A Transformada de Fourier
|
|
|
- Davi Casado Ramires
- 9 Há anos
- Visualizações:
Transcrição
1 A Transformada de Fourier Disciplina: Tópicos em Computação (Processamento Digital de Imagens) 1 / 30
2 A Função Impulso Fundamental no estudo dos sistemas lineares e da transformada de Fourier; Um impulso unitário de uma variável contínua t localizada em t = 0, é definido como: δ(t) = { se t = 0 0 se t 0 e restrito para satisfazer a identidade δ(t)dt = 1 2 / 30
3 A Função Impulso Um impulso pode ser visto como um pico de amplitude infinita e duração zero, tendo área unitária; Pela propriedade de peneiramento f(t)δ(t)dt = f(0) considerando que f(t) é contínua em t = 0, o peneiramento nos informa o valor da função f(t) na posição do impulso. 3 / 30
4 A Função Impulso Discreta Seja x uma variável discreta, o impulso unitário discreto, δ(x), atende a todos os propósitos ao trabalhar com sistemas discretos: δ(x) = e restrito também para satisfazer { 1 se x = 0 x= 0 se x 0 δ(x) = 1. Além disso: x= f(x)δ(x) = f(0) 4 / 30
5 A Transformada de Fourier A contribuição de Fourier: qualquer função periódica pode ser expressa como a soma de senos e/ou cossenos de diferentes frequências, cada uma multiplicada por um coeficiente diferente. 5 / 30
6 A Transformada de Fourier Dada uma função contínua f(t), a transformada de Fourier de f(x) é dada por: I{f(t)} = f(t)e j2πµt dt. Podemos obter novamente f(t) utilizando a transformada inversa de Fourier, f(t) = I 1 {F(µ)} é dada por: f(t) = F(µ)e j2πµt dµ. 6 / 30
7 A Transforma de Fourier: exemplo 7 / 30
8 Convolução A convolução de duas funções de variável contínua é definida como: f(t) h(t) = f(τ)h(t τ)dτ O sinal de - representa a rotação de 180 o ; t é o deslocamento necessário para reposicionar uma função passando pela outra; τ é uma variável local eliminada pela integração. Importante propriedade: I {f(t) h(t)} = H(µ)F(µ) O mesmo resultado seria obtido se a ordem de f(t) e h(t) fosse invertida: a convolução é comutativa. 8 / 30
9 Teorema da Convolução A transforma de Fourier da convolução de duas funções de variável contínua é igual à multiplicação de suas transformadas: f(t) h(t) H(µ)F(µ) A transforma de Fourier da multiplicação de duas funções de variável contínua é igual à convolução de suas transformadas: f(t)h(t) H(µ) F(µ) 9 / 30
10 Amostragem Funções contínuas devem ser convertidas em uma sequência de valores discretos antes de poderem ser processadas em um computador; Esta tarefa é realizada utilizando a amostragem e a quantização; Suponha uma função f(t) que desejamos obter amostras em intervalos uniformes de (t) da variável independente t; A função se estende de a em relação a t 10 / 30
11 Amostragem: exemplo 11 / 30
12 Transformada de Fourier de Funções Amostradas Sobreamostragem Amostragem crítica Subamostragem 12 / 30
13 O Teorema da Amostragem Como definir se uma função contínua pode ser unicamente recuperada a partir do conjunto de suas amostras?? Função de Banda Limitada: igual a zero fora de uma faixa; Valores baixos do período de amostragem faz com que os períodos em F(µ) (Transf. Fourier da função amostrada) se mesclem; Valores altos proporcionam uma separação mais clara entre os períodos; A função f(t) pode ser recuperada se pudermos isolar uma cópia de F(µ) a partir da sequência periódica em F(µ). 13 / 30
14 O Teorema da Amostragem Uma função de banda limitada, contínua, pode ser totalmente recuperada a partir de um conjunto de suas amostras se estas forem adquiridas em uma taxa maior que o dobro da frequência mais alta contida na função. Uma taxa de amostragem equivalente a exatamente o dobro da frequência mais alta é chamada de taxa de Nyquist. 14 / 30
15 O Teorema da Amostragem A função H(µ) é chamada de filtro passa-baixa passa frequências na extremidade inferior do intervalo de frequência, mas elimina todas as mais altas 15 / 30
16 Aliasing O que acontece se uma função de banda limitada for amostrada em uma taxa menor que o dobro de sua frequência mais alta?? Subamostragem A transformada inversa geraria uma função corrompida de t; Tal efeito é chamado de aliasing. 16 / 30
17 Aliasing 17 / 30
18 Aliasing 18 / 30
19 O Impulso 2D O impulso, δ(t, z) de duas variáveis contínuas, t e z, é definido como { se t = z = 0 δ(t, z) = 0 c.c. Propriedade do peneiramento (como no caso 1D) f(t, z)δ(t, z)dtdz = f(0, 0). 19 / 30
20 O Impulso Discreto 2D O impulso, δ(x, y) de duas variáveis discretas, x e y, é definido como { 1 se x = y = 0 δ(x, y) = 0 c.c. Propriedade do peneiramento (como no caso 1D) f(x, y)δ(x, y)dxdy = f(0, 0). x= y= 20 / 30
21 O Impulso Discreto 2D: exemplo 21 / 30
22 O Par Contínuo de Transformadas de Fourier 2D F(µ, ν) = f(t, z)e j2π(µt+νz) dtdz f(t, z) = F(µ, ν)e j2π(µt+νz) dµdν 22 / 30
23 Transformada de Fourier 2D: exemplo 23 / 30
24 O Trem de Impulsos Discretos 2D 24 / 30
25 Sobreamostragem e Subamostragem em 2D 25 / 30
26 Aliasing em Imagens Reamostradas 26 / 30
27 Aliasing em Imagens Reamostradas 27 / 30
28 O Par Discreto de Transf. de Fourier 2D F(µ, ν) = M 1 N 1 x=0 y=0 f(x, y)e j2π(µx/m+νy/n) f(x, y) = 1 MN M 1 N 1 µ=0 ν=0 F(µ, ν)e j2π(µx/m+νy/n) 28 / 30
29 Propriedades da Transf. Discreta de Fourier 2D Separabilidade: 2DFT = 1DFT(linhas) + 1DFT(colunas); Translação e Rotação: transladar e rotacionar a função significa transladar e rotacionar a transformada (e vice-versa); Periodicidade: a transformada e sua inversa são ifinitamente periódicas; Simetria: em relação a um dos eixos; Teorema da Convolução 2D f(x, y) h(x, y) F(µ, ν)h(µ, ν) f(x, y)h(x, y) F(µ, ν) H(µ, ν) 29 / 30
30 Convolução de Sinais: exemplo 30 / 30
SEL Processamento Digital de Imagens Médicas. Aula 4 Transformada de Fourier. Prof. Dr. Marcelo Andrade da Costa Vieira
SEL 0449 - Processamento Digital de Imagens Médicas Aula 4 Transformada de Fourier Prof. Dr. Marcelo Andrade da Costa Vieira [email protected] Jean Baptiste Joseph Fourier 2 Exemplo: Função Degrau 3 Exemplo:
Sílvia Mara da Costa Campos Victer Concurso: Matemática da Computação UERJ - Friburgo
Convolução, Série de Fourier e Transformada de Fourier contínuas Sílvia Mara da Costa Campos Victer Concurso: Matemática da Computação UERJ - Friburgo Tópicos Sinais contínuos no tempo Função impulso Sistema
Transformada de Fourier. Theo Pavan e Adilton Carneiro TAPS
Transformada de Fourier Theo Pavan e Adilton Carneiro TAPS Análise de Fourier Análise de Fourier - representação de funções por somas de senos e cossenos ou soma de exponenciais complexas Uma análise datada
Amostragem de Sinais
UNIVERSIDADE FEDERAL DA PARAÍBA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA Amostragem de Sinais Prof. Juan Moises Mauricio Villanueva [email protected] 1 Amostragem (Sampling) Para um sinal
Licenciatura em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra. Análise e Processamento de Bio-Sinais - MIEBM
Licenciatura em Engenharia Biomédica Faculdade de Ciências e Tecnologia Slide Slide 1 1 Tópicos: Representações de Fourier de Sinais Compostos Introdução Transformada de Fourier de Sinais Periódicos Convolução
Amostragem. Representação com FT para Sinais Periódicos Relacionando a FT com a FS Amostragem Amostrando Sinais de Tempo Contínuo.
Amostragem Representação com FT para Sinais Periódicos Relacionando a FT com a FS Amostragem Amostrando Sinais de Tempo Contínuo Amostragem 1 Representação com FT para Sinais Periódicos A representação
Teoria das Comunicações Prof. André Noll Barreto Prova 1 Gabarito
Prova Gabarito Questão (4 pontos) Um pulso é descrito por: g t = t e t / u t u t, a) Esboce o pulso. Este é um sinal de energia ou de potência? Qual sua energia/potência? (,7 ponto) b) Dado um trem periódico
Técnicas de Processamento Imagens. Fourier 1D e 2D
Técnicas de Processamento Imagens Fourier 1D e 2D Agenda Motivação / Introdução Revisão de conceitos matemáticos Série de Fourier Transformada de Fourier 1D & 2D Contínua & discreta Principais propriedades
TRANSFORMADA DE FOURIER. Larissa Driemeier
TRANSFORMADA DE FOURIER Larissa Driemeier TESTE 7hs30 às 8hs00 Este não é um sinal periódico. Queremos calcular seu espectro usando análise de Fourier, mas aprendemos que o sinal deve ser periódico. O
A Transformada de Laplace
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO
Espaço de Fourier. Processamento de Imagens Médicas. Prof. Luiz Otavio Murta Jr. Depto. de Física e Matemática (FFCLRP/USP)
Processamento de Imagens Médicas Espaço de Fourier Prof. Luiz Otavio Murta Jr. Depto. de Física e Matemática (FFCLRP/USP) 1 Representação de Fourier - O teorema da amostragem de Nyquist diz que devemos
Introdução a aquisição e processamento de sinais
TAPS Introdução a aquisição e processamento de sinais Prof. Theo Z. Pavan Departamento de Física - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-USP Roteiro Aquisição de sinais e frequência
Introdução ao Processamento Digital de Imagens. Aula 6 Propriedades da Transformada de Fourier
Introdução ao Processamento Digital de Imagens Aula 6 Propriedades da Transformada de Fourier Prof. Dr. Marcelo Andrade da Costa Vieira [email protected] Uma linha de uma imagem formada por uma sequência
Análise de Fourier. Imagens no Domínio da Freqüência
Análise de Fourier Imagens no Domínio da Freqüência Todas as imagens deste trabalho foram obtidas de R. C. Gonzalez and R. E. Woods - Digital Image Processing, Addison Wesley Pub. Co. 1993 - ISBN 0-201-60078-1
Processamento Digital de Sinais - ENG420
Processamento Digital de Sinais - ENG420 Fabrício Simões IFBA 22 de julho de 2016 Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG420 22 de julho de 2016 1 / 46 Fabrício Simões (IFBA) Processamento
Circuitos Elétricos III
Circuitos Elétricos III Prof. Danilo Melges Depto. de Eng. Elétrica Universidade Federal de Minas Gerais A Transformada de Fourier Série de Fourier e Transformada de Fourier Partindo da Série de Fourier
Processamento de sinais digitais
Processamento de sinais digitais Aula 2: Descrição discreta no tempo de sinais e sistemas [email protected] Tópicos Sequências discretas no tempo. Princípio da superposição para sistemas lineares.
Aula de Processamento de Sinais I.B De Paula. Tipos de sinal:
Tipos de sinal: Tipos de sinal: Determinístico:Sinais determinísticos são aqueles que podem ser perfeitamente reproduzidos caso sejam aplicadas as mesmas condições utilizadas sua geração. Periódico Transiente
Reconstrução de Sinais de Tempo Contínuo
Sistemas e Sinais Reconstrução de Sinais de Tempo Contínuo Teorema da Amostragem Reconstrução Ideal Reconstrução Prática Retentor de Ordem Zero Filtro Anti-Imagem Reconstrução de Sinais de Tempo Contínuo
Aula 18 Propriedades da Transformada Z Transformada Z inversa
Processamento Digital de Sinais Aula 8 Professor Marcio Eisencraft abril 0 Aula 8 Propriedades da Transformada Z Transformada Z inversa Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Sinais e Sistemas, a
Processamento de sinais digitais Aula 3: Transformada de Fourier (Parte 1)
Processamento de sinais digitais Aula 3: Transformada de Fourier (Parte 1) [email protected] Tópicos Definição da Transformada de Fourier (TF) Propriedades importantes (ex: linearidade e periodicidade)
Analisador de espectros por FFT
Analisador de espectros por FFT A transformada de Fourier (FT) é uma ferramenta matemática utilizada essencialmente para decompor ou separar uma função ou forma de onda em senóides de diferentes frequências
Revisão Análise em frequência e amostragem de sinais. Hilton de Oliveira Mota
Revisão Análise em frequência e amostragem de sinais Hilton de Oliveira Mota Introdução Análise em frequência (análise espectral): Descrição de quais frequências compõem um sinal. Por quê? Senóides são
Resumo. Sinais e Sistemas Amostragem. Introdução. Amostragem Periódica
Resumo Sinais e Sistemas Amostragem [email protected] Instituto Superior écnico Representação da Amostragem no Domínio da Frequência Reconstrução do Sinal Amostrado Processamento em empo Discreto de Sinais
Processamento de Imagens COS756 / COC603
Processamento de Imagens COS756 / COC603 aula 04 - reconstrução de sinais digitais Antonio Oliveira Ricardo Marroquim 1 / 42 aula de hoje e reconstrução overview amostrando um sinal reconstruindo um sinal
Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 5
Introdução ao Soluções dos Exercícios Propostos Capítulo 5. Considere a sequência ( π ) x[n] = cos 4 n encontre todos os sinais contínuos que poderiam gerar essa sequência e as respectivas taxas de amostragem.
Teorema da Amostragem
Teorema da Amostragem Carlos Alexandre Mello Processamento Digital de Sinais Aspecto fundamental: Conversão do sinal contínuo em uma sequência de amostras Um sinal discreto no tempo Após o processamento
Transformada de Fourier Discreta (DFT)
UNIVERSIDADE FEDERAL DA PARAÍBA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA Transformada de Fourier Discreta (DFT) Prof. Juan Moises Mauricio Villanueva [email protected] 1 Transformada de Fourier
Processamento digital de imagens
Processamento digital de imagens Agostinho Brito Departamento de Engenharia da Computação e Automação Universidade Federal do Rio Grande do Norte 22 de março de 2016 Existem tipos de degradações cujo tratamento
Transformada Z. Transformada Z Bilateral. Transformada de Fourier e Transformada Z. A transformada de Fourier não converge para todas as sequências.
Transformada Z Luís Caldas de Oliveira Introdução A transformada de Fourier não converge para todas as sequências. A transformada Z abrange uma maior classe de sinais. sumo 1. Definição 2. gião de Convergência
Processamento Imagens. Transformada de Fourier 1D e 2D
Processamento Imagens Transformada de Fourier 1D e 2D Agenda Motivação / Introdução Série de Fourier e fundamentos Transformada de Fourier 1D & 2D contínua & discreta Principais propriedades 2 Motivação
SEL Introdução ao Processamento Digital de Imagens. Aula 9 Restauração de Imagens Parte 2
SEL5895 - Introdução ao Processamento Digital de Imagens Aula 9 Restauração de Imagens Parte 2 Prof. Dr. Marcelo Andrade da Costa Vieira [email protected] Modelo de Degradação e Restauração g(x,y) = h(x,y)
Sistemas de Controle
Sistemas de Controle Adriano Almeida Gonçalves Siqueira Aula 2 - Transformada de Laplace e Função Transferência Sistemas de Controle p. 1/27 Função Impulso Unitário Função pulso com área unitária: f(t)
Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica
Propriedades das Representações de Fourier Sinais periódicos de tempo contínuo ou discreto têm uma representação por série de Fourier, dada pela soma ponderada de senoides complexas com frequências múltiplas
Curso Analises de Sinais
Curso Analises de Sinais Teorema de Amostragem Aula 3 1 Teorema de Amostragem Aspecto fundamental: Conversão do sinal contínuo em uma sequência de amostras Um sinal discreto no tempo Após o processamento
Sistemas lineares. Realce no domínio de freqüências. Propriedades. Sistema: definição. Sistemas harmônicos e análise de sinais complexos
Realce no domínio de freqüências Hitoshi Capítulo 4 do Gonzalez Sistemas lineares muito utilizado para a descrição de sistemas elétricos e ópticos possuem fundamentos matemáticos bem estabelecidos para
Parâmetros importantes de um Analisador de Espectros: Faixa de frequência. Exatidão (frequência e amplitude) Sensibilidade. Resolução.
Parâmetros importantes de um Analisador de Espectros: Faixa de frequência Exatidão (frequência e amplitude) Sensibilidade Resolução Distorção Faixa dinâmica Faixa de frequência: Determina as frequências
Transformada Z. Transformada Z
Semelhante ao apresentado anteriormente, entre a relação das transformadas de Fourier e de Laplace, será visto que a generalização da representação senoidal complexa de um sinal de tempo discreto pela
Princípios de Comunicações Profs. André Noll Barreto / A. Judson Braga
Prova 05/ (3/04/05) Aluno: Matrícula: Instruções A prova consiste de quatro questões discursivas A prova terá a duração de h30 A prova pode ser feita a lápis ou caneta Não é permitida consulta a notas
Exercícios para Processamento Digital de Sinal. 1 Transformada e Série de Fourier
Exercícios para Processamento Digital de Sinal Transformada e Série de Fourier Exercício Considere o seguinte sinal x(t) = sin 2 (0πt). Encontre uma forma aditiva para este sinal e represente graficamente
Análise de Sinais Dep. Armas e Electronica, Escola Naval V1.1 - Victor Lobo Capítulo 3. Transformadas de Fourier e Fourier Discreta
Capítulo 3 Transformadas Fourier e Fourier Discreta Bibliografia (Cap.3,4 Louretie)(Cap.3,6 Haykin)(Cap.3 Ribeiro) 1 1 Domínio da frequência Qualquer sinal (1) po ser composto numa soma exponenciais complexas
Aula 15 Propriedades da TFD
Processamento Digital de Sinais Aula 5 Professor Marcio Eisencraft abril 0 Aula 5 Propriedades da TFD Bibliografia OPPENHEIM, A. V.; SCHAFER. Discrete-time signal processing, 3rd. ed., Prentice-Hall, 00.
TE060 Princípios de Comunicação. Sistemas de Comunicação Digital Notes. Por quê Digital? Notes. Notes. Evelio M. G. Fernández. 5 de novembro de 2013
TE060 Princípios de Comunicação Modulação de Pulso 5 de novembro de 2013 Sistemas de Comunicação Digital Sistema digital no sentido de utilizar uma sequência de símbolos pertencentes a um conjunto finito
Introdução FILTRAGEM NO DOMÍNIO DA FREQUÊNCIA
FILTRAGEM NO DOMÍNIO DA FREQUÊNCIA Introdução Um sinal no domínio do espaço (x,y) pode ser aproximado através de uma soma de senos e cossenos com frequências (f, f2, f3,...fn) de amplitudes (a, a2,...
i) Filtragem ii) Amostragem e reconstituição cuja Transformada de Fourier (TF) é dada na Figura seguinte e que constitui a entrada de um SLIT S.
6ª Aula Prática de Sistemas e Sinais (LEIC Alameda) Sumário: i) Filtragem ii) Amostragem e reconstituição Exercícios Propostos Exercício 1: Considere o sinal x (t) cuja Transformada de Fourier (TF) é dada
Respostas do Estudo Dirigido Cap Image Transform
Respostas do Estudo Dirigido Cap. 11 - Image Transform 1. Para que serve transformar as imagens para outros Domínios? Fale sobre algumas Formas de Transformada e suas aplicações. (0.5) As transformadas
TRANSFORMADA DE FOURIER EM TEMPO DISCRETO (DTFT) E TRANSFORMADA DISCRETA DE FOURIER (DFT) Larissa Driemeier
TRANSFORMADA DE FOURIER EM TEMPO DISCRETO (DTFT) E TRANSFORMADA DISCRETA DE FOURIER (DFT) Larissa Driemeier LIVRO TEXTO Essa aula é baseada nos livros: [1] [2] INTRODUCTION TO Signal Processing Sophocles
Conversores A/D e D/A
Conversores A/D e D/A Walter Fetter Lages [email protected] Universidade Federal do io Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica Programa de Pós-Graduação em Engenharia Elétrica
Processamento Digital de Sinais
Processamento Digital de Sinais Carlos Alexandre Mello Carlos Alexandre Mello [email protected] 1 Sinais Digitais Um sinal pode ser entendido como uma função que carrega uma informação Sinal de voz O sinal
Processamento Digital de Sinais. Conversão A/D e D/A. Prof. Dr. Carlos Alberto Ynoguti
Processamento Digital de Sinais Conversão A/D e D/A Prof. Dr. Carlos Alberto Ynoguti Introdução A maioria dos sinais encontrados na natureza é contínua Para processá los digitalmente, devemos: Converter
SEL Processamento Digital de Imagens Médicas. Aula 6 Processamento no Domínio da Frequência
SEL 0449 - Processamento Digital de Imagens Médicas Aula 6 Processamento no Domínio da Frequência Prof. Dr. Marcelo Andrade da Costa Vieira [email protected] Processamento no Domínio da Frequência 2 Filtros
I-6 Sistemas e Resposta em Frequência. Comunicações (6 de Dezembro de 2012)
I-6 Sistemas e Resposta em Frequência (6 de Dezembro de 2012) Sumário 1. A função especial delta-dirac 2. Sistemas 3. Resposta impulsional e resposta em frequência 4. Tipos de filtragem 5. Associação de
Sinais e Sistemas. Luis Henrique Assumpção Lolis. 21 de fevereiro de Luis Henrique Assumpção Lolis Sinais e Sistemas 1
Sinais e Sistemas Luis Henrique Assumpção Lolis 21 de fevereiro de 2014 Luis Henrique Assumpção Lolis Sinais e Sistemas 1 Conteúdo 1 Classificação de sinais 2 Algumas funções importantes 3 Transformada
Controle de Processos
17484 Controle de Processos Aula: Função de Transferência Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 217 E. S. Tognetti (UnB) Controle
Processamento de sinais digitais
Processamento de sinais digitais Aula 1: Filtros digitais [email protected] Tópicos Definição de um filtro digital Anatomia de um filtro digital Descrição no domínio da frequência de sinais e sistemas
AMOSTRAGEM. Larissa Driemeier
AMOSTRAGEM Larissa Driemeier LIVRO TEXTO Essa aula é baseada nos livros: [1] [2] [3] INTRODUCTION TO Signal Processing Sophocles J. Orfanidis Rutgers University http://www.ece.rutgers.edu/~orfanidi/intro2sp
Transformada de Fourier: fundamentos matemáticos, implementação e aplicações musicais
Transformada de Fourier: fundamentos matemáticos, implementação e aplicações musicais MAC 0337 Computação Musical Jorge H. Neyra-Araoz IME USP 22/11/2007 Resumo Série de Fourier para funções periódicas
Transformada Discreta de Fourier (DFT)
Transformada Discreta de Fourier DFT) Processamento de Sinais 5/6 Engenharia Aeroespacial Sinais periódicos Seja x[n] um sinal periódico com período x[n + r] = x[n] para r Z) O sinal x[n] é determinado
Osciloscópio Digital. Diagrama em blocos:
Osciloscópio Digital Neste tipo de osciloscópio, o sinal analógico de entrada é inicialmente convertido para o domínio digital através de um conversor A/D rápido, sendo em seguida armazenado em uma memória
Processamento Digital de Sinais. Conversão A/D e D/A. Prof. Dr. Carlos Alberto Ynoguti
Processamento Digital de Sinais Conversão A/D e D/A Prof. Dr. Carlos Alberto Ynoguti Introdução A maioria dos sinais encontrados na natureza é contínua Para processá-los digitalmente, devemos: Converter
SUMÁRIO BACKGROUND. Referências 62 MATLAB Seção B: Operações Elementares 62 Problemas 71
SUMÁRIO BACKGROUND B.l Números Complexos 17 B.l-l Nota Histórica 17 B.I-2 Álgebra de Números Complexos 20 B.2 Senóides 30 B.2-1 Adição de Senóides 31 B.2-2 Senóides em Termos de Exponenciais: A Fórmula
Tranformada de Fourier. Guillermo Cámara-Chávez
Tranformada de Fourier Guillermo Cámara-Chávez O que é uma série de Fourier Todos conhecemos as funções trigonométricas: seno, cosseno, tangente, etc. O que é uma série de Fourier Essa função é periódica,
I-6 Sistemas e Resposta em Frequência
I-6 Sistemas e Resposta em Frequência Comunicações 1 Sumário 1. A função especial delta-dirac 2. Sistemas 3. Resposta impulsional e resposta em frequência 4. Tipos de filtragem 5. Associação de sistemas
Série de Fourier. Prof. Dr. Walter Ponge-Ferreira
Resposta à Excitação Periódica Série de Fourier Prof. Dr. Walter Ponge-Ferreira E-mail: [email protected] Escola Politécnica da Universidade de São Paulo Departamento de Engenharia Mecânica - PME Av. Prof.
Sistemas Lineares e Invariantes
Universidade Federal da Paraíba Programa de Pós-Graduação em Engenharia Elétrica Sistemas Lineares e Invariantes Prof. Juan Moises Mauricio Villanueva [email protected] www.cear.ufpb.br/juan 1 Sistemas
Introdução ao Processamento Digital de Imagens. Aula 9 Restauração de Imagens. Prof. Dr. Marcelo Andrade da Costa Vieira
Introdução ao Processamento Digital de Imagens Aula 9 Restauração de Imagens Prof. Dr. Marcelo Andrade da Costa Vieira [email protected] Realce x Restauração Realce: Processar a Imagem para obter um resultado
II. REVISÃO DE FUNDAMENTOS
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE II. REVISÃO DE FUNDAMENTOS Prof. Davi Antônio dos Santos ([email protected]) Departamento de Mecatrônica
Métodos de Fourier Prof. Luis S. B. Marques
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO
Transformada Discreta de Fourier (DFT)
Transformada Discreta de Fourier (DFT) A DFT de uma sequência x n de comprimento finito N é definida como: X k = x n e j2π N kn, 0 k N 1 A DFT mapeia uma sequência de comprimento N, x n, em outra sequência,
Transformada de Laplace. Definição. O processo inverso de obter a função temporal f(t) a partir da
Prof. Raimundo Nonato das Mercês Machado O processo inverso de obter a função temporal f(t) a partir da transformada de Laplace F(s) é chamado transformada de Laplace inversa. A notação para a transformada
Processamento Digital de Sinais
Processamento Digital de Sinais Parte 2 Introdução Fabricio Ferrari Unipampa/Bagé 2009 Aplicações Astrofísica Melhora imagens espaciais Redução de ruídos Compressão de dados Análise de dados (espaciais,
TRANSMISSÃO DE DADOS
TRANSMISSÃO DE DADOS Aula 2: Dados e sinais Notas de aula do livro: FOROUZAN, B. A., Comunicação de Dados e Redes de Computadores, MCGraw Hill, 4ª edição Prof. Ulisses Cotta Cavalca
A TRANSFORMADA Z. Métodos Matemáticos I C. Prof. Hélio Magalhães de Oliveira, Texto por R. Menezes Campello de Souza
A TRANSFORMADA Z Métodos Matemáticos I C Prof. Hélio Magalhães de Oliveira, Texto por R. Menezes Campello de Souza Notação x(t) é o sinal analógico x(nt) = x[n], n inteiro, é a seqüência T é o período
Sistemas Lineares. Aula 9 Transformada de Fourier
Sistemas Lineares Aula 9 Transformada de Fourier Séries de Fourier A Série de Fourier representa um sinal periódico como uma combinação linear de exponenciais complexas harmonicamente relacionadas. Como
PRINCÍPIOS DE COMUNICAÇÃO
PRINCÍPIOS DE COMUNICAÇÃO MODULAÇÃO DE PULSO Evelio M. G. Fernández - 2011 Sistemas de Comunicações Digitais Sistema digital no sentido de utilizar uma seqüência de símbolos pertencentes a um conjunto
MODULAÇÃO POR CÓDIGO DE PULSO PCM
Instituto Federal de Santa Catarina Curso Técnico Integrado em Telecomunicações PRT- Princípios de Telecomunicações MODULAÇÃO POR CÓDIGO DE PULSO PCM Prof. Deise Monquelate Arndt Fontes: Princípios de
Introdução aos Circuitos Elétricos
1 / 47 Introdução aos Circuitos Elétricos Séries e Transformadas de Fourier Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia 2 / 47 Séries e Transformadas
Processamento de Imagem. Convolução Filtragem no Domínio da Frequência (Fourier) Professora Sheila Cáceres
Processamento de Imagem Convolução Filtragem no Domínio da Frequência (Fourier) Professora Sheila Cáceres Lembrando Filtragem Correlação A correlação e a convolução sãos dois conceitos relacionados a filtragem.
CONVERSÃO ANALÓGICA PARA DIGITAL
CONVERSÃO ANALÓGICA PARA DIGITAL CONVERSÃO ANALÓGICA PARA DIGITAL A maior parte dos sinais de interesse práticos são analógicos ( voz, biológicos, radar, sonar, comunicações ). Para processá-los por meios
I-7 Digitalização e Reconstrução
I-7 Digitalização e Reconstrução (29 Novembro 2010) 1 Sumário 1. Teorema da Amostragem 1. Ritmo de Nyquist 2. Amostragem Ideal e Natural (análise no tempo e na frequência) 1. Sinais Passa Baixo 2. Sinais
Introdução aos Sinais e Sistemas
Introdução aos Sinais e Sistemas Deise Monquelate Arndt [email protected] Curso Superior de Tecnologia em Sistemas de Telecomunicações IFSC - Campus São José Índice 1 Sinais Operações com Sinais
Mudança de taxa de amostragem. 2 Redução da taxa de amostragem por um fator inteiro
PSI 42 - Processamento de Áudio e Imagem Mudança de taxa de amostragem Vítor H. Nascimento de novembro de 27 Introdução É comum ser necessário trocar a taxa de amostragem de uma sequência. Uma razão é
Aula 22. Conversão Sigma-Delta (continuação)
Aula 22 Conversão Sigma-Delta (continuação) A estrutura mostrada na figura A.22.1 é chamado modulador Sigma-Delta (Σ- ). Esta estrutura, além de ser mais simples, pode ser considerada como uma versão suavizada
Sistemas Lineares e Invariantes de Tempo Discreto
Sistemas Lineares e Invariantes de Tempo Discreto 28 Sistemas Lineares de Tempo Discreto Um sistema linear satisfaz o teorema da superposição e implica que o sistema tem condições iniciais iguais a zero
Sinais e Sistemas p.1/33
Resumo Sinais e Sistemas Transformada de Fourier de Sinais Contínuos [email protected] Representação de sinais aperiódicos Transformada de Fourier de sinais periódicos Propriedades da transformada de Fourier
Transformada Discreta de Fourier
Processamento Digital de Sinais Transformada Discreta de Fourier Prof. Dr. Carlos Alberto Ynoguti Jean Baptiste Joseph Fourier Nascimento: 21 de março de 1768 em Auxerre, Bourgogne, França Morte: 16 de
Sinais e Sistemas - Lista 3
UNIVERSIDADE DE BRASÍLIA, FACULDADE GAMA Sinais e Sistemas - Lista 3 7 de novembro de 0. Calcule a Transformada de Fourier dos seguintes sinais: a) x[n] = ( n ) u[n ] b) x[n] = ( ) n c) x[n] = u[n ] u[n
