DIAGRAMAS DE BODE, NYQUIST E NICHOLS
|
|
|
- Nicolas Bayer Macedo
- 7 Há anos
- Visualizações:
Transcrição
1 DIAGRAMAS DE BODE, NYQUIST E NICHOLS Os diagramas de resposta em freqüência são muito úteis para analisar a estabilidade de um sistema realimentado. Existem 3 formas de analisar a resposta em freqüência de um sistema em malha fechada: 1) através dos diagramas de Bode; 2) através do diagrama de Nyquist; 3) através do diagrama de Nichols. Os três diagramas contém as mesmas informações. O que muda é como estas informações estão disponíveis ao projetista. Eles são obtidos através da função de transferência em malha aberta. Como já foi falado, para desenhar estes gráficos, deve-se entrar com as informações do sistema em malha aberta. Esta é a grande vantagem destes métodos. Obtemos a informação sobre a estabilidade do sistema em malha fechada, com informações do sistema em malha aberta.
2 INFORMAÇÕES DO SISTEMA EM MALHA FECHADA Já foi falado que toda a análise de estabilidade é feita em cima das informações do sistema em malha aberta. Mas algumas características do sistema em malha fechada podem ser muito úteis para se analisar o sistema. Entre elas citamos: 1) Pico de ressonância Mp ω - é definido como o valor máximo de M(ω) dado pela equação M(ω) = módulo G(jω) / (1 + G(jω)) Mp ω dá uma indicação da estabilidade relativa do sistema de controle realimentado. Normalmente um Mp ω grande corresponde a um pico elevado de sobressinal na resposta degrau. O valor ótimo de Mp deve estar entre 1,1 e 1,5. 2) Freqüência de ressonância ωp - é definida como a freqüência na qual o pico de ressonância Mp ω ocorre. 3) Largura de faixa - é definida como a freqüência na qual o módulo de M(jω) cai a 70,7 por cento da seu nível na freqüência zero, ou 3dB abaixo do ganho da freqüência zero. A largura de faixa fornece uma indicação da velocidade do sistema. Um sistema com uma grande largura de faixa corresponde a um tempo de subida pequeno. Obs: lembre-se que os diagramas de bode são obtidos a partir do sistema em malha aberta, portanto não fornecem essas informações. LARGURA DE FAIXA DO SISTEMA A largura de faixa (ou largura de banda) de um sistema de controle a malha fechada é uma boa medida do intervalo de fidelidade da resposta do sistema. Em sistemas em que a magnitude em db em baixas freqüências (ou em ω = 0) é 0dB no diagrama de Bode, a largura de banda ω B é medida na freqüência em que a magnitude torna-se 3dB. A velocidade de resposta a uma entrada do tipo degau será proporcional a ω B. Como exemplo, considere os dois sistemas em malha fechada a seguir, com funções de transferência de malha fechada T 1 e T 2 : 1 1 T s T s = 1 ( ) = e ( ) + 2 s 1 5s + 1 A resposta em freqüência, a resposta ao degrau e a resposta à rampa dos dois sistemas estão mostradas a seguir:
3 Considere agora os dois sistemas de segunda ordem a seguir, com funções de transferência de malha fechada: 100 T3 ( s) = e T4 ( s) = 2 s + 10s+ 100 s + 30s+ 900 A taxa de amortecimento para ambos os sistemas é a mesma, dada por ζ=0,5. A freqüência natural não amortecida é 10 e 30 para os sistemas T 3 e T 4, respectivamente. Ambos os sistemas possuem sobrepasso de 15%, mas T 4 possui um tempo de pico de 0,12 segundos, comparado a 0,36 segundos para T 3. Observe também que o tempo de assentamento (ou de estabilização ou de acomodação) para T 4 é de 0.37 segundos, equanto que é de 0,9 segundos para T 3.
4 RELAÇÃO Mp, ωp e LARGURA DE FAIXA para um sistema de 2 a ordem ω p = ω n (1-2 ζ 2 ) M p = 1 2ζ (1 - ζ 2 ) Largura de faixa = ω n [(1-2 ζ 2 ) + (4ζ 4-4 ζ 2 + 2)] 1/2 LUGARES DE M CONSTANTES NO PLANO G(jω) Dado um sistema em malha fechada com realimentação unitária: M(s) = C(s) = G(s) R(s) 1 + G(s) Para o regime senoidal G(s) = G(jω) e G(jω)= Re G(jω) + jim G(jω)= x+jy. Então M(s) = G(s) = (x 2 + y 2 ) 1 + G(s) [(1+x) 2 + y 2 ] Reescrevendo esta equação, obtemos: [x - M 2 /(1-M 2 ) ] 2 + y 2 = [M/(1-M 2 )] 2 Que é a equação de um círculo. Para diferentes valores de M, são descritos um conjunto de círculos denominados lugares de M constante (círculos M constantes)
5 As intersecções entre o gráfico G(jω) e os lugares de M constante dão os valores do módulo em malha fechada na freqüência indicada sobre a curva de G(jω). Se for desejado manter o valor de Mp ω menor do que um certo valor, a curva G(jω) não deve interceptar o círculo correspondente de M neste ponto, e ao mesmo tempo não envolver o ponto (-1, j0). O círculo de M constante de menor raio e que é tangente à curva G(jω) dá o valor de Mp ω, e a freqüência de ressonância ωp é lida sobre o ponto de tangência na curva G(jω). Figura - Diagramas polares de G(s) e lugares de M constante, mostrando o procedimento de determinação de Mp e das curvas de módulo. LUGARES DE FASE CONSTANTE NO PLANO G(jω) Para determinação dos lugares de fase constante do sistema em malha fechada, partindo-se das equações: M(jω) = G(jω) e G(jω) = x +jy 1 + G(jω) Faz-se M(jω) = G(jω) - (1+G(jω)) φ m (ω) = M(jω) = tan -1 (y/x) - tan -1 (y/(1+x)) Fazendo N=tanφ m, esta equação pode ser escrita como: (x + 1/2) 2 + (y - 1/2N) 2 = 1/4 + 1/(4N 2 ) Esta equação representa uma família de círculos:
6 LUGARES DE M e N CONSTANTES NO PLANO MÓDULO VERSUS FASE - CARTA DE NICHOLS A desvantagem em se trabalhar com coordenadas polares para o gráfico de G(jω) é que a curva se altera quando é feita alguma alteração, como por exemplo uma mudança de ganho. No gráfico de módulo em função da fase, toda a curva G(jω) é deslocada quando o ganho é alterado. Os lugares de M e N constantes em coordenadas polares podem ser transferidos para coordenadas de módulo em função da fase. Dado um ponto sobre o círculo M constante no plano G(jω), o ponto correspondente no plano módulo versus fase pode ser determinado desenhando-se um vetor diretamente da origem do plano G(jω) ao ponto particular sobre o círculo de M constante. O comprimento do vetor em decibéis e ângulo de fase em graus dão o correspondente ponto no plano de módulo em função da fase.
7 CARTA DE NICHOLS
8 n1=[1/120 1] n2=[-1/2 1] d1=[1 0] d2=[1/.1 1] n=conv(n1,n2) d=conv(d1,d2) sys=tf(n,d) %graficos de nichols w=logspace(-2,1,400) nichols(sys,w) ngrid grid USO DO MATLAB
9 RELAÇÃO COEFICIENTE DE AMORTECIMENTO E MARGEM DE FASE
Estabilidade no Domínio da Freqüência
Estabilidade no Domínio da Freqüência 1. Estabilidade relativa e o critério de Nyquist: margens de ganho e fase 2. Critérios de desempenho especificados no domínio da freqüência Resposta em freqüência
Capítulo 10. Técnicas de Resposta de Freqüência
Capítulo 10 Técnicas de Resposta de Freqüência Fig.10.1 O Analisador Dinâmico de Sinal HP 35670A obtém dados de resposta de freqüência de um sistema físico. Os dados exibidos podem ser usados para analisar,
Faculdade de Engenharia da UERJ - Departamento de Engenharia Elétrica Controle & Servomecanismo I - Prof.: Paulo Almeida Exercícios Sugeridos
Faculdade de Engenharia da UERJ Departamento de Engenharia Elétrica Controle & Servomecanismo I Prof.: Paulo Almeida Exercícios Sugeridos Estabilidade, Resposta Transitória e Erro Estacionário Exercícios
Introdução Diagramas de Bode Gráficos Polares Gráfico de Amplitude em db Versus Fase. Aula 14. Cristiano Quevedo Andrea 1
Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Outubro 2012. 1 / 48 Resumo 1 Introdução 2 Diagramas de Bode 3
Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica. Sistemas de Controle Realimentados
Margens de Estabilidade Introdução Margens de Fase e de Ganho Exemplos Problemas Propostos 1 Margens de Estabilidade Definições: Diz-se que um sistema LTI é absolutamente estável se todas as raízes da
Aula 4 - Resposta em Frequência, Sensibilidade, Margem de Ganho e Margem de Fase, Controle em Avanço e Atraso, Critério de Nyquist
Aula 4 - Resposta em Frequência, Sensibilidade, Margem de Ganho e Margem de Fase, Controle em Avanço e Atraso, Critério de Nyquist Universidade de São Paulo Introdução Método da Resposta em Frequência
Projeto de Compensadores no Domínio da Frequência
Projeto de Compensadores no Domínio da Frequência Maio de 214 Loop Shaping I No projeto de compensadores no domínio da frequência, parte-se do pressuposto de que o sistema a ser controlado pode ser representado
Sistemas de Controle
Sistemas de Controle Adriano Almeida Gonçalves Siqueira Aula 8 - Resposta em Frequência Sistemas de Controle p. 1/46 Introdução Método da Resposta em Frequência Análise do sistema a partir da resposta
EES-49/2012 Resolução da Prova 3. 1 Dada a seguinte função de transferência em malha aberta: ( s 10)
EES-49/2012 Resolução da Prova 3 1 Dada a seguinte função de transferência em malha aberta: ( s 10) Gs () ss ( 10) a) Esboce o diagrama de Nyquist e analise a estabilidade do sistema em malha fechada com
0.1 Conceitos básicos
Analise por resposta em frequencia 0 Conceitos básicos O método de análise por resposta em freqüência, desenvolvido anteriormente ao método do lugar das raízes, data do período de930 a 940 e foi apresentado
Método de Margem de Ganho
Departamento de Engenharia Química e de Petróleo UFF Disciplina: TEQ102- CONTROLE DE PROCESSOS custo Método de Margem de Ganho Outros Processos e de de Fase Separação Prof a Ninoska Bojorge Resposta de
B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil. Constituídodedoisgráficos: umdomóduloemdecibel(db) outrodoângulo de fase;
Diagramas de Bode Constituídodedoisgráficos: umdomóduloemdecibel(db) outrodoângulo de fase; Ambos são traçados em relação à frequência em escala logarítmica; LembrequeologaritmodomódulodeG(jω) é20log 10
Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14
Sumário CAPÍTULO 1 Introdução 1 1.1 Sistemas de controle 1 1.2 Exemplos de sistemas de controle 2 1.3 Sistemas de controle de malha aberta e malha fechada 3 1.4 Realimentação 3 1.5 Características da realimentação
Sistemas de Controle 2
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Cap.10 Técnicas de Resposta em Frequência Prof. Dr. Marcos Lajovic Carneiro 10. Técnicas de Resposta de Frequência
23/04/2018. Estabilidade de Circuitos com AMPOP
Estabilidade de Circuitos com AMPOP 1 Estabilidade de Circuitos com AMPOP Função de transferência em malha fechada Hipóteses: ganho CC constante pólos e zeros em altas freqüências (s) constante em baixas
Estabilidade no Domínio da Freqüência
Estabilidade no Domínio da Freqüência Introdução; Mapeamento de Contornos no Plano s; Critério de Nyquist; Estabilidade Relativa; Critério de Desempenho no Domínio do Tempo Especificado no Domínio da Freqüência;
Análise de Sistemas no Domínio da Freqüência. Diagrama de Bode
Análise de Sistemas no Domínio da Freqüência Diagrama de Bode Análise na Freqüência A análise da resposta em freqüência compreende o estudo do comportamento de um sistema dinâmico em regime permanente,
CARACTERIZAÇÃO DEPROCESSOS
CARACTERIZAÇÃO DEPROCESSOS ESINTONIA DECONTROLADORES PORMÉTODOSEMPÍRICOS Profa. Cristiane Paim Semestre 2014-2 Caracterização de Processos Considere a configuração série de um sistema de controle: Dado
Aula 19: Projeto de controladores no domínio da frequência
Aula 19: Projeto de controladores no domínio da frequência prof. Dr. Eduardo Bento Pereira Universidade Federal de São João del-rei [email protected] 14 de novembro de 2017. prof. Dr. Eduardo Bento Pereira
ANÁLISE DO MÉTODO DA RESPOSTA EM FREQÜÊNCIA
VIII- CAPÍTULO VIII ANÁLISE DO MÉTODO DA RESPOSTA EM FREQÜÊNCIA 8.- INTRODUÇÃO O método da resposta em freqüência, nada mais é que a observação da resposta de um sistema, para um sinal de entrada senoidal,
Controle e servomecanismo TE240 Análise no domínio da frequência. Juliana L. M. Iamamura
Controle e servomecanismo TE240 Análise no domínio da frequência Juliana L. M. Iamamura Análise no domínio da frequência Projetos simples Não é necessário conhecer polos e zeros Sinais decompostos em somas
CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA
CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA 4.. Introdução Pelo termo resposta em freqüência, entende-se a resposta em regime estacionário de um sistema com entrada senoidal. Nos métodos de resposta
R + b) Determine a função de transferência de malha fechada, Y (s)
FUP IC Teoria do Controlo xercícios Análise de Sistemas ealimentados Teoria do Controlo xercícios Análise de Sistemas ealimentados AS Considere o sistema da figura ao lado: a) Determine a função de transferência
Controle H - PPGEE - EPUSP Exemplo 1 - Projeto Ótimo H SISO
Controle H - PPGEE - EPUSP Exemplo - Projeto Ótimo H SISO Prof. Diego Segundo Período 7 Exemplo Neste exemplo, iremos resolver com mais detalher o problema.7 do livro do Skogestad, segunda edição, versão
RESPOSTA EM FREQUÊNCIA: CONTROLADOR AVANÇO E ATRASO DE FASE (LEAD-LAG) OGATA
RESPOSTA EM FREQUÊNCIA: CONTROLADOR AVANÇO E ATRASO DE FASE (LEAD-LAG) OGATA CCL Profa. Mariana Cavalca Retirado de OGATA, Katsuhiko. Engenharia de controle moderno. 1. ed. Rio de Janeiro: Prentice Hall,
B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil
Estabilidade Estabilidade é um comportamento desejado em qualquer sistema físico. Sistemas instáveis tem comportamento, na maioria das vezes, imprevisível; por isso é desejável sempre garantirmos a estabilidade
I Controle Contínuo 1
Sumário I Controle Contínuo 1 1 Introdução 3 1.1 Sistemas de Controle em Malha Aberta e em Malha Fechada................ 5 1.2 Componentes de um sistema de controle............................ 5 1.3 Comparação
Métodos de Resposta em Freqüência
Métodos de Resposta em Freqüência 1. Motivação 2. Gráficos de resposta em freqüência pag.1 Controle de Sistemas Lineares Aula 12 Métodos de Resposta em Freqüência Origem do termo? Entende-se por resposta
EES-49/2012 Prova 1. Q1 Dado o seguinte conjunto de equações:
Q1 Dado o seguinte conjunto de equações: EES-49/2012 Prova 1 Onde: h C é o sinal de entrada do sistema; θ é o sinal de saída do sistema; T P é uma entrada de perturbação; T T, T R e h R são variáveis intermediárias;
Métodos de Resposta em Freqüência
Métodos de Resposta em Freqüência 1. Sistemas de fase mínima 2. Exemplo de traçado do diagrama de Bode 3. Medidas da resposta em freqüência 4. Especificações de desempenho no domínio da freqüência pag.1
2 a PROVA CONTROLE DINÂMICO Turma B 2 /2015
ENE/FT/UnB Departamento de Engenharia Elétrica Prova individual, sem consulta. Faculdade de Tecnologia É permitido usar calculadora. Universidade de Brasília Prof. Adolfo Bauchspiess Auditório SG11, 21/1/215,
Método da Resposta da Freqüência
Método da Resposta da Freqüência Introdução; Gráfico de Resposta de Freqüência; Medidas de Resposta de Freqüência; Especificação de Desempenho no Domínio da Freqüência; Diagrama Logarítmicos e de Magnitude
Controle de Velocidade
1 Capítulo 1 Controle de Velocidade 1.1 Objetivos O objetivo neste experimento é projetar um controlador que regule a velocidade do eixo do motor. O procedimento será baseado na análise da resposta em
Sistemas de Controle 2
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Cap.10 Técnicas de Resposta em Frequência Prof. Dr. Marcos Lajovic Carneiro 10. Técnicas de Resposta de Frequência
Resposta no Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Resposta no Tempo Carlos Alexandre Mello 1 Resposta no Tempo - Introdução Como já discutimos, após a representação matemática de um subsistema, ele é analisado em suas respostas de transiente e de estadoestacionário
Resposta dos Exercícios da Apostila
Resposta dos Exercícios da Apostila Carlos Eduardo de Brito Novaes [email protected] 5 de setembro de 0 Circuitos Elétricos. Passivos a) b) V o (s) V i (s) 64s + 400 s + 96s + 400, v o ( ) v i ( )
COMPENSAÇÃO CP s(s+2)(s+8) CP1- Dada a FT em malha aberta G(s) = de um sistema com realimentação
CP- CP- Dada a FT em malha aberta G(s) = COMPENSAÇÃO s(s+)(s+8) de um sistema com realimentação negativa unitária, compense esse sistema, utilizando métodos de lugar de raízes, de forma que: a) o sistema
1:9 2 a PROVA CONTROLE DINÂMICO - 1 /2017
ENE/FT/UnB Departamento de Engenharia Elétrica Prova individual, sem consulta, Faculdade de Tecnologia Só é permitido/necessário calculadora simples, Universidade de Brasília (operações com números complexos)
Controle de Sistemas. Desempenho de Sistemas de Controle. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas
Controle de Sistemas Desempenho de Sistemas de Controle Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas O é um telescópio de 2,4m, que fica a 380 milhas da Terra, sendo
RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE
RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE CCL Profa. Mariana Cavalca Baseado em: MAYA, Paulo Álvaro; LEONARDI, Fabrizio. Controle essencial. São Paulo: Pearson, 2011. OGATA, Katsuhiko. Engenharia de controle
Lista de Exercícios 2
Universidade de Brasília Faculdade de Tecnologia Departamento de Engenharia Elétrica 107484 Controle de Processos 1 o Semestre 2018 Prof. Eduardo Stockler Tognetti Lista de Exercícios 2 Para os exercícios
Nyquist, Função de Sensibilidade e Desempenho Nominal
Nyquist, Função de Sensibilidade e Desempenho Nominal 1. Revisitando o critério de estabilidade de Nyquist 1.1. Margens de ganho e de fase 2. Erro de rastreamento e função de sensibilidade 2.1. Vetor de
Projeto através de resposta em frequência
Guilherme Luiz Moritz 1 1 DAELT - Universidade Tecnológica Federal do Paraná 04 de 2013 Objetivos Refoçar o conceito das características da resposta em frequência Saber utilizar o diagrama para projeto
Sintonia de Controladores PID
Sintonia de Controladores PID Objetivo: Determinar K p, K i e K d de modo a satisfazer especificações de projeto. Os efeitos independentes dos ganhos K p, K i e K d na resposta de malha fechada do sistema
Roteiro de Laboratório - Experiência 2 Controle de Sistemas e Servomecanismos II
Roteiro de Laboratório - Experiência 2 Controle de Sistemas e Servomecanismos II Carlos Eduardo de Brito Novaes [email protected] http://professorcarlosnovaes.wordpress.com 3 de novembro de 2012 1
Aula 18: Projeto de controladores no domínio da frequência
Aula 18: Projeto de controladores no domínio da frequência prof. Dr. Eduardo Bento Pereira Universidade Federal de São João del-rei [email protected] 26 de outubro de 2017. prof. Dr. Eduardo Bento Pereira
V. ANÁLISE NO DOMÍNIO DO TEMPO
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE V. ANÁLISE NO DOMÍNIO DO TEMPO Prof. Davi Antônio dos Santos ([email protected]) Departamento de
Princípios de Controle Robusto
Princípios de Controle Robusto ENGA71: Análise e Projeto de Sistemas de Controle Departamento de Engenharia Elétrica - DEE Universidade Federal da Bahia - UFBA 27 de junho de 2018 Sumário 1 Introdução
Estabilidade no Domínio da Freqüência
Estabilidade no Domínio da Freqüência Introdução; Mapeamento de Contornos no Plano s; Critério de Nyquist; Estabilidade Relativa; Critério de Desempenho no Domínio do Tempo Especificado no Domínio da Freqüência;
Erro em regime permanente em sistema de controle com
Erro em regime permanente em sistema de controle com realimentação unitária 0.1 Introdução Controle 1 Prof. Paulo Roberto Brero de Campos Um dos objetivos de um sistema de controle é que a resposta na
O critério de Nyquist
O critério de Nyquist Critério de análise de estabilidade de sistemas dinâmicos lineares com realimentação negativa. Usa a função de transferência em malha aberta (antes da realimentação). É uma aplicação
Teoria dos Sistemas LEEC 2002/2003 Utilização do Matlab
Teoria dos Sistemas LEEC 2002/2003 Utilização do Matlab I Análise de sistema com atraso Considere o sistema realimentado da figura (exercício da aula prática nº 1) e Ts G p onde era indicado que a planta
CAPÍTULO Compensação via Compensador de Avanço de Fase
CAPÍTULO 8 Projeto no Domínio da Freqüência 8.1 Introdução Este capítulo aborda o projeto de controladores usando o domínio da freqüência. As caracteristicas de resposta em freqüência dos diversos controladores,
AULA 8 COMPENSAÇÃO POR ATRASO DE FASE. Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I PROF. DR. ALFREDO DEL SOLE LORDELO
Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I AULA 8 COMPENSAÇÃO POR ATRASO DE FASE PROF. DR. ALFREDO DEL SOLE LORDELO TELA CHEIA A configuração do compensador eletrônico por atraso
VI. MÉTODO DO LUGAR GEOMÉTRICO DAS RAÍZES
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE VI. MÉTODO DO LUGAR GEOMÉTRICO DAS RAÍZES Prof. Davi Antônio dos Santos ([email protected]) Departamento
Controlador PID discreto
1 Capítulo 1 Controlador PID discreto 1.1 Objetivo O objetivo deste experimento é introduzir ao estudante as noções básicas de um controlador PID discreto para um motor de corrente contínua. 1.2 Modelo
8 Compensação. 8.1 Introdução. 8.2 Pré-Compensadores. 8.3 Compensador por Avanço de Fase. V(s) G p (s) + G c (s) G (s) D(s) + 8 Compensação 109
8 Compensação 09 8 Compensação 8. Introdução O objetivo deste capítulo é apresentar e discutir algumas técnicas de projeto de S.L.I.T.'s. Entende-se por compensação a definição e o ajuste de dispositivos
Compensadores: projeto no domínio da
Compensadores: projeto no domínio da frequência Relembrando o conteúdo das aulas anteriores: o Compensador (também conhecido como Controlador) tem o objetivo de compensar características ruins do sistema
LABORATÓRIO DE SISTEMAS DE CONTROLE II 4 PROJETO DE CONTROLADORES E DE OBSERVADORES NO ESPAÇO DE ESTADOS. 4.1 Colocação do Problema
UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE SISTEMAS DE CONTROLE II 4 PROJETO DE CONTROLADORES E DE OBSERVADORES NO ESPAÇO
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA Prof. Paulo Roberto Brero de Campos
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA Prof. Paulo Roberto Brero de Campos LUGAR DAS RAÍZES INTRODUÇÃO O método do Lugar das Raízes é uma
Sistemas de Controle 2
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Cap.8 - Técnicas do Lugar das Raízes Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 2 Prof. Dr. Marcos Lajovic
Redução de Subsistemas Múltiplos
CAPÍTULO CINCO Redução de Subsistemas Múltiplos SOLUÇÕES DE DESAFIOS DOS ESTUDOS DE CASO Controle de Antena: Projetando uma Resposta a Malha Fechada a. Desenhando o diagrama de blocos do sistema: b. Desenhando
Pontifícia Universidade Católica de Goiás. Prof: Marcos Lajovic Carneiro Aluno (a): Sistemas de Controle I
Pontifícia Universidade Católica de Goiás Projeto de Escola de Engenharia ENG 3502 Controle de Processos Controle I Prof: Marcos Lajovic Carneiro Aluno (a): Sistemas de Controle I Estudo de Caso Antena
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES A função de transferência do circuito abaixo em malha fechada é: F(s) = C(s) = G(s)
Modelagem Matemática de Sistemas
Modelagem Matemática de Sistemas Função de Transferência Caracterização da relação entre uma entrada e uma saída (SISO) de um dado sistema linear e invariante no tempo (LIT). Definida como a relação entre
Descrição de Incertezas e Estabilidade Robusta
Descrição de Incertezas e Estabilidade Robusta 1. Estabilidade robusta? 1.1. Função de transferência nominal e critério de estabilidade robusta 2. Caracterizando modelos de incertezas não-estruturadas
UNIVERSIDADE TECNOLÓGICA FEDERAL
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CURSO DE ENGENHARIA ELETRÔNICA APOSTILA DE CONTROLE I PAULO ROBERTO BRERO DE CAMPOS Curitiba, outubro de 2010 ii Sumário Lista de Figuras Lista de Tabelas vii
EES-49/2012 Prova 2. Individual Duração: 100 minutos. Consulta permitida a uma página A4 com anotações pessoais e fórmulas.
EES-49/2012 Prova 2 Individual Duração: 100 minutos Consulta permitida a uma página A4 com anotações pessoais e fórmulas. Permitido o uso de calculadora para a realização de operações básicas, incluindo
PROJETO DE CONTROLADORES A PARTIR DO PLANO S. critério Routh-Hurwitz análise de estabilidade análise de desempenho
PROJETO DE CONTROLADORES A PARTIR DO PLANO S critério Routh-Hurwitz análise de estabilidade análise de desempenho Critério Routh-Hurwitz: análise da estabilidade Sistemas de primeira ordem: 1 x o (t)=
Resposta dinâmica. Prof. Alan Petrônio Pinheiro Universidade Federal de Uberlândia Faculdade de Engenharia Elétrica
Capítulo 6*: Resposta dinâmica Prof. Alan Petrônio Pinheiro Universidade Federal de Uberlândia Faculdade de Engenharia Elétrica [email protected] *Baseado no capítulo 3 do livro texto: Sistemas de Controle
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap4 Resposta no Domínio do Tempo Prof. Filipe Fraga Sistemas de Controle 1 4. Resposta no Domínio do Tempo 4.1 Introdução
UNIVERSIDADE DO ALGARVE
UNIVERSIDADE DO ALGARVE FACULDADE DE CIÊNCIAS E TECNOLOGIA Departamento de Engenharia Electrónica e Informática SISTEMAS DE CONTROLO Problemas Ano lectivo de 20062007 Licenciatura em Engenharia de Sistemas
Desempenho de Sistemas de Controle Realimentados. 3. Efeitos de um terceiro pólo e um zero na resposta de um sistema de segunda ordem
Desempenho de Sistemas de Controle Realimentados 1. Sinais de teste 2. Desempenho de sistemas de segunda ordem 3. Efeitos de um terceiro pólo e um zero na resposta de um sistema de segunda ordem 4. Estimação
Conteúdo. Definições básicas;
Conteúdo Definições básicas; Caracterização de Sistemas Dinâmicos; Caracterização dinâmica de conversores cc-cc; Controle Clássico x Controle Moderno; Campus Sobral 2 Engenharia de Controle Definições
2ª Avaliação - Controle Automático II (CTR 03) Prof. Accacio
Data de Entrega do relatório e apresentação do trabalho: 06/05/2017 Pontuação da atividade: 30pts Objetivo - Projetar um Controlador para o sistema de estudo (sorteado) através dos Métodos do Lugar das
Aula 12. Cristiano Quevedo Andrea 1. Curitiba, Outubro de DAELT - Departamento Acadêmico de Eletrotécnica
Aula 12 Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Outubro de 2011. Resumo 1 Introdução 2 3 4 5 Podemos melhorar
CAPÍTULO 7 Projeto usando o Lugar Geométrico das Raízes
CAPÍTULO 7 Projeto usando o Lugar Geométrico das Raízes 7.1 Introdução Os objetivos do projeto de sistemas de controle foram discutidos no Capítulo 5. No Capítulo 6 foram apresentados métodos rápidos de
ERRO EM REGIME PERMANENTE
MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA ERRO EM REGIME PERMANENTE Inicialmente veja o sistema realimentado mostrado na figura
Experiência 7 - Resposta em Frequência de Circuitos RC e RLC PARTE 1 - INTRODUÇÃO TEÓRICA
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI EPUSP PSI 3 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS Experiência 7 - Resposta em Frequência de Circuitos
AULA 02. Diagramas de Bode. Prof. Rodrigo Reina Muñoz T2 de 2018
EN NBESTA0073SA 60 Fundamentos Eletrônica Analógica de Eletrônica AULA 0 Diagramas de Bode Prof. Rodrigo Reina Muñoz [email protected] [email protected] T de 08 EN NBESTA0073SA 60 Fundamentos
