Transformada de Fourier Discreta (DFT)
|
|
|
- Moisés Mangueira de Miranda
- 7 Há anos
- Visualizações:
Transcrição
1 UNIVERSIDADE FEDERAL DA PARAÍBA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA Transformada de Fourier Discreta (DFT) Prof. Juan Moises Mauricio Villanueva 1
2 Transformada de Fourier em Tempo Discreto Para um sinal discreta não periódico x[n], de tamanho L: L1 jn X ( ) x[ n] e, k,1, 2,..., L 1 n 2k, k,..., L 1 L F x[ n] X ( ) 2
3 Sinal amostrada utilizando um conversor Análogo para Digital x(t) x(n) x(n) A/D t 1 f s = Frequência de amostragem (sampling) n 1 N-1 N = número de amostras n T s = 1/f s = Período de amostragem 3
4 Exemplo 1: f s = 1k Amostras/s T s = 1/f s =.1 ms (Período de amostragem) N = 1 amostras x(n) twindow = (N)*Ts=1*.1ms = 1 ms x(t) x(n) A/D twindow t 1 f s = Frequência de amostragem (sampling) n 1 N-1 N = número de amostras n T s = 1/f s = Período de amostragem 4
5 f s = 1k amostras/s T s = 1/f s =.1 ms (Período de amostragem) N = 1 amostras twindow = N*Ts=1*.1ms = 1 ms x(t) x(n) x(n) A/D twindow t f s = Frequência de amostragem (sampling) 1 T s = 1/f s = Período de amostragem 1 N-1 n N 1 jn X ( ) x[ n] e, n DFT k,1,2,..., N 1, 2k N n
6 Exemplo de avaliação da DFT 2k, k,..., L 1 L L = k =,1,2,3,4 k X () x[ n] 4 n 4 2 k 1 X (2 / ) x[ n] e n 4 4 k 2 X (4 / ) x[ n] e n 4 6 k 3 X (6 / ) x[ n] e n 4 8 k 4 X (8 / ) x[ n] e n j 2 n/ j 4 n/ j6 n/ j8 n/ 6
7 Módulo e Fase da DFT k X () x[ n] X () e 4 n 4 2 j 2 n / k 1 X (2 / ) x[ n] e X (2 / ) e 4 4 j 4 n / k 2 X (4 / ) x[ n] e X (4 / ) e 4 6 j6 n/ k 3 X (6 / ) x[ n] e X (6 / ) e n n n 8 k X x n e X 4 j8 n/ 4 (8 / ) [ ] ( n j j 1 j j j 4 8 / ) e 3 2 7
8 Resolução da Frequência Digital A resolução da frequência digital é dada como: k X () e k 1 2 X (2 / ) e k 2 4 X (4 / ) e k 3 6 X (6 / ) e k 4 8 X (8 / ) e j j 1 j j j Resolução 2 L 8
9 Definição da Transformada de Fourier Discreta A DFT para o sinal x[n], de tamanho N, é definido por: N 1 jn X ( ) x[ n] e, k,1, 2,..., N 1 n A DFT inversa é definido por N 1 1 jn x[ n] X ( ) e, n,1, 2,..., N 1 N k 2k, k,..., N 1 N Notação: F x[ n] X ( ) 9
10 Linearidade F X x n 1 1 F x n X 2 2 Propriedades da DFT Deslocamento no tempo F ax n bx n ax bx F jn x n n e X 1
11 Propriedades da DFT Deslocamento na frequência j e n x n F X o Convolução x[n] h[n] y[n] y n x n h n x k h n k k F y n x n h n Y X H 11
12 Exemplo 2 Para um sinal Sinusoidal s(t)=sin(2πft) Frequência do sinal f= Hz Frequência de amostragem fs=1 Amostras/s Tamanho do sinal L = 2 amostras
13 Exemplo 2 Incrementando 1 zeros 1 señal+ruido zeros O novo tamanho do sinal é N = 12 amostras -1 2 amostras
14 Exemplo 2 Aplicando a Transformada de Fourier Discreta 199 jn X ( ) x[ n] e, k,1,2,...,199 n Resolução: 2 2 N 12 DFT rad/s 14
15 Exemplo 2 Transformação de escala (rad) x (Hz) A Transformada de Fourier Discreta é Períodica 2 f 1 f s f fs ( Hz) 1
16 Exemplo 2 Aplicando a Transformada de Fourier Discreta (escala em Hz) DFT Hertz Frequência do sinal f=hz 16
17 Exemplo 2 Simetria da Transformada de Fourier Discreta DFT Hertz Simetria 17
18 Exemplo 2 Considerações na Avaliação da DFT A adição de zeros não proporciona nenhuma informação adicional acerca do espectro de X() da sequencia x[n]. Ao preencher a sequencia x[n] com (N-L) zeros e avaliar a DFT de N pontos, se obtém uma melhor representação gráfica, devido principalmente à melhora na resolução da DFT. 18
19 Propriedades da DFT Simetria e Periodicidade 19
20 Propriedades da DFT 2
21 Propriedades da DFT 21
22 Simetria Período igual a 2* Exemplo 3 N 1 jn X ( ) x[ n] e, n k,1,2,..., N 1, Espectro de x(n) 2k N x(n) DFT FFT n N=1 fs=1k Amostras/s fo = 1 khz omega (rad)
23 Transformação de escalas de (rad) para frequência em Hertz 4 4 Espectro de x(n) 2 f s f ( Hz) 3 FFT f (Hz) fs/2 fs f ( Hz) 2 f s omega (rad) 23
24 Realizando a Transformação 4 Espectro de x(n) Simetria com respeito a fs/2 4 3 Período igual a fs 3 FFT fo fs/2 fs A Largura de Banda de interesse é igual ao intervalo [, fs/2] f(hz) BW = [, fs/2]=[, khz]] 24
25 DFT de um sinal ruído branco Gaussiano Valor médio = Desvio padrão = r = +.1*randn(1,1); figure,hist(r,1)
26 A DFT do ruído branco Gaussiano 6 Espectro de x(n) 4 FFT 3 2 DFT do ruído f(hz) 26
27 DFT de 2 sinais sinusoidais fs = 1 khz (Frequência de amostragem) Frequência dos sinais f =1 khz e f 1 =3 khz 6 Espectro de x(n) 4 FFT f(hz) 27
28 Que acontece se a frequência do sinal de entrada f 1 é superior a fs/2 = Hz? Por exemplo, para fo = 1 Hz e f 1 = 6 Hz Sendo que a largura de banda vá de [, ]Hz, o espectro do sinal de 6 Hz produzirá um espectro espelhado com frequência de 4 Hz. Por tanto, tem-se um espectro de frequência errado. 6 fo Simetria de f1 Espectro de x(n) f1 Simetria de fo 4 FFT f(hz) 28
29 Com a finalidade de garantir que a análise de espectros seja realizado respeitando a largura de banda de interesse [, fs/2], deve-se colocar na entrada do sistema de processamento do sinal um filtro passa baixo com frequência de corte fs/2. Este filtro limitara a largura de banda dos sinais de entrada. x(t) Filtro Passa Baixo x(n) A/D twindow t fc=fs/2 1 n 1 N-1 n DFT N 1 jn X ( ) x[ n] e, n k,1,2,..., N 1, 2k N 29
30 Análise em Frequencia usando Janelas Se realiza o truncamiento da resposta ao impulso ideal h[n] por uma janela w[n]: Multiplicação em tempo discreto Convolução na Frequência h [ ] [ ] [ ] w n h n w n H ( ) ( ) ( ) w F H F W F 3
31 Análise em Frequencia usando Janelas Características das Funções que caracterizam Janelas JANELAS M n M Boxcar Blackman Barlett Hanning Hamming w[ n] 1 n 2n w[ n].42. cos.8 cos M M n w[ n] 1 M n w[ n].. cos M n w[ n].4.46 cos M 31
Sistemas Lineares e Invariantes
Universidade Federal da Paraíba Programa de Pós-Graduação em Engenharia Elétrica Sistemas Lineares e Invariantes Prof. Juan Moises Mauricio Villanueva [email protected] www.cear.ufpb.br/juan 1 Sistemas
Filtros Digitais FIR (Finite Impulse Response) Prof. Juan Mauricio Villanueva
Filtros Digitais FIR (Finite Impulse Response) Prof. Juan Mauricio Villanueva [email protected] www.cear.ufpb.br/juan 1 Filtros FIR (Finite Impulse Response) Para um sistema FIR de ordem M Com função
Amostragem de Sinais
UNIVERSIDADE FEDERAL DA PARAÍBA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA Amostragem de Sinais Prof. Juan Moises Mauricio Villanueva [email protected] 1 Amostragem (Sampling) Para um sinal
i) Filtragem ii) Amostragem e reconstituição cuja Transformada de Fourier (TF) é dada na Figura seguinte e que constitui a entrada de um SLIT S.
6ª Aula Prática de Sistemas e Sinais (LEIC Alameda) Sumário: i) Filtragem ii) Amostragem e reconstituição Exercícios Propostos Exercício 1: Considere o sinal x (t) cuja Transformada de Fourier (TF) é dada
Processamento Digital de Sinais. Notas de Aula. Análise Espectral Usando a DFT
Análise Espectral Análise Espectral Análise Espectral Usando a DFT Processamento Digital de Sinais Notas de Aula Análise Espectral Usando a DFT Uma das principais aplicações da DFT é a análise do conteúdo
Transformada Discreta de Fourier (DFT)
Transformada Discreta de Fourier (DFT) A DFT de uma sequência x n de comprimento finito N é definida como: X k = x n e j2π N kn, 0 k N 1 A DFT mapeia uma sequência de comprimento N, x n, em outra sequência,
Transformada de Fourier. Theo Pavan e Adilton Carneiro TAPS
Transformada de Fourier Theo Pavan e Adilton Carneiro TAPS Análise de Fourier Análise de Fourier - representação de funções por somas de senos e cossenos ou soma de exponenciais complexas Uma análise datada
Teoria das Comunicações Prof. André Noll Barreto Prova 1 Gabarito
Prova Gabarito Questão (4 pontos) Um pulso é descrito por: g t = t e t / u t u t, a) Esboce o pulso. Este é um sinal de energia ou de potência? Qual sua energia/potência? (,7 ponto) b) Dado um trem periódico
Analisador de espectros por FFT
Analisador de espectros por FFT A transformada de Fourier (FT) é uma ferramenta matemática utilizada essencialmente para decompor ou separar uma função ou forma de onda em senóides de diferentes frequências
Transformada Discreta de Fourier
Carlos Alexandre Mello Transformadas O uso de transformadas serve para observar características de um sinal que já estavam presentes nele, mas que podem não ser observáveis em um domínio Assim, as transformadas
Processamento Digital de Sinais. Aplicações da DFT. Prof. Dr. Carlos Alberto Ynoguti
Processamento Digital de Sinais Aplicações da DFT Prof. Dr. Carlos Alberto Ynoguti Aplicações da DFT Nesta seção iremos apresentar três aplicações bastante comuns da DFT: 1) Análise espectral de sinais
Processamento (Digital) de Sinal. Caderno de exercícios para as aulas
Caderno de exercícios para as aulas João Paulo Teixeira ESTiG, 04 Processamento (Digital) de Sinal ESTiG - IPB Exercícios Matlab. Identificar no ambiente Matlab o Command Window, o Workspace, o Current
O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir:
Sistemas e Sinais O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir: 1 Sistemas e Sinais O bloco conversor A/D converte o sinal
Processamento Digital de Sinais. Aplicações da DFT. Prof. Dr. Carlos Alberto Ynoguti
Processamento Digital de Sinais Aplicações da DFT Prof. Dr. Carlos Alberto Ynoguti Aplicações da DFT Nesta seção iremos apresentar três aplicações bastante comuns da DFT: 1) Análise espectral de sinais
Parâmetros importantes de um Analisador de Espectros: Faixa de frequência. Exatidão (frequência e amplitude) Sensibilidade. Resolução.
Parâmetros importantes de um Analisador de Espectros: Faixa de frequência Exatidão (frequência e amplitude) Sensibilidade Resolução Distorção Faixa dinâmica Faixa de frequência: Determina as frequências
Uma aplicação importante dos métodos de processamento digital de sinais é na determinação do conteúdo em frequência de um sinal contínuo
Análise Espectral Uma aplicação importante dos métodos de processamento digital de sinais é na determinação do conteúdo em frequência de um sinal contínuo Análise espectral: determinação do espectro de
Processamento Digital de Sinais - ENG420
Processamento Digital de Sinais - ENG420 Fabrício Simões IFBA 22 de julho de 2016 Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG420 22 de julho de 2016 1 / 46 Fabrício Simões (IFBA) Processamento
Resumo. Sinais e Sistemas Amostragem. Introdução. Amostragem Periódica
Resumo Sinais e Sistemas Amostragem [email protected] Instituto Superior écnico Representação da Amostragem no Domínio da Frequência Reconstrução do Sinal Amostrado Processamento em empo Discreto de Sinais
I-6 Sistemas e Resposta em Frequência. Comunicações (6 de Dezembro de 2012)
I-6 Sistemas e Resposta em Frequência (6 de Dezembro de 2012) Sumário 1. A função especial delta-dirac 2. Sistemas 3. Resposta impulsional e resposta em frequência 4. Tipos de filtragem 5. Associação de
Processamento (Digital) de Sinal. Caderno de exercícios para as horas não presenciais
Caderno de exercícios para as horas não presenciais João Paulo Teixeira ESTiG, 014 Capítulo 1 Sinais 1. Considere o Considere o seguinte sinal contínuo: x(t) 1-1 0 1 3 t a. Represente y1(t)=x(t+1). b.
Sinais e Sistemas - Lista 3 Gabarito
UNIVERSIDADE DE BRASÍLIA, FACULDADE GAMA Sinais e Sistemas - Lista Gabarito 7 de novembro de 05. Calcule a Transformada de Fourier dos seguintes sinais: a) x[n] = ( n ) u[n ] b) x[n] = ( ) n c) x[n] =
Licenciatura em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra. Análise e Processamento de Bio-Sinais - MIEBM
Licenciatura em Engenharia Biomédica Faculdade de Ciências e Tecnologia Slide Slide 1 1 Tópicos: Representações de Fourier de Sinais Compostos Introdução Transformada de Fourier de Sinais Periódicos Convolução
Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto
Universidade Federal da Paraíba Programa de Pós-Graduação em Engenharia Elétrica Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto Prof. Juan Moises Mauricio Villanueva [email protected]
TRANSFORMADA DE FOURIER EM TEMPO DISCRETO (DTFT) E TRANSFORMADA DISCRETA DE FOURIER (DFT) Larissa Driemeier
TRANSFORMADA DE FOURIER EM TEMPO DISCRETO (DTFT) E TRANSFORMADA DISCRETA DE FOURIER (DFT) Larissa Driemeier LIVRO TEXTO Essa aula é baseada nos livros: [1] [2] INTRODUCTION TO Signal Processing Sophocles
SEL Processamento Digital de Imagens Médicas. Aula 4 Transformada de Fourier. Prof. Dr. Marcelo Andrade da Costa Vieira
SEL 0449 - Processamento Digital de Imagens Médicas Aula 4 Transformada de Fourier Prof. Dr. Marcelo Andrade da Costa Vieira [email protected] Jean Baptiste Joseph Fourier 2 Exemplo: Função Degrau 3 Exemplo:
Curso de Engenharia Elétrica Processamento Digital de Sinais II Exercícios sobre filtros não recursivos Data de entrega: 17/11/2015
Curso de Engenharia Elétrica Processamento Digital de Sinais II Exercícios sobre filtros não recursivos Data de entrega: 17/11/2015 1) Projete um filtro FIR passa baixas de 3 etapas com frequência de corte
Revisão Análise em frequência e amostragem de sinais. Hilton de Oliveira Mota
Revisão Análise em frequência e amostragem de sinais Hilton de Oliveira Mota Introdução Análise em frequência (análise espectral): Descrição de quais frequências compõem um sinal. Por quê? Senóides são
Introdução a aquisição e processamento de sinais
TAPS Introdução a aquisição e processamento de sinais Prof. Theo Z. Pavan Departamento de Física - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-USP Roteiro Aquisição de sinais e frequência
I-2 Sinais: classificação, propriedades e operações
I-2 Sinais: classificação, propriedades e operações Comunicações (30 de setembro de 2016) ISEL - ADEETC - Comunicações 1 Sumário 1. Classificação de sinais 2. Sinais contínuos e discretos 3. Sinais não
I-2 Sinais: classificação, propriedades e operações
I-2 Sinais: classificação, propriedades e operações Comunicações (24 de março de 2017) ISEL - ADEETC - Comunicações 1 Sumário 1. Classificação de sinais 2. Sinais contínuos e discretos 3. Sinais não periódicos
Filtro FIR. Processamento Digital de Sinais - ENG de julho de 2016 IFBA. Fabrício Simões (IFBA) Filtro FIR 22 de julho de / 30
Filtro FIR Processamento Digital de Sinais - ENG420 Fabrício Simões IFBA 22 de julho de 2016 Fabrício Simões (IFBA) Filtro FIR 22 de julho de 2016 1 / 30 1 Método de Projeto Usando Janelas 2 Tipos de Filtros
Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica
Propriedades das Representações de Fourier Sinais periódicos de tempo contínuo ou discreto têm uma representação por série de Fourier, dada pela soma ponderada de senoides complexas com frequências múltiplas
Processamento de sinais digitais
Processamento de sinais digitais Aula 1: Filtros digitais [email protected] Tópicos Definição de um filtro digital Anatomia de um filtro digital Descrição no domínio da frequência de sinais e sistemas
Amostragem. Representação com FT para Sinais Periódicos Relacionando a FT com a FS Amostragem Amostrando Sinais de Tempo Contínuo.
Amostragem Representação com FT para Sinais Periódicos Relacionando a FT com a FS Amostragem Amostrando Sinais de Tempo Contínuo Amostragem 1 Representação com FT para Sinais Periódicos A representação
I-6 Sistemas e Resposta em Frequência
I-6 Sistemas e Resposta em Frequência Comunicações 1 Sumário 1. A função especial delta-dirac 2. Sistemas 3. Resposta impulsional e resposta em frequência 4. Tipos de filtragem 5. Associação de sistemas
Exercícios para Processamento Digital de Sinal. 1 Transformada e Série de Fourier
Exercícios para Processamento Digital de Sinal Transformada e Série de Fourier Exercício Considere o seguinte sinal x(t) = sin 2 (0πt). Encontre uma forma aditiva para este sinal e represente graficamente
Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas
Sinais e Sistemas Série de Fourier Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Lembremos da resposta de um sistema LTI discreto a uma exponencial complexa: x[ n] z,
Processamento de sinais digitais Aula 3: Transformada de Fourier (Parte 1)
Processamento de sinais digitais Aula 3: Transformada de Fourier (Parte 1) [email protected] Tópicos Definição da Transformada de Fourier (TF) Propriedades importantes (ex: linearidade e periodicidade)
Sistemas e Sinais (LEIC) Capítulo 10 Transformadas de Fourier
Sistemas e Sinais (LEIC) Capítulo Transformadas de Fourier Carlos Cardeira Diapositivos para acompanhamento da bibliografia de base (Structure and Interpretation of Signals and Systems, Edward A. Lee and
Sinais e Sistemas - Lista 3
UNIVERSIDADE DE BRASÍLIA, FACULDADE GAMA Sinais e Sistemas - Lista 3 7 de novembro de 0. Calcule a Transformada de Fourier dos seguintes sinais: a) x[n] = ( n ) u[n ] b) x[n] = ( ) n c) x[n] = u[n ] u[n
Processamento Digital de Sinais - ENG420
Processamento Digital de Sinais - ENG420 Fabrício Simões IFBA 24 de setembro de 2016 Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG420 24 de setembro de 2016 1 / 19 1 Transformada Z - Conceito
Teoria das Comunicações Prof. André Noll Barreto Prova /02
eoria das Comunicações Prova 1-1/ Aluno: Matrícula: Instruções A prova terá a duração de h3 A prova pode ser feita a lápis ou caneta Não é permitida consulta a notas de aula, todas as fórmulas necessárias
Sistemas lineares. Realce no domínio de freqüências. Propriedades. Sistema: definição. Sistemas harmônicos e análise de sinais complexos
Realce no domínio de freqüências Hitoshi Capítulo 4 do Gonzalez Sistemas lineares muito utilizado para a descrição de sistemas elétricos e ópticos possuem fundamentos matemáticos bem estabelecidos para
I-2 Sinais: classificação propriedades, operações
I-2 Sinais: classificação propriedades, operações (30 de Setembro de 2013) 1 Sumário 1. Sinais contínuos e discretos 2. Sinais não periódicos e periódicos Pulso rectangular e sinc A onda quadrada e a sinusóide
I-2 Sinais: classificação, propriedades e operações
I-2 Sinais: classificação, propriedades e operações Comunicações ISEL - ADEETC - Comunicações 1 Sumário 1. Sinais contínuos e discretos 2. Sinais não periódicos e periódicos Pulso retangular e sinc A onda
Exercícios para Processamento Digital de Sinal - Folha
Exercícios para Processamento Digital de Sinal - Folha 1 Interpolação Exercício 1 Suponha que uma sinusóide de frequência angular π/4 foi aplicada na entrada de um bloco expansor que aumenta a frequência
Mudança de taxa de amostragem. 2 Redução da taxa de amostragem por um fator inteiro
PSI 42 - Processamento de Áudio e Imagem Mudança de taxa de amostragem Vítor H. Nascimento de novembro de 27 Introdução É comum ser necessário trocar a taxa de amostragem de uma sequência. Uma razão é
Sinais e Sistemas - ESP208
Sinais e Sistemas - ESP208 Mestrado Profissional em Engenharia de Sistemas e Produtos Filtros Digitais FIR e IIR Fabrício Simões IFBA 01 de novembro de 2017 Fabrício Simões (IFBA) Sinais e Sistemas - ESP208
A entrega deve ter um relatório em PDF e os arquivos.m (devidamente comentados). Os códigos devem ser referenciados no relatório.
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecatrônica Sistemas Dinâmicos II para Mecatrônica Profs. Larissa Driemeier e Marcilio Alves Usando Exercícios a seguir devem
Amostragem de Sinais
UNIVERSIDADE FEDERAL DA PARAÍBA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA Amotragem de Sinai Prof. Juan Moie Mauricio Villanueva [email protected] 1 Amotragem (Sampling) Para um inal em tempo
Sinais e Sistemas. Sistemas Lineares Invariantes no Tempo. Renato Dourado Maia. Faculdade de Ciência e Tecnologia de Montes Claros
Sinais e Sistemas Sistemas Lineares Invariantes no Tempo Renato Dourado Maia Faculdade de Ciência e Tecnologia de Montes Claros Fundação Educacional Montes Claros Introdução xt () yt () ht () xn [ ] yn
I-7 Digitalização e Reconstrução
I-7 Digitalização e Reconstrução (29 Novembro 2010) 1 Sumário 1. Teorema da Amostragem 1. Ritmo de Nyquist 2. Amostragem Ideal e Natural (análise no tempo e na frequência) 1. Sinais Passa Baixo 2. Sinais
Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 5
Introdução ao Soluções dos Exercícios Propostos Capítulo 5. Considere a sequência ( π ) x[n] = cos 4 n encontre todos os sinais contínuos que poderiam gerar essa sequência e as respectivas taxas de amostragem.
Transformada Discreta de Fourier (DFT)
Transformada Discreta de Fourier DFT) Processamento de Sinais 5/6 Engenharia Aeroespacial Sinais periódicos Seja x[n] um sinal periódico com período x[n + r] = x[n] para r Z) O sinal x[n] é determinado
Processamento digital de imagens
Processamento digital de imagens Agostinho Brito Departamento de Engenharia da Computação e Automação Universidade Federal do Rio Grande do Norte 22 de março de 2016 Existem tipos de degradações cujo tratamento
Introdução FILTRAGEM NO DOMÍNIO DA FREQUÊNCIA
FILTRAGEM NO DOMÍNIO DA FREQUÊNCIA Introdução Um sinal no domínio do espaço (x,y) pode ser aproximado através de uma soma de senos e cossenos com frequências (f, f2, f3,...fn) de amplitudes (a, a2,...
Introdução ao Processamento Digital de Imagens. Aula 6 Propriedades da Transformada de Fourier
Introdução ao Processamento Digital de Imagens Aula 6 Propriedades da Transformada de Fourier Prof. Dr. Marcelo Andrade da Costa Vieira [email protected] Uma linha de uma imagem formada por uma sequência
REDES DE COMPUTADORES. Comunicação de Dados
Sinais Uma das funções mais importantes da camada física é converter informação em sinais eletromagnéticos para poder enviá-los num meio de transmissão. Sejam estas informações uma sequência de 1s e 0s
Aula 15 Propriedades da TFD
Processamento Digital de Sinais Aula 5 Professor Marcio Eisencraft abril 0 Aula 5 Propriedades da TFD Bibliografia OPPENHEIM, A. V.; SCHAFER. Discrete-time signal processing, 3rd. ed., Prentice-Hall, 00.
Processamento de sinais digitais
Processamento de sinais digitais Aula 2: Descrição discreta no tempo de sinais e sistemas [email protected] Tópicos Sequências discretas no tempo. Princípio da superposição para sistemas lineares.
REPRESENTAÇÃO DE SISTEMAS NO DOMÍNIO Z. n +
REPRESETAÇÃO DE SISTEMAS O DOMÍIO Z [ ] x h y h h n RC RC RC X H Y Y H X R R n h n h Z H < < + : ) ( ) ( ) ( ) ( ) ( ) ( ; ) ( ) ( ) ( Função de Sistema : FUÇÃO DE SISTEMA A PARTIR DA REPRESETAÇÃO POR
I-8 Digitalização e Reconstrução
I-8 Digitalização e Reconstrução Comunicações (15 de novembro de 2016) ISEL - ADEETC - Comunicações 1 Sumário 1. Enquadramento em SCD Transmissão de sinal analógico sobre SCD 2. Teorema da Amostragem Ritmo
SEL Processamento Digital de Imagens Médicas. Aula 6 Processamento no Domínio da Frequência
SEL 0449 - Processamento Digital de Imagens Médicas Aula 6 Processamento no Domínio da Frequência Prof. Dr. Marcelo Andrade da Costa Vieira [email protected] Processamento no Domínio da Frequência 2 Filtros
A TRANSFORMADA Z. Métodos Matemáticos I C. Prof. Hélio Magalhães de Oliveira, Texto por R. Menezes Campello de Souza
A TRANSFORMADA Z Métodos Matemáticos I C Prof. Hélio Magalhães de Oliveira, Texto por R. Menezes Campello de Souza Notação x(t) é o sinal analógico x(nt) = x[n], n inteiro, é a seqüência T é o período
Teorema da Amostragem
Teorema da Amostragem Carlos Alexandre Mello Processamento Digital de Sinais Aspecto fundamental: Conversão do sinal contínuo em uma sequência de amostras Um sinal discreto no tempo Após o processamento
Transformada Discreta de Fourier
Processamento Digital de Sinais Transformada Discreta de Fourier Prof. Dr. Carlos Alberto Ynoguti Jean Baptiste Joseph Fourier Nascimento: 21 de março de 1768 em Auxerre, Bourgogne, França Morte: 16 de
Introdução a filtros digitais. Theo Pavan e Adilton Carneiro TAPS
Introdução a filtros digitais Theo Pavan e Adilton Carneiro TAPS Filtro anti-aliasing Com um sinal já digitalizado não é possível distinguir entre uma frequência alias e uma frequência que realmente esteja
Filtros Digitais: Estudo, Projeto e Simulação
Filtros Digitais: Estudo, Projeto e Simulação Fabrício Simões IFBA 27 de outubro de 2015 Fabrício Simões (IFBA) Filtros Digitais: Estudo, Projeto e Simulação 27 de outubro de 2015 1 / 69 1 Filtragem Digital
Introdução aos Circuitos Elétricos
1 / 47 Introdução aos Circuitos Elétricos Séries e Transformadas de Fourier Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia 2 / 47 Séries e Transformadas
A Transformada de Fourier
A Transformada de Fourier Disciplina: Tópicos em Computação (Processamento Digital de Imagens) 1 / 30 A Função Impulso Fundamental no estudo dos sistemas lineares e da transformada de Fourier; Um impulso
Processamento Digital de Sinais II Exercícios sobre Transformada z Data de entrega: 17/11/2015
Processamento Digital de Sinais II Exercícios sobre Transformada z Data de entrega: 17/11/2015 1) Determine a transformada inversa de, aplicando: a) Desenvolvimento em série de potências b) Divisão direta
I-11 Digitalização e Reconstrução
I-11 Digitalização e Reconstrução Comunicações ( de novembro de 017) ISEL - ADEETC - Comunicações 1 Sumário 1. Enquadramento em SCD Transmissão de sinal analógico sobre SCD. Teorema da Amostragem Ritmo
Processamento Digital de Sinais DSP Parte 2
1 / 15 Processamento Digital de Sinais DSP Parte 2 por Henrique Frank W. Puhlmann Introdução Na primeira parte dessa série de artigos foi apresentada uma breve história do processamento digital de sinais
Caderno de Exercícios
Caderno de Exercícios Orlando Ferreira Soares Índice Caracterização de Sinais... Caracterização de Sistemas...0 Sistemas LIT - Convolução...5 Série de Fourier para Sinais Periódicos Contínuos...0 Transformada
Senoides Complexas e Sistemas LTI
Representação de Fourier para Sinais A representação de Fourier para sinais é realizada através da soma ponderada de funções senoidais complexas Se este sinal for aplicado a um sistema LTI, a saída do
ANÁLISE DE SINAIS ANÁLISE ESPECTRAL
ANÁLISE DE SINAIS Larissa Driemeier Marcilio Alves Rafael T Moura Tarcísio H Coelho 1 ANÁLISE ESPECTRAL Domínio do tempo Análise Síntese Domínio da frequência Amplitude do deslocamento Massa Mola papel
3 o Teste (1 a data) Sistemas e Sinais (LEIC-TP) 2008/ de Junho de Respostas
3 o Teste (1 a data) Sistemas e Sinais (LEIC-TP) 2008/2009 12 de Junho de 2009 Respostas i Problema 1. (0,75v) Considere o sinal ( n n, x(n)=cos 8 4) +π Assinale a afirmação correcta x(n) é um sinal periódico
Analisador de Espectros
Analisador de Espectros O analisador de espectros é um instrumento utilizado para a análise de sinais alternados no domínio da freqüência. Possui certa semelhança com um osciloscópio, uma vez que o resultado
Análise de Sinais e Sistemas
Universidade Federal da Paraíba Departamento de Engenharia Elétrica Análise de Sinais e Sistemas Luciana Ribeiro Veloso [email protected] ANÁLISE DE SINAIS E SISTEMAS Ementa: Sinais contínuos
Transformada Discreta de Fourier
Processamento Digital de Sinais Transformada Discreta de Fourier Prof. Dr. Carlos Alberto Ynoguti Jean Baptiste Joseph Fourier Nascimento: 21 de março de 1768 em Auxerre, Bourgogne, França Morte: 16 de
Filtro FIR: Estudo, Projeto e Simulação
Filtro FIR : Características Projeto de um Filtro FIR 1/38 Filtro FIR: Estudo, Projeto e Simulação Fabrício Simões IFBA 28 de Novembro de 2011 Filtro FIR : Características Projeto de um Filtro FIR 2/38
Projeto de Filtros FIR
Projeto de Filtros FIR Estudaremos três técnicas de projeto de filtros FIR de fase linear: Método de Janelas: baseado no janelamento da resposta ao impulso de um filtro ideal; Método da Amostragem em Frequência:
Projeto de Filtros Não-Recursivos (FIR)
p.1/81 Projeto de Filtros Não-Recursivos (FIR) Eduardo Mendes [email protected] Departamento de Engenharia Eletrônica Universidade Federal de Minas Gerais Av. Antônio Carlos 6627, Belo Horizonte,
Técnicas de Projeto de Filtros
Técnicas de Projeto de Filtros Carlos Alexandre Mello Técnicas de Projeto de Filtros O projeto de um filtro tem três passos: Especificações Determinada pela aplicação Aproximações Projeto do filtro especificamente
Processamento Digital de Sinais. Notas de Aula. Filtros Digitais Tipo FIR. Filtros Digitais Tipo FIR. Resposta ao impulso com duração finita
Filtros Digitais tipo FIR Filtros Digitais tipo FIR Filtros Digitais Tipo FIR Processamento Digital de Sinais Notas de Aula Filtros Digitais Tipo FIR Resposta ao impulso com duração finita Função de transferência
Duração do Teste: 2h.
Telecomunicações e Redes de Computadores Licenciatura em Engenharia e Gestão Industrial Prof. João Pires 1º Teste, 2007/2008 30 de Abril de 2007 Nome: Número: Duração do Teste: 2h. A prova é composta por
Sumário. 1 Sinais e sistemas no tempo discreto 1. 2 As transformadas z e de Fourier 79
Sumário 1 Sinais e sistemas no tempo discreto 1 1.1 Introdução 1 1.2 Sinais no tempo discreto 2 1.3 Sistemas no tempo discreto 7 1.3.1 Linearidade 8 1.3.2 Invariância no tempo 8 1.3.3 Causalidade 9 1.3.4
