Sistemas e Sinais (LEIC) Capítulo 10 Transformadas de Fourier
|
|
|
- Maria de Carvalho Bernardes
- 7 Há anos
- Visualizações:
Transcrição
1 Sistemas e Sinais (LEIC) Capítulo Transformadas de Fourier Carlos Cardeira Diapositivos para acompanhamento da bibliografia de base (Structure and Interpretation of Signals and Systems, Edward A. Lee and Pravin Varaiya), maioritariamente baseados na informação pública disponível em
2 Sinais e Transformadas de Fourier SinaisContínuos->CTFT (Transformada de Fourier para tempo contínuo a definir) SinaisContínuosPeriodicos -> Série de Fourier (que é um sinal discreto) SinaisDiscretos = [Inteiros->Complexos] -> DTFT (tranformada de Fourier para tempo discreto a definir) SinaisDiscretosPeriódicos -> Série de Fourier (que é um sinal discreto)
3 CTFT x SinaisContínuos tempo C CTFT ( x) X SinaisContínuos frequência C jwt t tempo, x( t) X ( w) e dw jwt w frequências, X ( w) x( t) e dt O domínio do sinal x(t) é o tempo que se mede em segundos O domíno da CTFT é a frequência que se mede em rad/s
4 Sinais periódicos x( t p) x( t), w p x() t X e k jkw t Já conhecíamos este resultado do desenvolvimento em série de Fourier
5 Se o período tender para infinito p, w p jkwt jwt x( t) X e X ( w) e dw k -p -p p p -w -w w w
6 Se p tender para infinito, a série de Fourier tende para a CTFT -p -p p p -w -w w w jkwt jwt p, w, x( t) X ke X ( w) e dw p -p p -4w -3w -w -w w -w -3w -4w
7 Se p tender para infinito, a série de Fourier tende para a CTFT Na CTFT todas as frequências estão representadas. Os sinais normais terão um espectro da frequência. Se o sinal for aproximadamente uma sinusoide, o espectro terá amplitude máxima na frequência da sinusoide. Em torno desta frequência, a amplitude da CTFT cai. Se fosse verdadeiramente uma sinousoide pura, a CTFT seria apenas um delta de Dirac nessa frequência. De um modo geral, o área definida pela CTFT entre duas frequências está relacionada com a quantidade de energia do sinal nessa gama de frequências.
8 Exemplo: CTFT de uma exponencial t tempo, x( t) e jw t x( t) X ( w) e jwt dw e jw t X ( w) ( w w ) w
9 Exemplo: CTFT de um coseno t tempo, x( t) cos( w t) jw t jwt e e x( t) X ( w) e dw cos( wt) X ( w) ( w w ) ( w w ) jw t -w w
10 Exemplo: CTFT de um seno t tempo, x( t) sin( w t) jw t jwt e x( t) X ( w) e dw sin( wt) X ( w) ( w w) ( w w) j e j jw t / j) /j) -w w
11 CTFT de sinais reais Se o sinal é real : x t * ( ) x ( t) * * jwt * jwt x ( t) X ( w) e dw X ( w) e dw w * jwt * j t X w e dw X e d ( ) ( ) ( ) * j t X ( ) e d w jwt * jwt X ( w) e dw X ( w) e dw * X ( w) X ( w) Já era um resultado conhecido das séries de Fourier
12 Mudança de escala y( t) x( t) jwt jwt Y ( w) e dw X ( w) e dw w j t X e d w w jwt X e dw w Y ( W ) X
13 Linearidade y ax bx Y( w) ax ( w) bx ( w)
14 Reverse y( t) x( t) y( t) x( t) X ( w) e dw Y ( w) e dw jwt jwt u w Y ( w) e dw X ( u) e du X ( u) e du Y ( w) X ( w) jwt jut jut
15 Delta no domínio do tempo x t e X w w w jwt ( ) ( ) ( ) e se x( t) ( t)? jwt X ( w) x( t) e dt O delta de Dirac tem todas as frequências. Se pegarmos em todas as sinusoides do mundo (e jwt ) e as somarmos, obtemos um delta de Dirac.
16 Delta de Dirac como entrada Como o delta de Dirac representa todas as frequências, quando se excita um sistema com um delta de Dirac obtem-se toda a informação sobre o sistema uma vez que o excitámos com todas as frequências.
17 Sinais Periódicos Relação entre a transformada de Fourier e a Série de Fourier x t X e X w X w kw jkwt ( ) ( ) ( ) k k k k X ( kw ) X k p t -w w w 3w w
18 Exemplo ut () t t y( t) t e u( t) t jwt t jwt ( jw) t Y ( w) e u( t) e dt e e dt e dt e jw ( jw) t ( jw)
19 Exemplo Se fizermos reverse, não é necessário recalcular a Transformada, basta aplicarmos a regra y(t)=x(-t), Y(w)=X(-w) z( t) y( t) e u( t) t Z( w) Y ( w) jw
20 Soma das duas ' t z t e y t y t ( ) ( ) ( ) ' Z w Y w Y w ( ) ( ) ( ) w ( jw) ( jw) jw jw ( jw)( jw)
21 Resposta Impulsiva e Resposta em Frequência h( t) H ( w)? y( t) ( h* x)( t) h( s) x( t s) ds x() t e jwt H ( w) e jwt ( ) h() s e jw t s ds A Resposta em Frequência é a Tranformada de Fourier da Resposta Impulsiva.
22 Exemplo Calcular a resposta impulsiva de y ( t) y( t) x( t) sabendo que a resposta em frequência é H( w) jw Resposta: Como já vimos a transformada de Fourier Inversa de H( w) t é h( t) e u( t) jw
23 Exemplo Calcular a resposta impulsiva de y( t) 3 y ( t) y( t) x( t)
24 Calculando a RF Resposta: H( w)? jwt jwt H ( w)( jw) e 3 H ( w) jw e ( ) H( w) H w e ( jw) 3 jw ( jw)( jw) jwt e jwt
25 Factorizando (um polinómio do º grau pode sempre ser factorizado em dois termos (ver apêndice B)). A B Hw ( ) jw jw ( jw)( jw) A( jw) B( jw) A Ajw B Bjw A B A B A B B ; A Hw ( ) jw jw
26 TF inversa Como já vimos a transformada de Fourier Inversa de H( w) jw jw é h t e e u t t t ( ) ( )
27 Nota Quando se resolvem equações diferenciais sabemos que somos conduzidos a uma resposta livre, a uma resposta forçada, etc. Este método permite resolver qualquer equação diferencial desde que se saibam factorizar polinómios, decompor em fracções parciais e fazer a convolução
28 Mais simetria jwt jwt x( t) X ( w) e dw x( t) X ( w) e dw Mudanças de variável: jsu jsw x( u) X ( s) e ds x( w) X ( s) e ds jwt x( w) X ( t) e dt x( t) X ( w) X ( t) x( w)
29 Exemplos x(t) /a -a a X(w)=?
30 Exemplo a jwt jwt jwt X ( w) x( t) e dt x( t) e dt e dt a a a jwa jwa jwt a jwa jwa e e e e e sin( aw ) a jw a a jw aw j aw a a
31 Exemplo X( w) sin( aw) aw aw= - w= /a aw= - w= - /a w= aw= w= /a aw= w= /a w
32 Exemplo sin( aw) X ( w) sinc aw sin( x) Nota: sinc( x) x a w >> a=; >> w=-pi:pi/:pi; >> X=*pi/a./w.*(sin(a*w)); Warning: Divide by zero. >> plot (w,x)
33 Função sinc sin( aw) X ( w) sinc aw sin( x) Nota: sinc( x) x a w >> %% a função sinc(x) retorna (sin(pi*x))/pi*x pelo que o mesmo gráfico pode ser obtido por: >>>> plot (w,*pi*sinc(a/pi*w))
34 Analogamente 8 x(t) /a 6 4 X(w) -a a Se considerarmos que um sistema tem como resposta impulsiva X(t) então a sua resposta em frequência seria x(w) (a menos uma simetria e um factor pi), pelo que um filtro passa-baixo ideal é não causal (em tempo real É impossível realizar um filtro passa-baixo ideal (sobre os dados de um ficheiro já seria possível)
35 Aproximação usando Delay x(w) /a 8 6 X(w) 4 -a a Se considerarmos atrasarmos o sinal em 3pi/4, e truncarmos o valor da resposta impulsiva para t<, obtemos uma aproximação melhor. Mas há casos em que não se pode fazer um delay, por exemplo, sempre que há feedback.
36 Exemplo Hw ( ) 3jw jw jw Qual a amplitude e fase?
37 Amplitude e fase H( w) 3jw jw jw H( w) 9w w 4w H ( w) arctg(3 w) arctg( w) arctg( w)
38 Qual a equação diferencial que descreve o sistema? H( w) 3 jw 3 jw jw jw 3 jw w y( t) 3 y ( t) y( t) 3 x ( t) x( t)
39 E a resposta impulsiva? H( w) 3jw A B jw jw jw jw A jw B jw 3 jw A B A B jw 3 jw A B B A A B 3 A A 3 A ; B como x( at) w X a a h t e e u t t ( ) t ( )
40 E a resposta a um degrau? xt () t t h t e e u t t ( ) t ( ) y( t) h( s) x( t s) ds h( s) ds Como era de esperar uma vez que o degrau corresponde ao integral de um impulso. Aplicando o integral da entrada obtemos o integral da saída, uma vez que o sistema é linear. t
41 Exemplo simetria Cálculo de integrais que não se saberia calcular x( t) t e u( t) X( w) jw se xt () jt X ( w) w e u( w) jwt w e dt e u( jt w)
42 Mais exemplos de simetria Produto de sinais x y ( t) X ( w) Y ( w) x( t) y( t) X Y ( w)
43 DTFT DTFT InvDTFT : SinaisDiscretos SinaisContínuosPeriódicos : SinaisContínuosPeriódicos SinaisDiscretos n x( n) w X ( w) w R, X ( w) x( n) e jwn jwn t N, x( n) X ( w) e dw
44 Exemplo x(n) jwn X ( w) x( n) e e n n 3 jwn e e jw4 jw
45 X(w) Módulo x(n) X( w) e e jw8 jw w A DTFT tem periodicidade pi
46 DTFT e Série de Fourier X( w) x( n) e n jwn X w x n e X w j ( w ) n ( ) ( ) ( ) n A DTFT é portanto periódica. Se é periódica pode ser representada por uma série de Fourier: x() t k X e k jkw t jkww X( w) e e k k k k k x( k) Por isso, se calcularmos os coeficientes da série de Fourier da DTFT e recuperarmos esse sinal pela serie de Fourier obtemos o sinal que deu origem à DTFT a menos de uma inversão no tempo. jkw
47 DFT DFT InvDFT : SinaisDiscretosPeriódicos SinaisDiscretosPeriódicos : SinaisDiscretosPeriódicos SinaisDiscretos p ', n ( ) k n X n, x( n) p x k e p k X e ' k jnw k jkw n
48 Exemplo x(n) periódico 8 p jwn X ( w) x( n) e e n n 3 jwn e e jw4 jw
49
Caderno de Exercícios
Caderno de Exercícios Orlando Ferreira Soares Índice Caracterização de Sinais... Caracterização de Sistemas...0 Sistemas LIT - Convolução...5 Série de Fourier para Sinais Periódicos Contínuos...0 Transformada
i) Filtragem ii) Amostragem e reconstituição cuja Transformada de Fourier (TF) é dada na Figura seguinte e que constitui a entrada de um SLIT S.
6ª Aula Prática de Sistemas e Sinais (LEIC Alameda) Sumário: i) Filtragem ii) Amostragem e reconstituição Exercícios Propostos Exercício 1: Considere o sinal x (t) cuja Transformada de Fourier (TF) é dada
I-6 Sistemas e Resposta em Frequência. Comunicações (6 de Dezembro de 2012)
I-6 Sistemas e Resposta em Frequência (6 de Dezembro de 2012) Sumário 1. A função especial delta-dirac 2. Sistemas 3. Resposta impulsional e resposta em frequência 4. Tipos de filtragem 5. Associação de
Transformada de Fourier Discreta (DFT)
UNIVERSIDADE FEDERAL DA PARAÍBA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA Transformada de Fourier Discreta (DFT) Prof. Juan Moises Mauricio Villanueva [email protected] 1 Transformada de Fourier
Teste Tipo. Sinais e Sistemas (LERCI) 2004/2005. Outubro de Respostas
Teste Tipo Sinais e Sistemas (LERCI) 2004/2005 Outubro de 2004 Respostas i Problema. Considere o seguinte integral: + 0 δ(t π/4) cos(t)dt em que t e δ(t) é a função delta de Dirac. O integral vale: 2/2
Sistemas Lineares e Invariantes
Universidade Federal da Paraíba Programa de Pós-Graduação em Engenharia Elétrica Sistemas Lineares e Invariantes Prof. Juan Moises Mauricio Villanueva [email protected] www.cear.ufpb.br/juan 1 Sistemas
Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 11
Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo Laplace Bode Fourier Conteúdo - Transformada de Laplace.... - Propriedades básicas da transformada de Laplace....2 - Tabela de
Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial
Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de
Licenciatura em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra. Análise e Processamento de Bio-Sinais - MIEBM
Licenciatura em Engenharia Biomédica Faculdade de Ciências e Tecnologia Slide Slide 1 1 Tópicos: Representações de Fourier de Sinais Compostos Introdução Transformada de Fourier de Sinais Periódicos Convolução
Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas
Sinais e Sistemas Série de Fourier Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Lembremos da resposta de um sistema LTI discreto a uma exponencial complexa: x[ n] z,
Processamento de sinais digitais Aula 3: Transformada de Fourier (Parte 1)
Processamento de sinais digitais Aula 3: Transformada de Fourier (Parte 1) [email protected] Tópicos Definição da Transformada de Fourier (TF) Propriedades importantes (ex: linearidade e periodicidade)
TRANSFORMADA DE FOURIER. Larissa Driemeier
TRANSFORMADA DE FOURIER Larissa Driemeier TESTE 7hs30 às 8hs00 Este não é um sinal periódico. Queremos calcular seu espectro usando análise de Fourier, mas aprendemos que o sinal deve ser periódico. O
Análise e Processamento de Bio-Sinais. Mestrado Integrado em Engenharia Biomédica. Sinais e Sistemas. Licenciatura em Engenharia Física
Análise e Processamento de Bio-Sinais Mestrado Integrado em Engenharia Biomédica Licenciatura em Engenharia Física Faculdade de Ciências e Tecnologia Slide 1 Slide 1 Tópicos: Representação de Sinais por
Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 11
Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo Laplace Bode Fourier Conteúdo - Transformada de Laplace.... - Propriedades básicas da transformada de Laplace....2 - Tabela de
Transformada de Laplace
Sinais e Sistemas Transformada de Laplace [email protected] Instituto Superior Técnico Sinais e Sistemas p.1/60 Resumo Definição da transformada de Laplace. Região de convergência. Propriedades da transformada
Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica
Propriedades das Representações de Fourier Sinais periódicos de tempo contínuo ou discreto têm uma representação por série de Fourier, dada pela soma ponderada de senoides complexas com frequências múltiplas
Transformada Z. Transformada Z
Semelhante ao apresentado anteriormente, entre a relação das transformadas de Fourier e de Laplace, será visto que a generalização da representação senoidal complexa de um sinal de tempo discreto pela
I-6 Sistemas e Resposta em Frequência
I-6 Sistemas e Resposta em Frequência Comunicações 1 Sumário 1. A função especial delta-dirac 2. Sistemas 3. Resposta impulsional e resposta em frequência 4. Tipos de filtragem 5. Associação de sistemas
Exercícios para Processamento Digital de Sinal. 1 Transformada e Série de Fourier
Exercícios para Processamento Digital de Sinal Transformada e Série de Fourier Exercício Considere o seguinte sinal x(t) = sin 2 (0πt). Encontre uma forma aditiva para este sinal e represente graficamente
EEE 335 Eletromagnetismo II
0.6 J 0 J 0.4 J 2 J 3 0.2 0 0.2 0 2 4 6 8 0 Universidade Federal do Rio de Janeiro EEE 335 Eletromagnetismo II Prof. Antonio Carlos Siqueira de Lima Domínio da Frequência & Fasores Transformadas de Fourier
Teoria das Comunicações Prof. André Noll Barreto Prova 1 Gabarito
Prova Gabarito Questão (4 pontos) Um pulso é descrito por: g t = t e t / u t u t, a) Esboce o pulso. Este é um sinal de energia ou de potência? Qual sua energia/potência? (,7 ponto) b) Dado um trem periódico
Teoria das Comunicações Prof. André Noll Barreto Prova /02
eoria das Comunicações Prova 1-1/ Aluno: Matrícula: Instruções A prova terá a duração de h3 A prova pode ser feita a lápis ou caneta Não é permitida consulta a notas de aula, todas as fórmulas necessárias
Capítulo 3. Função de transferência e dinâmicas dos sistemas
DINÂMICA DE SISTEMAS BIOLÓGICOS E FISIOLÓGICOS Capítulo 3 Função de transferência e dinâmicas dos sistemas 3.1. Aplicação da transformada de Laplace às equações diferenciais A transformada de Laplace é
REPRESENTAÇÃO DE SISTEMAS NO DOMÍNIO Z. n +
REPRESETAÇÃO DE SISTEMAS O DOMÍIO Z [ ] x h y h h n RC RC RC X H Y Y H X R R n h n h Z H < < + : ) ( ) ( ) ( ) ( ) ( ) ( ; ) ( ) ( ) ( Função de Sistema : FUÇÃO DE SISTEMA A PARTIR DA REPRESETAÇÃO POR
Transformada de Fourier. Theo Pavan e Adilton Carneiro TAPS
Transformada de Fourier Theo Pavan e Adilton Carneiro TAPS Análise de Fourier Análise de Fourier - representação de funções por somas de senos e cossenos ou soma de exponenciais complexas Uma análise datada
Sílvia Mara da Costa Campos Victer Concurso: Matemática da Computação UERJ - Friburgo
Convolução, Série de Fourier e Transformada de Fourier contínuas Sílvia Mara da Costa Campos Victer Concurso: Matemática da Computação UERJ - Friburgo Tópicos Sinais contínuos no tempo Função impulso Sistema
Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto
Universidade Federal da Paraíba Programa de Pós-Graduação em Engenharia Elétrica Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto Prof. Juan Moises Mauricio Villanueva [email protected]
EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 2 quadrimestre 2011
EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares quadrimestre 0 (P-0003D) (HAYKIN, 00, p 9) Use a equação de definição da TF para obter a representação no domínio da
Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros. Fundação Educacional Montes Claros
Sinais e Sistemas Série de Fourier Renato Dourado Maia Faculdade de Ciência e Tecnologia de Montes Claros Fundação Educacional Montes Claros Lembremos da resposta de um sistema LTI discreto a uma exponencial
1 o Teste Tipo. Sinais e Sistemas (LERC/LEE) 2008/2009. Maio de Respostas
o Teste Tipo Sinais e Sistemas (LERC/LEE) 2008/2009 Maio de 2009 Respostas i Problema. (0,9v) Considere o seguinte integral: + 0 δ(t π/4) cos(t)dt em que t eδ(t) é a função delta de Dirac. O integral vale:
Sistemas lineares. Realce no domínio de freqüências. Propriedades. Sistema: definição. Sistemas harmônicos e análise de sinais complexos
Realce no domínio de freqüências Hitoshi Capítulo 4 do Gonzalez Sistemas lineares muito utilizado para a descrição de sistemas elétricos e ópticos possuem fundamentos matemáticos bem estabelecidos para
Transformada Discreta de Fourier (DFT)
Transformada Discreta de Fourier (DFT) A DFT de uma sequência x n de comprimento finito N é definida como: X k = x n e j2π N kn, 0 k N 1 A DFT mapeia uma sequência de comprimento N, x n, em outra sequência,
Transformada de Fourier Discreta no Tempo (DTFT)
Transformada de Fourier Discreta no Tempo (DTFT) Transformada de Fourier de um sinal discreto no tempo x(n): X e jω = x(n)e jωn n= A DTFT é uma função complexa da variável real e contínua ω. A DTFT é uma
Processamento Digital de Sinais
Processamento Digital de Sinais Carlos Alexandre Mello Carlos Alexandre Mello [email protected] 1 Sinais Digitais Um sinal pode ser entendido como uma função que carrega uma informação Sinal de voz O sinal
INTRODUÇÃO À ANALISE DE SINAIS ELT 032
INTRODUÇÃO À ANALISE DE SINAIS ELT 032 Prof. Jeremias Barbosa Machado Introdução Neste capítulo estudaremos as Transformadas de Laplace. Elas apresentam uma representação de sinais no domínio da frequência
Aula 05 Transformadas de Laplace
Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número
Aula 05 Transformadas de Laplace
Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número
Processamento de sinais digitais
Processamento de sinais digitais Aula 2: Descrição discreta no tempo de sinais e sistemas [email protected] Tópicos Sequências discretas no tempo. Princípio da superposição para sistemas lineares.
Transformada Discreta de Fourier (DFT)
Transformada Discreta de Fourier DFT) Processamento de Sinais 5/6 Engenharia Aeroespacial Sinais periódicos Seja x[n] um sinal periódico com período x[n + r] = x[n] para r Z) O sinal x[n] é determinado
Sinais e Sistemas p.1/33
Resumo Sinais e Sistemas Transformada de Fourier de Sinais Contínuos [email protected] Representação de sinais aperiódicos Transformada de Fourier de sinais periódicos Propriedades da transformada de Fourier
Transformada Z. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Carlos Alexandre Mello Carlos Alexandre Mello [email protected] 1 Transformada de Fourier de uma Sequência Problema: Há casos onde a Transformada de Fourier não converge Solução Transformada Z A Transformada
Transformada Discreta de Fourier
Carlos Alexandre Mello Transformadas O uso de transformadas serve para observar características de um sinal que já estavam presentes nele, mas que podem não ser observáveis em um domínio Assim, as transformadas
EXAMES DE ANÁLISE MATEMÁTICA III
EXAMES DE ANÁLISE MATEMÁTICA III Jaime E. Villate Faculdade de Engenharia Universidade do Porto 22 de Fevereiro de 1999 Resumo Estes são alguns dos exames e testes da disciplina de Análise Matemática III,
Análise de Sinais no Tempo Contínuo: A Série de Fourier
Análise de Sinais no Tempo Contínuo: A Série de Fourier Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco
Sinais e Sistemas - Lista 1
UNIVERSIDADE DE BRASÍLIA, FACULDADE GAMA Sinais e Sistemas - Lista 1 4 de setembro de 2015 1. Considere o sinal x(t) mostrado na figura abaixo. O sinal é zero no intervalo 2 < t < 2. a) O gráfico a seguir
Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas.
Capítulo 6 Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Definição (6.2): Seja e uma função real incógnita definida num intervalo aberto.
Transformada Z. Transformada Z Bilateral. Transformada de Fourier e Transformada Z. A transformada de Fourier não converge para todas as sequências.
Transformada Z Luís Caldas de Oliveira Introdução A transformada de Fourier não converge para todas as sequências. A transformada Z abrange uma maior classe de sinais. sumo 1. Definição 2. gião de Convergência
Processamento (Digital) de Sinal. Caderno de exercícios para as horas não presenciais
Caderno de exercícios para as horas não presenciais João Paulo Teixeira ESTiG, 014 Capítulo 1 Sinais 1. Considere o Considere o seguinte sinal contínuo: x(t) 1-1 0 1 3 t a. Represente y1(t)=x(t+1). b.
Sinais e Sistemas - Lista 3 Gabarito
UNIVERSIDADE DE BRASÍLIA, FACULDADE GAMA Sinais e Sistemas - Lista Gabarito 7 de novembro de 05. Calcule a Transformada de Fourier dos seguintes sinais: a) x[n] = ( n ) u[n ] b) x[n] = ( ) n c) x[n] =
SEL Processamento Digital de Imagens Médicas. Aula 4 Transformada de Fourier. Prof. Dr. Marcelo Andrade da Costa Vieira
SEL 0449 - Processamento Digital de Imagens Médicas Aula 4 Transformada de Fourier Prof. Dr. Marcelo Andrade da Costa Vieira [email protected] Jean Baptiste Joseph Fourier 2 Exemplo: Função Degrau 3 Exemplo:
TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER
TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER Transformada integral Em Física Matemática há pares de funções que satisfazem uma expressão na forma: F α = a b f t K α, t dt f t = A função F( ) é denominada
Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 5. Heaviside Dirac Newton
Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 5 Heaviside Dirac Newton Conteúdo 5 - Circuitos de primeira ordem...1 5.1 - Circuito linear invariante de primeira ordem
Revisão Análise em frequência e amostragem de sinais. Hilton de Oliveira Mota
Revisão Análise em frequência e amostragem de sinais Hilton de Oliveira Mota Introdução Análise em frequência (análise espectral): Descrição de quais frequências compõem um sinal. Por quê? Senóides são
Série de Fourier. Prof. Dr. Walter Ponge-Ferreira
Resposta à Excitação Periódica Série de Fourier Prof. Dr. Walter Ponge-Ferreira E-mail: [email protected] Escola Politécnica da Universidade de São Paulo Departamento de Engenharia Mecânica - PME Av. Prof.
A TRANSFORMADA Z. Métodos Matemáticos I C. Prof. Hélio Magalhães de Oliveira, Texto por R. Menezes Campello de Souza
A TRANSFORMADA Z Métodos Matemáticos I C Prof. Hélio Magalhães de Oliveira, Texto por R. Menezes Campello de Souza Notação x(t) é o sinal analógico x(nt) = x[n], n inteiro, é a seqüência T é o período
Amostragem. Representação com FT para Sinais Periódicos Relacionando a FT com a FS Amostragem Amostrando Sinais de Tempo Contínuo.
Amostragem Representação com FT para Sinais Periódicos Relacionando a FT com a FS Amostragem Amostrando Sinais de Tempo Contínuo Amostragem 1 Representação com FT para Sinais Periódicos A representação
Sistemas lineares. Aula 7 Transformada Inversa de Laplace
Sistemas lineares Aula 7 Transformada Inversa de Laplace Transformada Inversa de Laplace Transformada Inversa de Laplace e RDC x(t) única Metódos Inversão pela Definição Inversão pela Expansão em Frações
EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012
EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0
Introdução aos Circuitos Elétricos
1 / 47 Introdução aos Circuitos Elétricos Séries e Transformadas de Fourier Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia 2 / 47 Séries e Transformadas
Capítulo 6 Filtragem, Amostragem e Reconstrução
Capítulo 6 Filtragem, Amostragem e Reconstrução 6. Filtragem 6.2 Amostragem e reconstrução de sinais Capítulo 6 Filtragem, Amostragem e Reconstrução 6. Filtragem 6.2 Amostragem e reconstrução de sinais
Tranformada de Fourier. Guillermo Cámara-Chávez
Tranformada de Fourier Guillermo Cámara-Chávez O que é uma série de Fourier Todos conhecemos as funções trigonométricas: seno, cosseno, tangente, etc. O que é uma série de Fourier Essa função é periódica,
FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS
FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA ELÉTRICA Princípios de Comunicações Aulas 7 e 8 Milton Luiz Neri Pereira (UNEMAT/FACET/DEE) 3. Série de Fourier
Sistemas lineares. Aula 4 Respostas de um SLIT
Sistemas lineares Aula 4 Respostas de um SLIT Cronograma Introdução Características de um SLIT Resposta ao degrau unitário Resposta a entrada nula Resposta total Introdução A convolução entre dois sinais
Capítulo 2 Dinâmica de Sistemas Lineares
Capítulo 2 Dinâmica de Sistemas Lineares Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Dinâmica de Sistemas Lineares 1/57
Senoides Complexas e Sistemas LTI
Representação de Fourier para Sinais A representação de Fourier para sinais é realizada através da soma ponderada de funções senoidais complexas Se este sinal for aplicado a um sistema LTI, a saída do
Processamento (Digital) de Sinal. Caderno de exercícios para as aulas
Caderno de exercícios para as aulas João Paulo Teixeira ESTiG, 04 Processamento (Digital) de Sinal ESTiG - IPB Exercícios Matlab. Identificar no ambiente Matlab o Command Window, o Workspace, o Current
Circuitos Elétricos II
Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Introdução Definição da Transformada de aplace Propriedades da Transformada de aplace
Sinais e Sistemas - Lista 3
UNIVERSIDADE DE BRASÍLIA, FACULDADE GAMA Sinais e Sistemas - Lista 3 7 de novembro de 0. Calcule a Transformada de Fourier dos seguintes sinais: a) x[n] = ( n ) u[n ] b) x[n] = ( ) n c) x[n] = u[n ] u[n
Análise e Transmissão de Sinais
Análise e Transmissão de Sinais Edmar José do Nascimento (Princípios de Comunicações) Universidade Federal do Vale do São Francisco Roteiro 1 Transformada de Fourier 2 Sistemas Lineares 3 Filtros 4 Distorção
Aula 15 Propriedades da TFD
Processamento Digital de Sinais Aula 5 Professor Marcio Eisencraft abril 0 Aula 5 Propriedades da TFD Bibliografia OPPENHEIM, A. V.; SCHAFER. Discrete-time signal processing, 3rd. ed., Prentice-Hall, 00.
Método de Quadrados Mínimos: Caso discreto
Método de Quadrados Mínimos: Caso discreto Marina Andretta ICMC-USP 23 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500 - cálculo numérico
Sistemas Lineares. Aula 9 Transformada de Fourier
Sistemas Lineares Aula 9 Transformada de Fourier Séries de Fourier A Série de Fourier representa um sinal periódico como uma combinação linear de exponenciais complexas harmonicamente relacionadas. Como
2/47. da matemática é ainda de grande importância nas várias áreas da engenharia. Além disso, lado de Napoleão Bonaparte. 1/47
Introdução aos Circuitos Elétricos Séries e Transformadas de Fourier Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia Sinais: conjunto de dados ou informação
Funções de Green. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE
Funções de Green Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções de Green Suponha que queremos resolver a equação não-homogênea no intervalo a x b, onde f (x) é uma função conhecida. As condições
Sinais Não-Periódicos de Tempo Discreto - DTFT
A Transformada de Fourier de Tempo Discreto será desenvolvida com base na Série de Fourier de Tempo Discreto, descrevendo um sinal não-periódico como o limite de um sinal periódico com período N aproximando-se
O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir:
Sistemas e Sinais O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir: 1 Sistemas e Sinais O bloco conversor A/D converte o sinal
Aula 9. Diagrama de Bode
Aula 9 Diagrama de Bode Hendrik Wade Bode (americano,905-98 Os diagramas de Bode (de módulo e de fase são uma das formas de caracterizar sinais no domínio da frequência. Função de Transferência Os sinais
SUMÁRIO BACKGROUND. Referências 62 MATLAB Seção B: Operações Elementares 62 Problemas 71
SUMÁRIO BACKGROUND B.l Números Complexos 17 B.l-l Nota Histórica 17 B.I-2 Álgebra de Números Complexos 20 B.2 Senóides 30 B.2-1 Adição de Senóides 31 B.2-2 Senóides em Termos de Exponenciais: A Fórmula
Sinais e Sistemas - Lista 1. Gabarito
UNIVERSIDADE DE BRASÍLIA, FACULDADE GAMA Sinais e Sistemas - Lista 1 Gabarito 4 de outubro de 015 1. Considere o sinal x(t) mostrado na figura abaixo. O sinal é zero fora do intervalo < t
Transformada de Laplace
Transformada de aplace Nas aulas anteriores foi visto que as ferramentas matemáticas de Fourier (série e transformadas) são de extrema importância na análise de sinais e de sistemas IT. Isto deve-se ao
04/04/ :31. Sumário. 2.1 Sistemas LIT de Tempo Discreto 2.2 Sistemas LIT de Tempo Contínuo 2.3 Propriedades dos Sistemas LIT
Sumário 2.1 Sistemas LIT de Tempo Discreto 2.2 Sistemas LIT de Tempo Contínuo 2.3 Propriedades dos Sistemas LIT slide 1 2 Introdução Muitos processos físicos podem ser modelados como sistemas lineares
