Capítulo 3. Função de transferência e dinâmicas dos sistemas
|
|
|
- Silvana Caires Paranhos
- 9 Há anos
- Visualizações:
Transcrição
1 DINÂMICA DE SISTEMAS BIOLÓGICOS E FISIOLÓGICOS Capítulo 3 Função de transferência e dinâmicas dos sistemas 3.1. Aplicação da transformada de Laplace às equações diferenciais A transformada de Laplace é uma boa ferramenta para a resolução de equações diferenciais. Por exemplo no Capítulo 2 vimos o sistema mecânico da suspensão de um automóvel, para o qual obtivemos a equação diferencial de 2ª ordem Aplicando o a propriedade da derivação no domínio temporal, obtém-se ADC/FCTUC/EB/DSBF/Capítulo 3/
2 Verifica-se que a saída Y(s) tem duas parcelas: i) a devida às condições iniciais, Y zi, e entrada nula (zi de zero input) ii) a devida è entrada, Y zs, e condições iniciais nulas (zs de zero (initial) state) Considerando as duas em simultâneo, depois de reduzir ao mesmo denominador, Procurando as raízes do denominador e decompondo-o em fracções parciais, obtém se Calculando agora os resíduos A1, A2 e A3 pela técnica que estudámos, obtém-se ADC/FCTUC/EB/DSBF/Capítulo 3/
3 Calculando agora a transformada inversa obtém-se y(t) Verifica-se que y(0)=-1, como era de esperar Polinómio característico, modos e estabilidade Se calcularmos a resposta da suspensão quando apenas as condições iniciais são não nulas (não aplicamos qualquer entrada), obtemos, e invertendo, decompondo previamente em fracções parciais, Calculando A1 e A2, ADC/FCTUC/EB/DSBF/Capítulo 3/
4 podemos constatar os seguintes factos: E por isso podemos afirmar que as duas exponenciais são características intrínsecas do sistema, independentes de toda a realidade externa e das condições iniciais. Chamam-se por isso, aos seus expoentes -0,5 e -1, modos do sistema e são como que a sua DNA. Analisando mais em detalhe, obtemos Para certas combinações particulares de condições iniciais o sistema exibe um comportamento estranho. Vejamos. Se a resposta só depende de um dos modos; o outro modo não aparece, não é excitado. E se ADC/FCTUC/EB/DSBF/Capítulo 3/
5 a resposta também só depende de um dos modos, não sendo o outro excitado. Podemos assim constatar que, Qual a origem dos modos? Se no exemplo da suspensão automóvel considerarmos M=2, B=4, K=20, u=0, t 0, vem Calculemos a resposta temporal, invertendo este Y(s): Desenvolvendo, ADC/FCTUC/EB/DSBF/Capítulo 3/
6 Ou seja, consultando a tabela da transformada de Laplace, e graficando, obtemos o movimento oscilatório da suspensão. Se aumentarmos B de 4 para 14 (maior atrito, maior amortecimento) a suspensão deixa de oscilar (verifique, refazendo os cálculos, ou use o Simulink, com condições iniciais nos integradores). Portanto os modos derivam das propriedades construtivas do sistema. No caso geral temos, sendo p o operador de derivação, ADC/FCTUC/EB/DSBF/Capítulo 3/
7 Aplicando a transformada de Laplace (a ambos os lados da equação) ou seja, rearranjando, e se a entrada u(t) for nula para todo o t ADC/FCTUC/EB/DSBF/Capítulo 3/
8 verifica-se que Y zi (s), e portanto y zi (t) depende das condições iniciais 3.3. Estabilidade em relação às condições iniciais Se um modo do sistema tem parte real positiva, ou se tem parte real nula e multiplicidade maior do que um, então a sua exponencial (seja real, seja complexa) tende para infinito em valor absoluto. Se uma dada condição inicial excita um destes modos, a saída do sistema tenderá para infinito, mesmo que a entrada seja nula. O sistema diz-se então instável. No caso contrário, em que todos os modos têm parte real negativa o sistema é estável. Um modo e parte real nula mas de multiplicidade 1 mantêm a estabilidade do sistema. Assim podemos enunciar uma condição necessária de estabilidade em relação às condições iniciais: A resposta às condições iniciais pode representar-se por em que ADC/FCTUC/EB/DSBF/Capítulo 3/
9 Chama-se a A resposta livre, ou não forçada, è a que se obtém com entrada nula (e condições iniciais não nulas). 3.4 Função de transferência Seja o exemplo Calculando a transformada de Laplace, com todas as condições iniciais nulas, Ou seja ADC/FCTUC/EB/DSBF/Capítulo 3/
10 G(s) transfere a entrada para a saída, ou de outro modo, a entrada transfere-se para a saída através ou pela acção de G(s) e por isso chama-se a G(s) função de transferência. PARA A função de transferência obtém-se a partir da equação diferencial de ordem n que descreve o sistema, aplicando-lhe a transformada de Laplace e resolvendo para Y/U. Se tivermos a possibilidade de aplicar um impulso de Dirac ao sistema, a sua resposta será Ys () = GsUs () () = Gs ().1 = Gs () e portanto 1 1 yt () L = [ Y( s)] = L [ Gs ( )] ou seja, a função de transferência também se pode definir como a transformada de Laplace da resposta do sistema a um impulso de Dirac. Por isso se conhecermos s função de transferência e quisermos calcular a resposta impulsional h(t), basta fazermos ADC/FCTUC/EB/DSBF/Capítulo 3/
11 Por exemplo Exemplos de cálculo da função de transferência: sistema de dois tanques (o mesmo da ingestão de um fármaco, com A 1 =A 2 =1) No caso geral, sendo p o operador de derivação, ADC/FCTUC/EB/DSBF/Capítulo 3/
12 Pólos e zeros da função de transferência Os pólos de G(s) são as raízes do seu denominador. Os zeros são as raízes do seu numerador. A função de transferência pode escrever-se com o numerador e o denominador factorizados, dizendo-se que está na forma pólo-zero. A função de transferência é assim completamente caracterizada por - os pólos - os zeros - o ganho K, no numerador, uma constante característica do sistema. ADC/FCTUC/EB/DSBF/Capítulo 3/
13 Se por exemplo tivermos uma função de transferência G(s) com zeros: -2, -3 pólos: -1, -0.5, -4 G(0)=5 Dos pólos e zeros poderemos escrever Para calcularmo o valor de K usa-se o terceiro dado, obtendo-se (continua em Capitulo3B) ADC/FCTUC/EB/DSBF/Capítulo 3/
Capítulo 3. Função de transferência e dinâmicas dos sistemas (Parte D, continuação)
DINÂMICA DE SISTEMAS BIOLÓGICOS E FISIOLÓGICOS Capítulo 3 Função de transferência e dinâmicas dos sistemas (Parte D, continuação) Juntando agora os três casos numa só figura, A resposta y(t) classifica-se
Indice. Resposta forçada (condições iniciais nulas)
Indice 3.3 Inversão da TLP Fracções parciais Resolução equações diferenciais Polinómio característico Estabilidade resposta natural 3.4 Função de Transferência Estabilidade devido à entrada (resposta forçada)
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap3 Modelagem no Domínio do Tempo Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos Lajovic
4.1 Pólos, Zeros e Resposta do Sistema
ADL17 4.1 Pólos, Zeros e Resposta do Sistema A resposta de saída de um sistema é a soma de duas respostas: a resposta forçada e a resposta natural. Embora diversas técnicas, como a solução de equações
TRANSFORMADA DE LAPLACE E OPERADORES LINEARES
TRANSFORMADA DE LAPLACE E OPERADORES LINEARES O DOMÍNIO DE LAPLACE Usualmente trabalhamos com situações que variam no tempo (t), ou seja, trabalhamos no domínio do tempo. O domínio de Laplace é um domínio
O Papel dos Pólos e Zeros
Departamento de Engenharia Mecatrônica - EPUSP 27 de setembro de 2007 1 Expansão em frações parciais 2 3 4 Suponha a seguinte função de transferência: m l=1 G(s) = (s + z l) q i=1(s + z i )(s + p m ),
Aula 6 Transformada de Laplace
Aula 6 Transformada de Laplace Introdução Propriedades da Transformada de Laplace Tabela Transformada ade Laplace Transformada Inversa de Laplace Função de transferência Definição: X s = L x t = s é uma
DESCRIÇÃO MATEMÁTICA DE SISTEMAS PARTE 1
DESRIÇÃO MATEMÁTIA DE SISTEMAS PARTE 1 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Agenda Modelagem de sistemas dinâmicos Descrição Entrada-Saída
Transformadas de Laplace Engenharia Mecânica - FAENG. Prof. Josemar dos Santos
Engenharia Mecânica - FAENG SISTEMAS DE CONTROLE Prof. Josemar dos Santos Sumário Transformadas de Laplace Teorema do Valor Final; Teorema do Valor Inicial; Transformada Inversa de Laplace; Expansão em
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap4 Resposta no Domínio do Tempo Prof. Filipe Fraga Sistemas de Controle 1 4. Resposta no Domínio do Tempo 4.1 Introdução
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace
Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. [email protected] Prof. Rafael Concatto Beltrame, Me.
Aula 05 Transformadas de Laplace
Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número
Aula 05 Transformadas de Laplace
Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número
Transformada de Laplace
Sinais e Sistemas Transformada de Laplace [email protected] Instituto Superior Técnico Sinais e Sistemas p.1/60 Resumo Definição da transformada de Laplace. Região de convergência. Propriedades da transformada
Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial
Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de
Sistemas lineares. Aula 7 Transformada Inversa de Laplace
Sistemas lineares Aula 7 Transformada Inversa de Laplace Transformada Inversa de Laplace Transformada Inversa de Laplace e RDC x(t) única Metódos Inversão pela Definição Inversão pela Expansão em Frações
Transformada Z. Transformada Z
Semelhante ao apresentado anteriormente, entre a relação das transformadas de Fourier e de Laplace, será visto que a generalização da representação senoidal complexa de um sinal de tempo discreto pela
Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros
107484 Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 2 o Semestre
Analise sistemas LCIT usando a Transformada de Laplace
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO
Aula 9. Diagrama de Bode
Aula 9 Diagrama de Bode Hendrik Wade Bode (americano,905-98 Os diagramas de Bode (de módulo e de fase são uma das formas de caracterizar sinais no domínio da frequência. Função de Transferência Os sinais
Sistemas e Sinais (LEIC) Capítulo 10 Transformadas de Fourier
Sistemas e Sinais (LEIC) Capítulo Transformadas de Fourier Carlos Cardeira Diapositivos para acompanhamento da bibliografia de base (Structure and Interpretation of Signals and Systems, Edward A. Lee and
RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE
RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE CCL Profa. Mariana Cavalca Baseado em: MAYA, Paulo Álvaro; LEONARDI, Fabrizio. Controle essencial. São Paulo: Pearson, 2011. OGATA, Katsuhiko. Engenharia de controle
Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.
Circuitos Elétricos II
Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Ganho e Deslocamento de Fase Função de Rede (ou de Transferência) Estabilidade 1 Definições
Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.
SC1 Sistemas de Controle 1. Cap. 2 - Estabilidade Prof. Tiago S Vítor
SC1 Sistemas de Controle 1 Cap. 2 - Estabilidade Prof. Tiago S Vítor Sumário 1. Introdução 2. Critério de Routh-Hurwitz 3. Critério de Routh-Hurwitz: Casos Especiais 4. Projeto de Estabilidade via Routh-Hurwitz
Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.
Controle de Processos Aula: Sistemas de 1ª e 2ª ordem
107484 Controle de Processos Aula: Sistemas de 1ª e 2ª ordem Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB) Controle
= + Exercícios. 1 Considere o modelo simplificado de um motor DC:
7 Exercícios 1 Considere o modelo simplificado de um motor DC: a) Deduza, utilizando a definição, o seu equivalente discreto ZOH. b) Confirme a validade da expressão obtida com o resultado listado na tabela
FEUP - MIEEC - Análise Matemática 1
FEUP - MIEEC - Análise Matemática Resolução da a Chamada - de Janeiro de 9 Respostas a perguntas diferentes em folhas diferentes Justifique cuidadosamente todas as respostas. Não é permitida a utilização
Transformada de Laplace
Transformada de aplace Nas aulas anteriores foi visto que as ferramentas matemáticas de Fourier (série e transformadas) são de extrema importância na análise de sinais e de sistemas IT. Isto deve-se ao
Sistemas de Controle
Sistemas de Controle Adriano Almeida Gonçalves Siqueira Aula 2 - Transformada de Laplace e Função Transferência Sistemas de Controle p. 1/27 Função Impulso Unitário Função pulso com área unitária: f(t)
Equações exponenciais
A UA UL LA Equações exponenciais Introdução Vamos apresentar, nesta aula, equações onde a incógnita aparece no expoente. São as equações exponenciais. Resolver uma equação é encontrar os valores da incógnita
Aula 04 Representação de Sistemas
Aula 04 Representação de Sistemas Relação entre: Função de Transferência Transformada Laplace da saída y(t) - Transformada Laplace da entrada x(t) considerando condições iniciais nulas. Pierre Simon Laplace,
Aula 9. Carlos Amaral Cristiano Quevedo Andrea. UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica
Aula 9 Carlos Amaral Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Abril de 2012. Resumo 1 Introdução - Estabilidade
Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos
107484 Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016
Controle de Processos Aula: Estabilidade e Critério de Routh
107484 Controle de Processos Aula: Estabilidade e Critério de Routh Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB)
AULA 3. CRITÉRIO DE ESTABILIDADE DE Routh-Hurwitz. Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I
Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I AULA 3 CRITÉRIO DE ESTABILIDADE DE Routh-Hurwitz PROF. DR. ALFREDO DEL SOLE LORDELO TELA CHEIA Critério de estabilidade de Routh A questão
Modelos de Sistemas Amostrados
20 Modelos de Sistemas Amostrados Relógio u(kh) D/A u(t) G(s) Sistema y(t) A/D y(kh) Qual a função de transferência discreta vista pelo computador? 21 Recorde-se que, para determinar a função de transferência,
Transformada Z. Transformada Z Bilateral. Transformada de Fourier e Transformada Z. A transformada de Fourier não converge para todas as sequências.
Transformada Z Luís Caldas de Oliveira Introdução A transformada de Fourier não converge para todas as sequências. A transformada Z abrange uma maior classe de sinais. sumo 1. Definição 2. gião de Convergência
5 Descrição entrada-saída
Teoria de Controle (sinopse) 5 Descrição entrada-saída J. A. M. Felippe de Souza Descrição de Sistemas Conforme a notação introduzida no capítulo 1, a função u( ) representa a entrada (ou as entradas)
Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Erros de Estado Estacionário Carlos Alexandre Mello 1 Introdução Projeto e análise de sistemas de controle: Resposta de Transiente Estabilidade Erros de Estado Estacionário (ou Permanente) Diferença entre
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap2 - Modelagem no Domínio de Frequência Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos
INTRODUÇÃO À ANALISE DE SINAIS ELT 032
INTRODUÇÃO À ANALISE DE SINAIS ELT 032 Prof. Jeremias Barbosa Machado Introdução Neste capítulo estudaremos as Transformadas de Laplace. Elas apresentam uma representação de sinais no domínio da frequência
Transformada de Laplace. Transformada de Laplace
A generalização da representação por senóides complexas de um sinal de tempo contínuo fornecida pela Transformada de Fourier é realizada em termos de sinais exponenciais complexos pela. A Transformada
Pólos, Zeros e Estabilidade
Pólos, Zeros e Estabilidade Definindo Estabilidade A condição para estabilidade pode também ser expressa da seguinte maneira: se um sistema é estável quando sujeito a um impulso, a saída retoma a zero.
COQ 790 ANÁLISE DE SISTEMAS DA ENGENHARIA QUÍMICA AULA 10: Domínio Discreto; Transformada Z.
Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química COQ 790 ANÁLISE DE SISTEMAS DA ENGENHARIA QUÍMICA AULA 10: Domínio Discreto; Transformada Z. 2014/1 Introdução ao Domínio Discreto
- identificar operadores ortogonais e unitários e conhecer as suas propriedades;
DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;
Capítulo 2 Dinâmica de Sistemas Lineares
Capítulo 2 Dinâmica de Sistemas Lineares Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Dinâmica de Sistemas Lineares 1/57
TRANSFORMADA Z. A transformada Z de um sinal x(n) é definida como a série de potências: Onde z é uma variável complexa e pode ser indicada como.
TRANSFORMADA Z A transformada Z (TZ) tem o mesmo papel, para a análise de sinais e sistemas discretos LTI, que a transformada de Laplace na análise de sinais e sistemas nos sistemas contínuos do mesmo
Sistemas de Controle
CONCURSO PETROBRAS ENGENHEIRO(A) DE EQUIPAMENTOS JÚNIOR - ELÉTRICA ENGENHEIRO(A) JÚNIOR - ÁREA: ELÉTRICA Sistemas de Controle Questões Resolvidas QUESTÕES RETIRADAS DE PROVAS DA BANCA CESGRANRIO Produzido
UNIVERSIDADE ESTADUAL DO MARANHÃO CENTRO DE CIÊNCIAS TECNOLÓGICAS CURSO DE ENGENHARIA DA COMPUTAÇÃO. Professor Leonardo Gonsioroski
UNIVERSIDADE ESTADUAL DO MARANHÃO CENTRO DE CIÊNCIAS TECNOLÓGICAS CURSO DE ENGENHARIA DA COMPUTAÇÃO O que veremos na aula de hoje Transformadas Direta e Inversa de Laplace Técnicas de Frações Parciais
Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica
O método das frações parciais usa o conhecimento de diversos pares de transformada Z básicos e as propriedades da transformada Z para obtenção da transformada Z inversa das funções de interesse Admite-se
Transformada de Laplace. Transformada de Laplace (CP1) DEQ/UFSCar 1 / 76
Transformada de Laplace Transformada de Laplace (CP) www.professores.deq.ufscar.br/ronaldo/cp DEQ/UFSCar / 76 Roteiro I Introdução Definição da Transformada Transformada de Laplace de Algumas Funções Transformada
Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas.
Capítulo 6 Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Definição (6.2): Seja e uma função real incógnita definida num intervalo aberto.
Aula 3. Carlos Amaral Fonte: Cristiano Quevedo Andrea
Aula 3 Carlos Amaral Fonte: Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Marco de 2012. Resumo 1 Introdução 2 3
Aula 4 Respostas de um SLIT
Aula 4 Respostas de um SLIT Introdução Características de um SLIT Resposta ao degrau unitário Resposta a entrada nula Resposta total A convolução entre dois sinais de tempo contínuo x(t) e h(t) é dada
Modelagem no Domínio do Tempo
CAPÍTULO TRÊS Modelagem no Domínio do Tempo SOLUÇÕES DE DESAFIOS DOS ESTUDOS DE CASO Controle de Antena: Representação no Espaço de Estados Para o amplificador de potência, E s a() V () s 150. Usando a
Comecemos escrevendo a forma geral de uma equação diferencial de ordem n, 1 inear e invariante no tempo, , b i
3 6 ADL aula 2 Função de Transferência Comecemos escrevendo a forma geral de uma equação diferencial de ordem n, 1 inear e invariante no tempo, onde c(t) é a saída, r(t) é a entrada e os a i, b i e a forma
A Transformada de Laplace
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO
Circuitos Elétricos III
Circuitos Elétricos III Prof. Danilo Melges ([email protected]) Depto. de Engenharia Elétrica Universidade Federal de Minas Gerais A Transformada de Laplace na análise de circuitos Parte 3 Função
Análise no Domínio do Tempo de Sistemas em Tempo Contínuo
Análise no Domínio do Tempo de Sistemas em Tempo Contínuo Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco
Aula 8. Cristiano Quevedo Andrea 1. Curitiba, Abril de DAELT - Departamento Acadêmico de Eletrotécnica
Classificaçã dos Sistemas de Controle Especificaçõe do Estado Estacionário de Erro Aula 8 Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico
Modelagem Matemática de Sistemas
Modelagem Matemática de Sistemas 1. Descrição Matemática de Sistemas 2. Descrição Entrada-Saída 3. Exemplos pag.1 Teoria de Sistemas Lineares Aula 3 Descrição Matemática de Sistemas u(t) Sistema y(t) Para
Antiderivadas e Integrais Indefinidas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Antiderivadas e Integrais
INSTITUTO FEDERAL DO ESPÍRITO SANTO - CAMPUS SERRA. Sistemas
INSTITUTO FEDERAL DO ESPÍRITO SANTO - CAMPUS SERRA Sistemas Dinâmicos Para controlar é preciso conhecer Sistemas dinâmicos Modificam-se no decorrer do tempo Modelos matemáticos Método analítico (Leis físicas)
Transformada de Laplace. Definição. O processo inverso de obter a função temporal f(t) a partir da
Prof. Raimundo Nonato das Mercês Machado O processo inverso de obter a função temporal f(t) a partir da transformada de Laplace F(s) é chamado transformada de Laplace inversa. A notação para a transformada
parciais primeira parte
MÓDULO - AULA 3 Aula 3 Técnicas de integração frações parciais primeira parte Objetivo Aprender a técnica de integração conhecida como frações parciais. Introdução A técnica que você aprenderá agora lhe
II.4 - Técnicas de Integração Integração de funções racionais:
Nesta aula, em complemento ao da aula anterior iremos resolver integrais de funções racionais utilizando expandindo estas funções em frações parciais. O uso deste procedimento é útil para resolução de
Ações de controle básicas: uma análise do desempenho em regime
Capítulo 3 Ações de controle básicas: uma análise do desempenho em regime estático 3. Introdução Neste capítulo, as ações de controle básicas utilizadas em controladores industriais e o seu desempenho
Sistemas de Controle 2
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Cap.7 - Erros de Estado Estacionário Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 2 Prof. Dr. Marcos Lajovic
Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello [email protected] 1
Erros de Estado Estacionário Carlos Alexandre Mello 1 Introdução Projeto e análise de sistemas de controle: Resposta de Transiente Estabilidade Erros de Estado Estacionário (ou Permanente) Diferença entre
PSI.3031 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA EXPERIÊNCIA 10: REDES DE SEGUNDA ORDEM
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI.3031 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA Edição 2017 E.Galeazzo / L.Yoshioka
Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010
Gabarito da Prova Final Unificada de Cálculo IV Dezembro de a Questão: (5 pts) Dentre as três séries alternadas abaixo, diga se convergem absolutamente, se convergem condicionalmente ou se divergem Justifique
1. FUNÇÕES REAIS DE VARIÁVEL REAL
1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções
PNV3324 FUNDAMENTOS DE CONTROLE EM ENGENHARIA
DEPARTAMENTO DE ENGENHARIA NAVAL E OCEÂNICA ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PNV3324 FUNDAMENTOS DE CONTROLE EM ENGENHARIA NOTAS DE AULA* Prof. Helio Mitio Morishita * Este texto é um mero
IV. ESTABILIDADE DE SISTEMAS LIT
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE IV. ESTABILIDADE DE SISTEMAS LIT Prof. Davi Antônio dos Santos ([email protected]) Departamento de
Pontifícia Universidade Católica de Goiás. Engenharia de Controle e Automação. Prof: Marcos Lajovic Carneiro Aluno (a):
Pontifícia Universidade Católica de Goiás Departamento de Engenharia Laboratório ENG 3502 Controle de Processos 01 Prof: Marcos Lajovic Carneiro Aluno (a): Aula Prática 01 Polinômios, frações parciais,
EES-49/2012 Prova 1. Q1 Dado o seguinte conjunto de equações:
Q1 Dado o seguinte conjunto de equações: EES-49/2012 Prova 1 Onde: h C é o sinal de entrada do sistema; θ é o sinal de saída do sistema; T P é uma entrada de perturbação; T T, T R e h R são variáveis intermediárias;
V. ANÁLISE NO DOMÍNIO DO TEMPO
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE V. ANÁLISE NO DOMÍNIO DO TEMPO Prof. Davi Antônio dos Santos ([email protected]) Departamento de
5 Transformadas de Laplace
5 Transformadas de Laplace 5.1 Introdução às Transformadas de Laplace 4 5.2 Transformadas de Laplace definição 5 5.2 Transformadas de Laplace de sinais conhecidos 6 Sinal exponencial 6 Exemplo 5.1 7 Sinal
Representação e Análise de Sistemas Dinâmicos Lineares Componentes Básicos de um Sistema de Controle
Representação e Análise de Sistemas Dinâmicos Lineares 1 Introdução 11 Componentes Básicos de um Sistema de Controle Fundamentos matemáticos 1 Singularidades: Pólos e zeros Equações diferencias ordinárias
Controle e Sistemas Não lineares
Controle e Sistemas Não lineares Prof. Marcus V. Americano da Costa F o Departamento de Engenharia Química Universidade Federal da Bahia Salvador-BA, 01 de dezembro de 2016. Sumário Objetivos Introduzir
SCILAB: MÓDULO 4 SISTEMAS E CONTROLE
SCILAB: MÓDULO 4 SISTEMAS E CONTROLE Scilab 5.3.3 Dr.ª Eng.ª Mariana Santos Matos Cavalca O que é controlar? Função de Transferência: breve definição u(t) Sistema LIT y(t) Usualmente (sistemas próprios)
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap5 Redução de Subsistemas Múltiplos Prof. Filipe Fraga Sistemas de Controle 1 5. Redução de Subsistemas Múltiplos
EES-49/2012 Correção do Exame. QBM1 Esboce o diagrama de Nyquist para a seguinte função de transferência:
EES-49/2012 Correção do Exame QBM1 Esboce o diagrama de Nyquist para a seguinte função de transferência: Analise a estabilidade do sistema em malha fechada (dizendo quantos polos instáveis o sistema tem
CRITÉRIO DE ESTABILIDADE DE ROUTH
ENGENHARIA ELETRÔNICA DAELN UTFPR Prof. Paulo R. Brero de Campos CRITÉRIO DE ESTABILIDADE DE ROUTH Um sistema será estável quando todos os polos estiverem no semiplano esquerdo do plano S. Exemplo: G(s)
