respostas correctas às perguntas da Parte A (6 valores) nas suas três variantes: ER A B C P1 P P3 P4

Leia mais

Ensinando a trigonometria através de materiais concretos

Ensinando a trigonometria através de materiais concretos UNIVERSIDADE FEDERAL DO PARANÁ PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO À DOCÊNCIA SEMANA DA MATEMÁTICA 2014 Ensinando a trigonometria através de materiais concretos PIBID MATEMÁTICA 2009 CURITIBA

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

Capítulo 4. Retas e Planos. 4.1 A reta

Capítulo 4. Retas e Planos. 4.1 A reta Capítulo 4 Retas e Planos Neste capítulo veremos como utilizar a teoria dos vetores para caracterizar retas e planos, a saber, suas equações, posições relativas, ângulos e distâncias. 4.1 A reta Sejam

Leia mais

Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador.

Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador. O símbolo Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador. Se a é múltiplo de b, então é um número natural. Veja um exemplo:

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431,

1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431, 1. Escreva os elementos de S 4 nas duas notações. Observe que S 4 = 4! = 24. Os elementos de S 4 tem a forma 1 a, 2 b, 3 c, 4 d onde a sequência abcd é uma das seguintes: 1234, 1243, 1324, 1342, 1423,

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler CAPITALIZAÇÃO COMPOSTA CAPITALIZAÇÁO COMPOSTA: MONTANTE E VALOR ATUAL PARA PAGAMENTO ÚNICO Capitalização composta é aquela em que a taxa de juros incide sobre o capital inicial, acrescido dos juros acumulados

Leia mais

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos. VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre

Leia mais

PUC-Rio Desafio em Matemática 15 de novembro de 2008

PUC-Rio Desafio em Matemática 15 de novembro de 2008 PUC-Rio Desafio em Matemática 5 de novembro de 2008 Nome: Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão.0 2.0 3.0 4.0 5a.0 5b.0 6a.0 6b.0 7 2.0 Nota final 0.0 Instruções Mantenha seu celular

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO EXPONENCIAL PROF. CARLINHOS 1 Antes de iniciarmos o estudo da função eponencial faremos uma revisão sobre potenciação. 1. Potência com epoente natural

Leia mais

RELAÇÕES TRIGONOMÉTRICAS

RELAÇÕES TRIGONOMÉTRICAS REAÇÕES TRIGONOMÉTRICAS As relações trigonométricas, são estudadas no triângulo retângulo que você já viu é um triângulo que tem um ângulo reto e seus lados indicados por hipotenusa e dois catetos. No

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos 1 Seja um número real. Considere, num referencial o.n., a reta e o plano definidos, respetivamente, por e Sabe-se

Leia mais

OS ELEMENTOS BÁSICOS E OS FASORES

OS ELEMENTOS BÁSICOS E OS FASORES CAPITULO 14 OS ELEMENTOS BÁSICOS E OS FASORES Como foi definido anteriormente a derivada dx/dt como sendo a taxa de variação de x em relação ao tempo. Se não houver variação de x em um instante particular,

Leia mais

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E Prova de Matemática do 3º ciclo do Ensino Básico Prova 927 1ª Chamada 1. 1.1. De acordo com enunciado, 50% são portugueses (P) e 50% são espanhóis (E) e italianos (I). Como os Espanhóis existem em maior

Leia mais

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer.

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer. MATEMÁTICA BÁSICA 5 EXPRESSÕES ALGÉBRICAS - EQUAÇÕES A expressão numérica é aquela que apresenta uma sequência de operações e de números. Também já sabemos que as letras são usadas em Matemática para representar

Leia mais

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que:

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que: Curso Metor www.cursometor.wordpress.com Defiição Por defiição temos que: Radicais a b b a, N, Observação : Se é par devemos ter que a é positivo. Observação : Por defiição temos:. 0 0 Observação : Chamamos

Leia mais

Soluções das Questões de Matemática do Concurso de Admissão ao Curso de Formação de Oficiais da Academia da Força Aérea AFA

Soluções das Questões de Matemática do Concurso de Admissão ao Curso de Formação de Oficiais da Academia da Força Aérea AFA Soluções das Questões de Matemática do Concurso de Admissão ao Curso de Formação de Oficiais da Academia da Força Aérea AFA Questão Considere a função quadrática f : A Concurso 00/0 do vértice são iguais.

Leia mais

Tópico 2. Funções elementares

Tópico 2. Funções elementares Tópico. Funções elementares.6 Funções trigonométricas A trigonometria (do grego trigonon triângulo + metron medida ) é um ramo da matemática que estuda os triângulos, particularmente triângulos em um plano

Leia mais

A hora é agora 8º ano!!!

A hora é agora 8º ano!!! A hora é agora 8º ano!!! 1- Desenvolva os seguintes produtos notáveis: a) (1 x)³ = b) (1 + 3x)²= c) (3x 4)(3x + 4) = d) (3 + x)² + (3 x)² = 2- Desenvolvendo a expressão (x 3)² + (x + 3)², obteremos o seguinte

Leia mais

De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla.

De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla. 8 Mudança de variável em integrais riplas 38 De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla. I f ( dxddz Introduzindo novas variáveis de integração

Leia mais

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime

Leia mais

M =C J, fórmula do montante

M =C J, fórmula do montante 1 Ciências Contábeis 8ª. Fase Profa. Dra. Cristiane Fernandes Matemática Financeira 1º Sem/2009 Unidade I Fundamentos A Matemática Financeira visa estudar o valor do dinheiro no tempo, nas aplicações e

Leia mais

Exemplos: sen(36º)=0.58, cos(36º)=0.80 e tg(36º)=0.72, Calcular o valor de x em cada figura:

Exemplos: sen(36º)=0.58, cos(36º)=0.80 e tg(36º)=0.72, Calcular o valor de x em cada figura: REVISÃO RELAÇÕES TRIGONOMÉTRICAS E REDUÇÃO AO PRIMEIRO QUADRANTE DO CICLO TRIGONOMÉTRICO TURMA: ª SÉRIE DO ENSINO MÉDIO PROF. LUCAS FACTOR Trigonometria no Triangulo Retângulo Considere o triangulo retângulo

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

Exercícios de Números Complexos com Gabarito

Exercícios de Números Complexos com Gabarito Exercícios de Números Complexos com Gabarito ) (UNIFESP-007) Quatro números complexos representam, no plano complexo, vértices de um paralelogramo. Três dos números são z = i, z = e z = + ( 5 )i. O quarto

Leia mais

Exercícios de 11.º ano nos Testes Intermédios TRIGONOMETRIA

Exercícios de 11.º ano nos Testes Intermédios TRIGONOMETRIA Escola Secundária de Francisco Franco Exercícios de 11.º ano nos Testes Intermédios TRIGONOMETRIA 1. Na figura está representado o círculo trigonométrico e um triângulo [OPR]. O ponto P desloca-se ao longo

Leia mais

SOLUÇÕES. Fichas de Trabalho de Apoio. FT Apoio 7 ; 4.2. 1; 5.1. [ 30, [ ); 5.2. [, 2[ ; 8.6. FT Apoio 8. 2 e 1; 3.2. por exemplo: 3 ou.

SOLUÇÕES. Fichas de Trabalho de Apoio. FT Apoio 7 ; 4.2. 1; 5.1. [ 30, [ ); 5.2. [, 2[ ; 8.6. FT Apoio 8. 2 e 1; 3.2. por exemplo: 3 ou. , 6 ; 4, 86 ; (A); (D); 4 permite resolver o problema é 0 problema é ( ) SOLUÇÕES Fichas de Trabalho de Apoio FT Apoio 7 S 6 = 7, + ); [, [ Escola EB, de Ribeirão (Sede) ANO LETIVO 0/0 ; 4 ; [ 0, [ 9º

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA FINANCEIRA

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA FINANCEIRA RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA FINANCEIRA Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Matemática Financeira da prova de Auditor da SEFAZ/PI 2015. Vale dizer que utilizei

Leia mais

Escola Básica e Secundária de Velas

Escola Básica e Secundária de Velas Escola Básica e Secundária de Velas Planificação Anual do 12º Ano Matemática A Ano letivo 2015 /2016 1º Período 2º Período 3º Período Nº DE BLOCOS PREVISTOS 39 32 24 Apresentação 0,5 1º Período 2º Período

Leia mais

Capítulo 2. Funções complexas. 2.1. Introdução

Capítulo 2. Funções complexas. 2.1. Introdução Capítulo Funções complexas 1 Introdução Neste capítulo consideram-se vários exemplos de funções complexas e ilustram-se formas de representação geométrica destas funções que contribuem para a apreensão

Leia mais

Prática. Exercícios didáticos ( I)

Prática. Exercícios didáticos ( I) 1 Prática Exercício para início de conversa Localize na reta numérica abaixo os pontos P correspondentes aos segmentos de reta OP cujas medidas são os números reais representados por: Exercícios didáticos

Leia mais

Resolução Comentada Unesp - 2013-1

Resolução Comentada Unesp - 2013-1 Resolução Comentada Unesp - 2013-1 01 - Em um dia de calmaria, um garoto sobre uma ponte deixa cair, verticalmente e a partir do repouso, uma bola no instante t0 = 0 s. A bola atinge, no instante t4, um

Leia mais

CARTOGRAFIA. Sistemas de Coordenadas. Prof. Luiz Rotta

CARTOGRAFIA. Sistemas de Coordenadas. Prof. Luiz Rotta CARTOGRAFIA Sistemas de Coordenadas Prof. Luiz Rotta SISTEMA DE COORDENADAS Por que os sistemas de coordenadas são necessários? Para expressar a posição de pontos sobre uma superfície É com base em sistemas

Leia mais

Pelo que foi exposto no teorema de Carnot, obteve-se a seguinte relação:

Pelo que foi exposto no teorema de Carnot, obteve-se a seguinte relação: 16. Escala Absoluta Termodinâmica Kelvin propôs uma escala de temperatura que foi baseada na máquina de Carnot. Segundo o resultado (II) na seção do ciclo de Carnot, temos que: O ponto triplo da água foi

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Preço de uma lapiseira Quantidade Preço de uma agenda Quantidade R$ 10,00 100 R$ 24,00 200 R$ 15,00 80 R$ 13,50 270 R$ 20,00 60 R$ 30,00 160

Preço de uma lapiseira Quantidade Preço de uma agenda Quantidade R$ 10,00 100 R$ 24,00 200 R$ 15,00 80 R$ 13,50 270 R$ 20,00 60 R$ 30,00 160 Todos os dados necessários para resolver as dez questões, você encontra neste texto. Um funcionário do setor de planejamento de uma distribuidora de materiais escolares verifica que as lojas dos seus três

Leia mais

Tutorial. Georreferenciamento de Imagens. versão 1.0-23/08/2008. Autores: Rafael Bellucci Moretti, Vitor Pires Vencovsky

Tutorial. Georreferenciamento de Imagens. versão 1.0-23/08/2008. Autores: Rafael Bellucci Moretti, Vitor Pires Vencovsky Tutorial Georreferenciamento de Imagens versão 1.0-23/08/2008 Autores: Rafael Bellucci Moretti, Vitor Pires Vencovsky 1. Introdução O tutorial tem como objetivo fornecer informações básicas para georreferenciar

Leia mais

8 -SISTEMA DE PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR - UTM

8 -SISTEMA DE PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR - UTM 8 -SISTEMA DE PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR - UTM Introdução: histórico; definições O Sistema de Projeção UTM é resultado de modificação da projeção Transversa de Mercator (TM) que também é

Leia mais

12 26, 62, 34, 43 21 37, 73 30 56, 65

12 26, 62, 34, 43 21 37, 73 30 56, 65 1 Questão 1 Solução a) Primeiro multiplicamos os algarismos de 79, obtendo 7 9 = 63, e depois somamos os algarismos desse produto, obtendo 6 + 3 = 9. Logo o transformado de é 79 é 9. b) A brincadeira de

Leia mais

GABARITO DA PRIMEIRA LISTA DE EXERCÍCIOS REVISÃO DE TRIGONOMETRIA. Portanto, podemos usar a seguinte relação trigonométrica:

GABARITO DA PRIMEIRA LISTA DE EXERCÍCIOS REVISÃO DE TRIGONOMETRIA. Portanto, podemos usar a seguinte relação trigonométrica: GABARITO DA PRIMEIRA LISTA DE EXERCÍCIOS REVISÃO DE TRIGONOMETRIA 1) Observando a figura, verificamos que: A altura (160 m) em que se encontra o atleta corresponde ao cateto adjacente do triângulo retângulo;

Leia mais

UNESP - Faculdade de Engenharia de Guaratinguetá 1

UNESP - Faculdade de Engenharia de Guaratinguetá 1 ANÁLISE GRÁFICA UNESP - Faculdade de Engenharia de Guaratinguetá 0.. Introdução Neste capítulo abordaremos princípios de gráficos lineares e logarítmicos e seu uso em análise de dados. Esta análise possibilitará

Leia mais

1. Números. MatemáticaI Gestão ESTG/IPB Departamento de Matemática. Números inteiros. Nota: No Brasil costuma usar-se: bilhão para o número

1. Números. MatemáticaI Gestão ESTG/IPB Departamento de Matemática. Números inteiros. Nota: No Brasil costuma usar-se: bilhão para o número MatemáticaI Gestão ESTG/IPB Departamento de Matemática 1. Números Números inteiros 0 10 1 1 10 10 2 10 100 3 10 1000 6 10 1000000 10 10 12 18 Uma unidade (um) Uma dezena (dez) Uma centena (cem) Um milhar

Leia mais

Lados de um triângulo retângulo. MA092 Geometria plana e analítica. Mudando o ângulo. Trabalhando no plano Cartesiano

Lados de um triângulo retângulo. MA092 Geometria plana e analítica. Mudando o ângulo. Trabalhando no plano Cartesiano Lados de um triângulo retângulo MA092 Geometria plana e analítica. Catetos de um triângulo retângulo em função da hipotenusa e do ângulo θ: sen(θ) = y z y = z sen(θ) Francisco A. M. Gomes cos(θ) = x z

Leia mais