Controle de Velocidade
|
|
|
- Jerónimo Lemos Marinho
- 8 Há anos
- Visualizações:
Transcrição
1 1 Capítulo 1 Controle de Velocidade 1.1 Objetivos O objetivo neste experimento é projetar um controlador que regule a velocidade do eixo do motor. O procedimento será baseado na análise da resposta em frequência do sistema. 1.2 Modelo matemático Um motor elétrico de corrente contínua é composto por uma parte móvel (rotor), definida por um conjunto de espiras, e uma parte fixa (estator) geradora de campo magnético. O seguinte esquema eletromecânico, Figura 1.1, representa o motor elétrico CC: Figura 1.1: Diagrama eletromecânico do motor CC.
2 2 sendo V m (t) a tensão aplicada ao rotor, I m (t) a corrente que circula pelo enrolamento, R m a resistência do enrolamento ou da armadura, L m a indutância característica do rotor, E emf a força contraeletromotriz induzida no enrolamento pelo campo magnético do estator, T m (t) o torque desenvolvido pelo motor e θ m (t) a posição angular do eixo do motor. Usando a lei de Kirchhoff de tensão, obtém-se a equação abaixo: V m R m I m L m di m dt E emf = 0. (1.1) Como geralmente L m << R m, pode-se desconsiderar a indutância do motor, assim: I m = V m E emf R m. (1.2) Sabe-se que a força contraeletromotriz gerada pelo motor é proporcional à velocidade do rotor, ω m, tem-se: sendo K m a constante contraeletromotriz. I m = V m K m θm R m ( θ m = ω m ), (1.3) Do ponto de vista mecânico, aplicando a segunda lei de Newton ao movimento do rotor do motor: J m θm = T m T l η g K g, (1.4) sendo T l o torque na carga, K g a relação de engrenagens entre o motor e a carga, e η g a eficiência da caixa de engrenagens; e ao movimento da carga acoplada ao eixo do motor: J l θl = T l B eq θl, (1.5) sendo B eq o coeficiente viscoso de amortecimento.
3 3 Obtém-se a equação dinâmica do movimento dada por: J l θl = η g K g T m η g K g J m θm B eq θl. (1.6) Utilizando as transformações ω m = K g ω l e T m = η m K t I m (sendo η m a eficiência do motor e K t a constante de torque do motor), a equação (1.6) pode ser reescrita como J l ω l +ηgk 2 g J m ω l +B eq ω l = η g η m K g K t I m. (1.7) Finalmente, combinando as equações elétrica, (1.3), e mecânica, (1.7), a função de transferência que estabelece a relação entre a velocidade angular da carga acoplada ao eixo, ω l e a tensão aplicada ao motor, V m, é dada por: ω l (s) V m (s) = sendo J eq = J l +η g J m K 2 g. η g η m K t K g J eq R m s+b eq R m +η g η m K m K t Kg 2, (1.8) 1.3 Pré-laboratório A partir dos valores dos parâmetros relacionados no Apêndice A, a função de transferência do motor CC utilizado nesta prática é dada por: G(s) = ω l(s) V m (s) = s = 66.6 s (1.9) Um controlador do tipo Compensador em Avanço deve ser projetado de forma a alcançar as seguintes especificações para o sistema: 1. Erro de estado permanente nulo (para uma entrada degrau); 2. Largura de banda igual a 100 rad/s (aproximadamente 16 Hz); 3. Margem de fase do sistema em malha aberta de aproximadamente 75 graus.
4 Procedimento de projeto Quando projeta-se um controlador de um sistema no domínio da frequência, é necessário estudar a resposta do sistema em malha aberta. Em casos onde o sistema não pode ser modelado (ou o sistema é muito complicado), um diagrama de Bode em malha aberta é obtido ao aplicar uma entrada senoidal de frequência variável e gravando a magnitude e a fase da saída correspondente. No nosso caso, o modelo é de primeira ordem e é suficientemente preciso. Utilizando o software MATLAB, gere o diagrama de Bode da planta do motor, G(jω): >> numg = [0.333]; deng = [ ]; G = tf(numg,deng) Transfer function: s >> bode(g) No relatório da prática, esboce o gráfico obtido identificando a largura de banda e a margem de fase do sistema G(s). 1. Erro de estado permanente nulo (para uma entrada degrau); Para obtermos um erro de estado permanente nulo em resposta a uma entrada degrau, nosso sistema deve ser do tipo 1. Por definição, um sistema do tipo 1 é aquele que possui um pólo único na origem. Assim, introduziremos um integrador na malha para alcançar a especificação. A função de transferência do sistema resultante é dada por: G 1 (s) = G(s) s. Utilizando o software MATLAB, gere o diagrama de Bode do sistema G 1 (jω): >> numg1 = [0.333]; deng1 = [ ]; G1 = tf(numg1,deng1) Transfer function:
5 s s >> bode(g1) No relatório da prática, esboce o gráfico obtido identificando a largura de banda e a margem de fase do sistema G 1 (jω). 2. Largura de banda igual a 100 rad/s (aproximadamente 16 Hz); A larguradebandaédefinidapelovalor dafreqüência ω m (rad/s) noqual ográfico do módulo no diagrama de Bode cruza a linha de 0dB. A partir da análise do gráfico do módulo de G 1 (jω) obtido no item anterior, determine o ganho K p que deve ser introduzido no sistema para alcançar a especificação. No relatório da prática, apresente o procedimento utilizado. *Dica: x = 20log(K p ) Depois de selecionar o ganho K p desejado, seu sistema em malha aberta é dado por: G 2 (s) = KpG(s) s. Utilizando o software MATLAB, gere o diagrama de Bode do sistema G 2 (jω). No relatório da prática, esboce o gráfico obtido identificando a largura de banda e a margem de fase do sistema G 2 (jω). 3. Margem de fase do sistema em malha aberta de aproximadamente 75 graus; Seja φ o valor da fase referente à freqüência ω m de cruzamento do gráfico de módulo em 0dB. Por definição, a margem de fase é dada por MF = φ o. A partir da análise da margem de fase no sistema G 2 (jω), calcule a diferença de fase φ que o controlador deve adicionar ao sistema para atingir a especificação. Projete o compensador em avanço necessário. No relatório da prática, apresente o procedimento utilizado. *Dica: τ p = tan ( φπ 180 ), β = τ p + τ 2 p +1. A função de transferência do compensador em avanço é dada por: C(s) = β s+ ωm β s+βω m.
6 6 O sistema em malha aberta é então dado por: G 3 (s) = K pc(s)g(s). s Utilizando o software MATLAB, gere o diagrama de Bode do sistema G 3 (jω). Confira se as especificações foram alcançadas. No relatório da prática, esboce o gráfico obtido identificando a largura de banda e a margem de fase do sistema G 3 (jω). 1.4 Procedimento de laboratório Ligações e conexões A primeira tarefa é assegurar que todo o sistema está ligado corretamente. Se você está inseguro com a ligação, chame o professor. Com todos os sinais ligados corretamente você estará pronto para iniciar o laboratório Implementação Utilizando o instrumento virtual SRV02 speed lead tach ni.vi no LabVIEW, configure a planta com gear type = high gear e load type = disk load. A função de transferência do controlador nesse aplicativo tem o formato: C(s) = s+ α T αs+ 1. T Ajuste a função do controlador obtida na seção anterior para se adequar a esse formato, ou seja, encontre os valores de α e T a partir de β e ω m. No relatório da prática, apresente o procedimento utilizado. Implemente o compensador em avanço projetado e observe os efeitos físicos na planta. A resposta real do sistema é igual à esperada? Explique.
7 7 Prática 03 - Controle de Velocidade Data: Integrantes do Grupo: 1: 2: 3: 4: 5: 1. Esboce o gráfico obtido identificando a largura de banda e a margem de fase do sistema G(s). 2. Esboce o gráfico obtido identificando a largura de banda e a margem de fase do sistema G 1 (s).
8 8 3. Esboce o gráfico obtido identificando a largura de banda e a margem de fase do sistema G 2 (s). 4. Esboce o gráfico obtido identificando a largura de banda e a margem de fase do sistema G 3 (s). 5. Apresente o procedimento utilizado para encontrar o controlador no formato adequado. 6. A resposta real do sistema é igual à esperada? Explique
9 9 1.5 Apêndice A: Parâmetros do motor (SRV02 - Quanser) Símbolo Nome Valor Unidades K t Constante de Toque do Motor N.m K m Constante da Força Contra Eletromotriz V/(rad/s) R m Resistência da Armadura 2.6 Ω K g Redução 70 B eq Coeficiente Viscoso de Amortecimento 4e 3 N.m.s J m Momento de Inércia do Rotor 4.6e 7 kg.m 2 J eq Momento de Inércia Equivalente da Carga 2e 3 kg.m 2 η m Eficiência do Motor 0.69 η g Eficiência da Redução 0.9
10 10
Controlador PID discreto
1 Capítulo 1 Controlador PID discreto 1.1 Objetivo O objetivo deste experimento é introduzir ao estudante as noções básicas de um controlador PID discreto para um motor de corrente contínua. 1.2 Modelo
Aulas de Laboratório SEM Sistemas de Controle I
Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia Mecânica Aulas de Laboratório SEM 0536 - Sistemas de Controle I São Carlos 2008 ii iii Sumário 1 Controle de Posição
Controle Proporcional de um Motor de Corrente Contínua
1 Capítulo 1 Controle Proporcional de um Motor de Corrente Contínua 1.1 Objetivo O objetivo desta prática é introduzir ao estudante as noções básicas de realimentação e controle, implementando um sistema
Modelagem e simulação de um motor CC simples usando solidthinking Activate
Modelagem e simulação de um motor CC simples usando solidthinking Activate Motor CC simples A velocidade de rotação do rotor de um motor CC é controlada pela aplicação de uma tensão contínua V ao enrolamento
Determinação dos Parâmetros do Motor de Corrente Contínua
Laboratório de Máquinas Elétricas: Alunos: Professor: Leonardo Salas Maldonado Determinação dos Parâmetros do Motor de Corrente Contínua Objetivo: Ensaiar o motor de corrente contínua em vazio; Determinar
Engenharia Elétrica UMC Eletrônica de Potência I Prof. Jose Roberto Marques
Engenharia Elétrica UMC Eletrônica de Potência I Prof. Jose Roberto Marques 1º) O circuito abaixo corresponde a um nó de uma rede elétrica onde admitimos que a tensão de nó é invariável e que as cargas
2ª Avaliação - Controle Automático II (CTR 03) Prof. Accacio
Data de Entrega do relatório e apresentação do trabalho: 06/05/2017 Pontuação da atividade: 30pts Objetivo - Projetar um Controlador para o sistema de estudo (sorteado) através dos Métodos do Lugar das
SISTEMAS ROBOTIZADOS CAPÍTULO 7 CONTROLE INDEPENDENTE DAS JUNTAS
SISTEMAS ROBOTIZADOS CAPÍTULO 7 CONTROLE INDEPENDENTE DAS JUNTAS Leitura Sugerida: Spong, (Seções 7.1-7.3) 1 Capítulo 7 Motivação Discutiremos neste capítulo uma estratégia de controle denominada CONTROLE
Aula 19: Projeto de controladores no domínio da frequência
Aula 19: Projeto de controladores no domínio da frequência prof. Dr. Eduardo Bento Pereira Universidade Federal de São João del-rei [email protected] 14 de novembro de 2017. prof. Dr. Eduardo Bento Pereira
CONTROLE DE ÂNGULO DE AZIMUTE DE ANTENA DE RASTREAMENTO
UFRJ Escola Politécnica Eng. Eletrônica e de Computação EEL660 Controle Linear 1 Avaliação Complementar 2017-1 CONTROLE DE ÂNGULO DE AZIMUTE DE ANTENA DE RASTREAMENTO Neste trabalho você deverá modelar,
Sistemas de Controle (CON) Modelagem de Sistemas de Rotação e Eletromecânicos
Universidade do Estado de Santa Catarina UDESC Centro de Ciências Tecnológicas CCT Departamento de Engenharia Mecânica DEM Sistemas de Controle (CON) Modelagem de Sistemas de Rotação e Eletromecânicos
CAPÍTULO Compensação via Compensador de Avanço de Fase
CAPÍTULO 8 Projeto no Domínio da Freqüência 8.1 Introdução Este capítulo aborda o projeto de controladores usando o domínio da freqüência. As caracteristicas de resposta em freqüência dos diversos controladores,
Identificação das plantas servo por meio da análise da resposta temporal
Experiência3 Identificação das plantas servo por meio da análise da resposta temporal O objetivo dessa experiência é obter um modelo dinâmico para descrever a relação entrada/saída (função de transferência)
Implementação de controlador PID fuzzy para otimização do controle de posição de um servomotor DC
Implementação de controlador PID fuzzy para otimização do controle de posição de um servomotor DC Ederson Costa dos Santos 1, Leandro Barjonas da Cruz Rodrigues 1, André Maurício Damasceno Ferreira 2 1
INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA MECÂNICA. MPS 43 Sistemas de Controle
INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA MECÂNICA MPS 43 Sistemas de Controle LABORATÓRIO 03: Projeto de um Compensador um Método de Resposta em Frequência Data: Turma: Conceito: Nomes:
Máquinas elétricas. Máquinas Síncronas
Máquinas síncronas Máquinas Síncronas A máquina síncrona é mais utilizada nos sistemas de geração de energia elétrica, onde funciona como gerador ou como compensador de potência reativa. Atualmente, o
REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS
REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS. Espaço dos estados Representação da dinâmica de um sistema de ordem n usando n equações diferenciais de primeira ordem. Sistema é escrito
Roteiro de Laboratório - Experiência 2 Controle de Sistemas e Servomecanismos II
Roteiro de Laboratório - Experiência 2 Controle de Sistemas e Servomecanismos II Carlos Eduardo de Brito Novaes [email protected] http://professorcarlosnovaes.wordpress.com 3 de novembro de 2012 1
Capítulo 2. Modelagem no Domínio de Freqüência
Capítulo 2 Modelagem no Domínio de Freqüência Fig. 2.1 a. Representação em diagrama de blocos de um sistema; b. representação em diagrama de blocos de uma interconexão de subsistemas Entrada Entrada Sistema
Compensadores: projeto no domínio da
Compensadores: projeto no domínio da frequência Relembrando o conteúdo das aulas anteriores: o Compensador (também conhecido como Controlador) tem o objetivo de compensar características ruins do sistema
SC1 Sistemas de Controle 1. Cap. 5 Método do Lugar das Raízes Abordagem de Projetos Prof. Tiago S Vítor
SC1 Sistemas de Controle 1 Cap. 5 Método do Lugar das Raízes Abordagem de Projetos Prof. Tiago S Vítor Sumário 1. Introdução 2. Definições 3. Alguns detalhes construtivos sobre LR 4. Condições para um
RESPOSTA EM FREQUÊNCIA: CONTROLADOR AVANÇO E ATRASO DE FASE (LEAD-LAG) OGATA
RESPOSTA EM FREQUÊNCIA: CONTROLADOR AVANÇO E ATRASO DE FASE (LEAD-LAG) OGATA CCL Profa. Mariana Cavalca Retirado de OGATA, Katsuhiko. Engenharia de controle moderno. 1. ed. Rio de Janeiro: Prentice Hall,
Projeto através de resposta em frequência
Guilherme Luiz Moritz 1 1 DAELT - Universidade Tecnológica Federal do Paraná 04 de 2013 Objetivos Refoçar o conceito das características da resposta em frequência Saber utilizar o diagrama para projeto
DIAGRAMAS DE BODE, NYQUIST E NICHOLS
DIAGRAMAS DE BODE, NYQUIST E NICHOLS Os diagramas de resposta em freqüência são muito úteis para analisar a estabilidade de um sistema realimentado. Existem 3 formas de analisar a resposta em freqüência
Projeto de Compensadores no Domínio da Frequência
Projeto de Compensadores no Domínio da Frequência Maio de 214 Loop Shaping I No projeto de compensadores no domínio da frequência, parte-se do pressuposto de que o sistema a ser controlado pode ser representado
EES-20: Sistemas de Controle II. 31 Julho 2017
EES-20: Sistemas de Controle II 31 Julho 2017 1 / 41 Folha de informações sobre o curso 2 / 41 O que é Controle? Controlar: Atuar sobre um sistema físico de modo a obter um comportamento desejado. 3 /
Controladores: Proporcional (P) Proporcional e Integral (PI) Proporcional, Integral e Derivativo (PID)
Sistemas Realimentados Regulação e Tipo de sistema: Entrada de referência Entrada de distúrbio Controladores: Proporcional (P) Proporcional e Integral (PI) Proporcional, Integral e Derivativo (PID) Fernando
Conversão de Energia II
Departamento de Engenharia Elétrica Aula 6.1 Máquinas Síncronas Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica
CIRCUITO EQUIVALENTE MAQUINA
CIRCUITO EQUIVALENTE MAQUINA Se o circuito do induzido for fechado sobre uma carga, vai circular por ele uma corrente que será responsável por perdas por efeito de Joule na resistência do próprio enrolamento,
Conversão de Energia I. Capitulo 4 Princípios da conversão eletromecânica da energia;
Conversão de Energia I Capitulo 4 Princípios da conversão eletromecânica da energia; 1. Introdução De uma forma bastante simplificada podemos tratar os motores com os conceitos de repulsão/atração entre
Fundamentos de Controlo
Licenciatura em Engenharia Electrónica LEE - IST Fundamentos de Controlo 1º semestre 2012-2013 Guia de trabalho de Laboratório Controlo de um motor d.c. elaborado por: Eduardo Morgado Outubro 2012 I. Introdução
1ā lista de exercícios de Sistemas de Controle II
ā lista de exercícios de Sistemas de Controle II Obtenha uma representação em espaço de estados para o sistema da figura R(s) + E(s) s + z U(s) K Y (s) s + p s(s + a) Figura : Diagrama de blocos do exercício
Controle H - PPGEE - EPUSP Exemplo 1 - Projeto Ótimo H SISO
Controle H - PPGEE - EPUSP Exemplo - Projeto Ótimo H SISO Prof. Diego Segundo Período 7 Exemplo Neste exemplo, iremos resolver com mais detalher o problema.7 do livro do Skogestad, segunda edição, versão
Figura 46 Ícone do motor de passo do Simulink
78 7 Simulações Neste capítulo, é apresentada primeiramente a simulação do controle de um motor de passo. Em seguida, o controle de seis motores aplicados ao manipulador proposto é estudado. As simulações
VI. MÉTODO DO LUGAR GEOMÉTRICO DAS RAÍZES
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE VI. MÉTODO DO LUGAR GEOMÉTRICO DAS RAÍZES Prof. Davi Antônio dos Santos ([email protected]) Departamento
Prof. Abilio Manuel Variz
Máquinas de Corrente Alternada (ENE052) 2.7 G.S. de Pólos Salientes Prof. Abilio Manuel Variz Engenharia Elétrica Universidade Federal de Juiz de Fora Período 2010-3 Características do G.S. quanto aos
Aula 4 - Resposta em Frequência, Sensibilidade, Margem de Ganho e Margem de Fase, Controle em Avanço e Atraso, Critério de Nyquist
Aula 4 - Resposta em Frequência, Sensibilidade, Margem de Ganho e Margem de Fase, Controle em Avanço e Atraso, Critério de Nyquist Universidade de São Paulo Introdução Método da Resposta em Frequência
V. ANÁLISE NO DOMÍNIO DO TEMPO
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE V. ANÁLISE NO DOMÍNIO DO TEMPO Prof. Davi Antônio dos Santos ([email protected]) Departamento de
Capítulo 10. Técnicas de Resposta de Freqüência
Capítulo 10 Técnicas de Resposta de Freqüência Fig.10.1 O Analisador Dinâmico de Sinal HP 35670A obtém dados de resposta de freqüência de um sistema físico. Os dados exibidos podem ser usados para analisar,
Máquinas Elétricas. Máquinas CC Parte III
Máquinas Elétricas Máquinas CC Parte III Máquina CC Máquina CC Máquina CC Comutação Operação como gerador Máquina CC considerações fem induzida Conforme já mencionado, a tensão em um único condutor debaixo
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA MOTOR SÍNCRONO. Joaquim Eloir Rocha 1
MOTOR SÍNCRONO Joaquim Eloir Rocha 1 Os motores síncronos são usados para a conversão da energia elétrica em mecânica. A rotação do seu eixo está em sincronismo com a frequência da rede. n = 120 p f f
FUNDAMENTOS DE ENERGIA ELÉCTRICA MÁQUINA SÍNCRONA
FUNDAMNTOS D NRGA LÉCTRCA Prof. José Sucena Paiva 1 GRUPO GRADOR D CCLO COMBNADO 330 MW Prof. José Sucena Paiva 2 GRADOR ÓLCO 2 MW Prof. José Sucena Paiva 3 GRADOR ÓLCO 2 MW (Detalhe) Prof. José Sucena
1 Sistema Máquina-Barra in nita: apresentação e modelagem
EEL 751 - Fundamentos de Controle 1o rabalho Computacional 1 Sistema Máquina-Barra in nita: apresentação e modelagem Modelos do tipo máquina-barra in nita como o representado pelo diagrama uni - lar da
Lista de Exercícios 2 (Fonte: Fitzgerald, 6ª. Edição)
Universidade Federal de Minas Gerais Escola de Engenharia Curso de Graduação em Engenharia Elétrica Disciplina: Conversão da Energia Lista de Exercícios 2 (Fonte: Fitzgerald, 6ª. Edição) 5.3) Cálculos
Capitulo 7 Geradores Elétricos CA e CC
Capitulo 7 Geradores Elétricos CA e CC 7 Geradores Elétricos CA e CC Figura 7-1 Gerador Elétrico CA A energia elétrica é obtida através da conversão de energia mecânica (movimento) em energia elétrica
ENGENHARIA ELÉTRICA UMC ELETRÔNICA DE POTÊNCIA I LABORATÓRIO DE ACIONAMENTO DE MÁQUINAS ELÉTRICAS Professor José Roberto Marques docente da UMC
ENGENHARIA ELÉTRICA UMC ELETRÔNICA DE POTÊNCIA I LABORATÓRIO DE ACIONAMENTO DE MÁQUINAS ELÉTRICAS Professor José Roberto Marques docente da UMC PARTE 1: SIMULAÇÂO DE MÁQUINA DE CORRENTE CONTÍNUA A modelagem
Em um gerador síncrono, uma corrente contínua é aplicada ao enrolamento do rotor, o qual produz um campo magnético;
Relembrando... Em um gerador síncrono, uma corrente contínua é aplicada ao enrolamento do rotor, o qual produz um campo magnético; Como o rotor é girado por uma força mecânica, se produz um campo magnético
Introdução às máquinas CA
Introdução às máquinas CA Assim como as máquinas CC, o princípio de funcionamento de máquinas CA é advindo, principalmente, do eletromagnetismo: Um fio condutor de corrente, na presença de um campo magnético,
CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA
CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA 4.. Introdução Pelo termo resposta em freqüência, entende-se a resposta em regime estacionário de um sistema com entrada senoidal. Nos métodos de resposta
5 a LISTA DE EXERCÍCIOS
5 a LITA DE EXERCÍCIO ) A ação de controle proporcionalderivativo só apresenta influência durante o regime permanente não tendo nenhum efeito durante os transitórios do sistema. Responda se a afirmação
3. MODELOS MATEMÁTICOS
13 3. MODELOS MATEMÁTICOS 3.1 ENSAIOS EXPERIMENTAIS COM O TROCADOR DE CALOR Todos os ensaios realizados com o trocador de calor para a obtenção de seu modelo consistiram em se aplicar um degrau de vazão
3.- PRINCÍPIO DE FUNCIONAMENTO DO MOTOR DE CORRENTE CONTÍNUA
3.- PRICÍPIO DE FUCIOETO DO OTOR DE CORRETE COTÍU 3.1 - FORÇÃO DO COJUGDO OTOR Conforme já foi visto na introdução desta apostila, quando a máquina de corrente contínua opera como motor, o fluxo de potência
Sumário. CAPÍTULO 1 A Natureza da Eletricidade 13. CAPÍTULO 2 Padronizações e Convenções em Eletricidade 27. CAPÍTULO 3 Lei de Ohm e Potência 51
Sumário CAPÍTULO 1 A Natureza da Eletricidade 13 Estrutura do átomo 13 Carga elétrica 15 Unidade coulomb 16 Campo eletrostático 16 Diferença de potencial 17 Corrente 17 Fluxo de corrente 18 Fontes de eletricidade
Modelagem Matemática de Motor de Corrente Contínua e
Trabalho apresentado no CNMAC, Gramado - RS, 2016. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Modelagem Matemática de Motor de Corrente Contínua e Análise Dinâmica
Disciplina de Máquinas Elétricas II
Disciplina de Máquinas Elétricas II Baldo Luque Universidade Federal do Acre [email protected] Outubro 2016 Baldo Luque (UFAC) 2 semestre de 2016 Outubro 2016 1 / 34 Plano de Aula 1 Comportamento dinâmico
Avisos. Entrega do Trabalho: 8/3/13 - sexta. P2: 11/3/13 - segunda
Avisos Entrega do Trabalho: 8/3/13 - sexta P2: 11/3/13 - segunda Lista de Apoio: disponível no site até sexta feira não é para entregar é para estudar!!! Resumo de Gerador CA Símbolo Elétrico: Vef = ***
Projeto de pesquisa realizado no curso de Engenharia Elétrica da Unijuí, junto ao GAIC (Grupo de Automação Industrial e Controle) 2
MODELAGEM MATEMÁTICA DE PLATAFORMA EXPERIMENTAL PARA SIMULAÇÃO DE AERONAVE MULTIRROTORA 1 MATHEMATICAL MODELLING OF EXPERIMENTAL PLATFORM FOR SIMULATION OF MULTIROTOR AIRCRAFT Christopher Sauer 2, Manuel
Aula 12. Cristiano Quevedo Andrea 1. Curitiba, Outubro de DAELT - Departamento Acadêmico de Eletrotécnica
Aula 12 Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Outubro de 2011. Resumo 1 Introdução 2 3 4 5 Podemos melhorar
Aula 6 Redução de diagrama de blocos Prof. Marcio Kimpara
FUNDAMENTOS DE CONTROLE E AUTOMAÇÃO Aula 6 Redução de diagrama de blocos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul Prof. Marcio Kimpara 2 Sistemas de primeira ordem Existem casos
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap2 - Modelagem no Domínio de Frequência Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos
INSTITUTO SUPERIOR TÉCNICO CONTROLO. As questões assinaladas com * serão abordadas na correspondente aula de apoio.
INSTITUTO SUPERIOR TÉCNICO ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES CONTROLO 3 a Série (root-locus, análise e projecto no plano-s) As questões assinaladas com * serão abordadas na correspondente aula
INSTITUTO SUPERIOR TÉCNICO CONTROLO. As questões assinaladas com * serão abordadas na correspondente aula de apoio.
INSTITUTO SUPERIOR TÉCNICO ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES CONTROLO 2 a Série (resposta no tempo, diagrama de blocos, erro estático) As questões assinaladas com * serão abordadas na correspondente
Questão 1. Gabarito. Considere P a potência ativa da carga e Q a potência reativa.
Questão 1 Uma indústria tem uma carga de 1000 kva com fator de potência indutivo de 95% alimentada em 13800 V de acordo com medições efetuadas. A maneira mais fácil de representar a carga da indústria
Princípios de máquinas elétricas força induzida Um campo magnético induz uma força em um fio que esteja conduzindo corrente dentro do campo
Princípios de máquinas elétricas Uma máquina elétrica é qualquer equipamento capaz de converter energia elétrica em energia mecânica, e vice-versa Principais tipos de máquinas elétricas são os geradores
Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores. Controlo 2003/2004. Controlo de velocidade de um motor D.C.
Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores Controlo 2003/2004 Controlo de velocidade de um motor D.C. Realizado por : E. Morgado 1 e F. M. Garcia 2 -Março de
EES-49/2012 Resolução da Prova 3. 1 Dada a seguinte função de transferência em malha aberta: ( s 10)
EES-49/2012 Resolução da Prova 3 1 Dada a seguinte função de transferência em malha aberta: ( s 10) Gs () ss ( 10) a) Esboce o diagrama de Nyquist e analise a estabilidade do sistema em malha fechada com
Máquinas de Corrente Alternada (ENE052)
Máquinas de Corrente Alternada (ENE052) 1.0 Fundamentos de Máquinas de Corrente Alternada Prof. Abilio Manuel Variz Engenharia Elétrica Universidade Federal de Juiz de Fora Período 2010-3 Movimento Rotacional:
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Corrente Contínua
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA Introdução a Máquinas de Corrente Contínua Aula de Hoje Introdução à máquina de corrente contínua Produção de conjugado na máquina CC Ação do comutador Tensão
Transformadores e circuitos magneticamente acoplados. Prof. Luis S. B. Marques
Transformadores e circuitos magneticamente acoplados Prof. Luis S. B. Marques Transformadores Um transformador consiste de duas ou mais bobinas acopladas através de um campo magnético mútuo. O Transformador
MOTOR DE INDUÇÃO TRIFÁSICO (continuação)
MOTOR DE INDUÇÃO TRIFÁSICO (continuação) Joaquim Eloir Rocha 1 A produção de torque em um motor de indução ocorre devido a busca de alinhamento entre o fluxo do estator e o fluxo do rotor. Joaquim Eloir
Estabilidade no Domínio da Freqüência
Estabilidade no Domínio da Freqüência 1. Estabilidade relativa e o critério de Nyquist: margens de ganho e fase 2. Critérios de desempenho especificados no domínio da freqüência Resposta em freqüência
CAPÍTULO 7 Projeto usando o Lugar Geométrico das Raízes
CAPÍTULO 7 Projeto usando o Lugar Geométrico das Raízes 7.1 Introdução Os objetivos do projeto de sistemas de controle foram discutidos no Capítulo 5. No Capítulo 6 foram apresentados métodos rápidos de
Sistemas de Controle
Sistemas de Controle Adriano Almeida Gonçalves Siqueira Aula 8 - Resposta em Frequência Sistemas de Controle p. 1/46 Introdução Método da Resposta em Frequência Análise do sistema a partir da resposta
4 Controle de motores de passo
36 4 ontrole de motores de passo O controle em malha aberta é o mais comum em motores de passo. Entretanto, o motor deve operar razoavelmente abaixo de sua capacidade para evitar a perda de passos. As
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 20
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA Aula 20 Aula de Hoje Introdução à máquina síncrona trifásica Características Básicas de uma Máquina Síncrona O enrolamento de campo é posicionado no rotor; O
Integrantes do Grupo
Integrantes do Grupo PARTE EXPERIMENTAL 1. Objetivos Nesta experiência trabalharemos com um gerador trifásico, de frequência nominal 60 [Hz] e 4 pólos. Os seguintes fenômenos serão observados: ariação
Conversão de Energia II
Departamento de Engenharia Elétrica Aula 2.2 Máquinas Rotativas Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica
MODELOS DE MOTORES DA MODELIX
MODELOS DE MOTORES DA MODELIX O MOTOR DE CC REVISÃO TÉCNICA. Aspectos Construtivos O motor de corrente contínua é composto de duas estruturas magnéticas: 1 / 5 Estator (enrolamento de campo ou ímã permanente);
Estados Prof: Marcos Lajovic Carneiro Aluno (a): Laboratório Resumo Experimentos da Modelagem no Espaço dos Estados
Pontifícia Universidade Católica de Goiás Espaço dos Escola de Engenharia ENG 3503 Sistemas de Controle Estados Prof: Marcos Lajovic Carneiro Aluno (a): Laboratório Resumo Experimentos da Modelagem no
Fundamentos de Controlo
Fundamentos de Controlo 6 a Série Projecto de Compensadores: Avanço/atraso de fase, moldagem do ganho de malha. S6.1 Exercícios Resolvidos P6.1 Considere o sistema de controlo com retroação unitária representado
Método de Margem de Ganho
Departamento de Engenharia Química e de Petróleo UFF Disciplina: TEQ102- CONTROLE DE PROCESSOS custo Método de Margem de Ganho Outros Processos e de de Fase Separação Prof a Ninoska Bojorge Resposta de
B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil. Constituídodedoisgráficos: umdomóduloemdecibel(db) outrodoângulo de fase;
Diagramas de Bode Constituídodedoisgráficos: umdomóduloemdecibel(db) outrodoângulo de fase; Ambos são traçados em relação à frequência em escala logarítmica; LembrequeologaritmodomódulodeG(jω) é20log 10
Máquinas Elétricas. Máquinas Síncronas Parte I. Geradores
Máquinas Elétricas Máquinas Síncronas Parte I Geradores Introdução Em um gerador síncrono, um campo magnético é produzido no rotor. través de um ímã permanente ou de um eletroímã (viabilizado por uma corrente
Capítulo 11. Projeto por Intermédio da Resposta de Freqüência
Capítulo 11 Projeto por Intermédio da Resposta de Freqüência Fig. 11.1 Gráficos de Bode mostrando o ajuste de ganho para uma margem de fase desejada Fase (graus) Aumento de ganho necessário 2 Fig. 11.2
Máquinas Elétricas. Máquinas CA Parte I
Máquinas Elétricas Máquinas CA Parte I Introdução A conversão eletromagnética de energia ocorre quando surgem alterações no fluxo concatenado (λ) decorrentes de movimento mecânico. Nas máquinas rotativas,
RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE
RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE CCL Profa. Mariana Cavalca Baseado em: MAYA, Paulo Álvaro; LEONARDI, Fabrizio. Controle essencial. São Paulo: Pearson, 2011. OGATA, Katsuhiko. Engenharia de controle
