Curso Analises de Sinais
|
|
|
- João Lucas Valgueiro Brezinski
- 9 Há anos
- Visualizações:
Transcrição
1 Curso Analises de Sinais Teorema de Amostragem Aula 3 1
2 Teorema de Amostragem Aspecto fundamental: Conversão do sinal contínuo em uma sequência de amostras Um sinal discreto no tempo Após o processamento digital, a sequência de saída pode ser convertida de volta a um sinal contínuo no tempo 2
3 Teoria da Amostragem A sequência x é escrita como: x={x[n]}, - <n<, n inteiro Sequência gerada a partir do processo de amostragem N-ésimo termo: x[n] = xa(nt), - <n<, n inteiro Na prática, a operação de amostragem é implementada por um conversor analógico-para-digital (A/D) A taxa de amostragem é uns dos príncipais itens para o levantamento geofísico. 3
4 Teoria da Amostragem Em geral, a amostragem é um processo não-inversível Ou seja, dada uma sequência x[n], às vezes, não é possível reconstruir o sinal original xc(t) Muitos sinais diferentes podem gerar a mesma sequência de amostras de saída 4
5 Teorema da amostragem 5
6 Teoria da Amostragem É conveniente representarmos matematicamente o processo de amostragem, dividindo-o em duas partes O processo consiste de um trem de impulsos seguido de uma conversão desse trem em uma sequência 6
7 Teoria da Amostragem A diferença fundamental entre xs(t) e x[n] é que xs(t) é um sinal contínuo com valores zero exceto nos inteiros múltiplos de T x[n], por outro lado, não possui informação explícita sobre a taxa de amostragem e é um sinal onde as regiões que não representam valores inteiros não têm valor definido 7
8 Teoria da Amostragem Na conversão analógico-digital é necessário coletar um número discreto de amostras de um sinal contínuo O problema crucial na amostragem está com o número de amostras/seg (samples/sec) que devem ser coletadas. Um número muito pequeno de amostras pode resultar em uma representação demasiadamente pobre do sinal A análise quantitativa acerca desse problema é estudada pelo Teorema de Shannon-Nyquist 8
9 Teorema da Amostragem A princípio, pode-se imaginar que, no processo de amostragem de um sinal analógico, há sempre perda de informação e que essa perda é tanto menor quanto maior a taxa de amostragem utilizada Entretanto, o teorema de Shannon mostra que isto nem sempre é verdade 9
10 Teoria da Amostragem DPI Dots per Inch (figura Melo, ufpe 2015) 10
11 Teorema da Amostragem O teorema estabelece que, sob certas condições, as amostras de um sinal podem conter precisamente toda a informação a ele associada Isto significa que o sinal pode ser perfeitamente recuperado a partir de amostras coletadas sem nenhuma aproximação 11
12 Teorema de Shannon Um sinal de banda limitada por fm Hz está unicamente determinado por amostras, se são tomadas, pelo menos, 2fm amostras equidistantes por segundo 12
13 Teorema Shannon - PROVA Se as amostras são obtidas a cada T s segundos, considera-se então um trem de impulsos δts(t) δts (t )= δ (t nts) n= A amostragem de um sinal f(t) em intervalos de T segundos será definida por: f s (t)=f (t )δts (t)= f (t )δ(t nts) n = 13
14 Teorema Shannon - PROVA Pares de Sinal e Transformada 14
15 Teorema de Shannon Vamos analisar o espectro do sinal amostrado O espectro do sinal amostrado fs(t) pode ser determinado com o auxílio do teorema da convolução na frequência: f1 (t ) f2 (t ) (1/ 2 π) F1(W ) F2 (W ) Seque que: f (t ) δt (t ) (1/ 2 π) F (W ) n= w s δ(w nws ) 15
16 Teorema de Shannon Se: fs(t) Fs(W) Então, o espectro de fs(t) é dado por: ws 1 F s (W )= F (w ) ws δ( w nw s)= F (w )δ( w nw s ) 2π 2 π n = n= 1 2π F s (W )= F (w)δ(w nw s), com w s= T s n= Ts 16
17 Teorema de Shannon E, finalmente: 1 2π F s (w)= F ( w nw s), com w s= T s n = Ts Este espectro é esboçado para vários valores de ws, isto é, vários valores para o espaçamento Ts entre amostras 17
18 Teorema de Shannon Relação entre a frequência de amostragem e a frequência limite do sinal: Suponha um sinal banda limitado em wm: 18
19 Teorema de Shannon Relação entre a frequência de amostragem e a frequência limite do sinal: Se: 19
20 Teorema de Shannon Relação entre a frequência de amostragem e a frequência limite do sinal: Se: 20
21 Teorema de Shannon Relação entre a frequência de amostragem e a frequência limite do sinal: Se: 21
22 Teorema de Shannon Recuperação do sinal original FPB (Filtro passa baixa) 22
23 Teorema de Shannon Para recuperação do sinal com um FPB sem distorções, é preciso que: ws 2wm ou seja 2π/Ts 2.2πfm Ts 1/(2fm) seg O limite 1/Ts = 2fm é chamado de taxa de Nyquist 23
24 Teorema de Shannon Valores de Ts que não atendam a essa condição podem provocar diversas distorções no sinal, como: Ganho nas altas frequências Perda nas altas frequências Modulação das frequências do sinal original Casos híbridos 24
25 Teorema de Shannon 25
26 Teorema de Shannon Na digitalização de imagens, podemos observar esses fenômenos: Exemplo: Padrões de Moireé 26
27 Aliasing Alias Nome: Falso Considere uma sequência senoidal Sabemos que o coseno é uma função módulo 2π, então Vimos que ŵ = 2.4π dando a mesmo valores de sequências como ŵ =4π e 0.4π são aliases um do outro 27
28 Aliasing Podemos generalizar que para o slide anterior para qualquer múltiplo de 2π, i.e., Resulta em frequência de amostra idêntica para cos(ŵ ln) devido a propriedade módulo 2º a propriedade do seno e cosseno. Podemos esse passo em que cos(θ)=cos(-θ)... 28
29 Aliasing Podemos ver que ŵ = 1,6π dar os mesmos valores como ŵ=0,4π, então 1,6π e 0,4π são aliases de um outro Podemos generarlizar ŵ = 2πl -ŵ0, l = 0,1,2,3... resultado em frequencia amostral identicas para cos(ŵln) devido a propriedade de mod 2 e a propriedade par do cosseno Esse resultado também serve para o Seno, a amplitude esperada é invertida já que sen(θ)=sen(θ) Em resumo, para qualquer inteiro l, e frequencia discreta no tempo ŵ0, as frequẽncias ŵ0,ŵ0+2πl,2πl -ŵ0, l = 1, 2, 3,... Todos producem a mesmo valor de sequências com cosseno, e com senos são diferente por um sinal (- ou +) 29
30 Aliasing Uma generalização para seno e cosseno, seja uma função arbitrária. Observe o sinal As frequências do slide anterior são aliases um do outro. O menor valor ŵ E [0,π) é chamado de alias principal 30
31 Aliasing Estas frequências alias extendida para amostragem temporal continua senoidal usando o fato que ŵ = wts ou w = ŵ/ts = ŵfs, então podemos reescrever a expressão em termod de frequência temporal-continua w0. E em Hz. Quando vemos no domínio do tempo contínuo, isso significa que a amostragem Acos(2πf0+ φ) com t. nts resulta em 31
32 Exemplo Entrada de 60 Hz, 340 Hz, ou 460 Hz em uma senoida com fs = 400 Hz. Os sinais Podemos amostrar xi(t), i=1, 2, 3 em taxa fs=400hz. 32
33 33
34 Aliasing Usando a equação (4.14) podemos espera os valores de amostras para os três sinais serem idênticos Mostra que 60, 340, e 460 são frequências de aliased quando a taxa de amostragem é 400 Hz Observe: = 60 Hz e = 60 Hz 34
35 Teorema de Amostragem De acordo com o teorema de Shannon-Nyquist, se Ts 1 2 fm, então a passagem do sinal amostrado por um filtro passa-baixa ideal recupera exatamente o sinal analógico Sabendo que: 35
36 Teorema de Amostragem Construção do sinal quase um retorno Vamos olhar para isso de outra forma examinando a TF(transformada de Fourier) de um sinal de que é limitado em banda e, assim, certamente satisfaz a hipótese do teorema da amostragem: X(f) = 0 onde f > W A TF inversa é :. 36
37 Teorema da Amostragem Podemos pegar X(f) e expandi em séries de Fourier supondo ser periódica com periódo de 2W. Então podemos rescrever X(f) e coeficientes ak: 37
38 Teorema da amostragem Esses coeficientes tem uma semalhança com x(t) e podemos recalcular Agora, podemos escrever X(f) em termos da série e então invertea TF: 38
39 Teorema da amostragem Substituindo o somatório na integral Uma fórmula que reconstrói a função apartir das amostras! 39
40 Observe que as amostras são espaçadas em t=k/fs, nos iremos usar W=fs/2. Nós podemosverificar quando fazemos a interpolação linear 40
41 Estas funções de interpolação são chamados de funções "Whittaker". Vamos examinar essas funções com mais detalhe 41
42 Teorema da Amostragem O arquivo Alising3.py A linha vertical no gráfico mostra que, sempre que uma função tem um pico, e a outra função tem zero. É por isso que quando você colocar as amostras em cada um dos picos, eles combinam a função amostrados exatamente naqueles pontos. Entre esses pontos, a forma de coroa das funções preenche os valores em falta. Além disso, como mostra a figura acima, não há qualquer interferência entre as funções sentam-se em cada uma das funções de interpolação, porque o pico de um está perfeitamente alinhado com o zero do que os outros (linhas pontilhadas). Assim, o teorema da amostragem diz que os valores preenchidos são retirados do curvatura das funções sinc, não retas como nós investigados anteriormente. 42
43 Teorema da Amostragem o código seguinte mostra como as funções individuais Whittaker (linhas tracejadas) são montados na aproximação final (linha preta) utilizando as amostras de dados (pontos azuis-). Sugiro que altere a taxa de amostragem para ver o que acontece. 43
44 Sinal e Ruído (SNR) SNR = Signal Noise Ratio P sinal SNR= P ruído 44
45 FIM 45
Teorema da Amostragem
Teorema da Amostragem Carlos Alexandre Mello Processamento Digital de Sinais Aspecto fundamental: Conversão do sinal contínuo em uma sequência de amostras Um sinal discreto no tempo Após o processamento
Introdução a aquisição e processamento de sinais
TAPS Introdução a aquisição e processamento de sinais Prof. Theo Z. Pavan Departamento de Física - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-USP Roteiro Aquisição de sinais e frequência
I-7 Digitalização e Reconstrução
I-7 Digitalização e Reconstrução (29 Novembro 2010) 1 Sumário 1. Teorema da Amostragem 1. Ritmo de Nyquist 2. Amostragem Ideal e Natural (análise no tempo e na frequência) 1. Sinais Passa Baixo 2. Sinais
Processamento Digital de Sinais - ENG420
Processamento Digital de Sinais - ENG420 Fabrício Simões IFBA 22 de julho de 2016 Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG420 22 de julho de 2016 1 / 46 Fabrício Simões (IFBA) Processamento
Introdução aos sinais discretos e conversão de sinais analógicos para digitais
Introdução aos sinais discretos e conversão de sinais analógicos para digitais Dispositivos de Medição Elétrica Usualmente, dois tipos de equipamentos são utilizados na medição de sinais elétricos: Medidores
Amostragem de Sinais
UNIVERSIDADE FEDERAL DA PARAÍBA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA Amostragem de Sinais Prof. Juan Moises Mauricio Villanueva [email protected] 1 Amostragem (Sampling) Para um sinal
I-8 Digitalização e Reconstrução
I-8 Digitalização e Reconstrução Comunicações (15 de novembro de 2016) ISEL - ADEETC - Comunicações 1 Sumário 1. Enquadramento em SCD Transmissão de sinal analógico sobre SCD 2. Teorema da Amostragem Ritmo
Licenciatura em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra. Análise e Processamento de Bio-Sinais - MIEBM
Licenciatura em Engenharia Biomédica Faculdade de Ciências e Tecnologia Slide Slide 1 1 Tópicos: Representações de Fourier de Sinais Compostos Introdução Transformada de Fourier de Sinais Periódicos Convolução
Revisão Análise em frequência e amostragem de sinais. Hilton de Oliveira Mota
Revisão Análise em frequência e amostragem de sinais Hilton de Oliveira Mota Introdução Análise em frequência (análise espectral): Descrição de quais frequências compõem um sinal. Por quê? Senóides são
Amostragem. Representação com FT para Sinais Periódicos Relacionando a FT com a FS Amostragem Amostrando Sinais de Tempo Contínuo.
Amostragem Representação com FT para Sinais Periódicos Relacionando a FT com a FS Amostragem Amostrando Sinais de Tempo Contínuo Amostragem 1 Representação com FT para Sinais Periódicos A representação
Processamento Digital de Sinais. Conversão A/D e D/A. Prof. Dr. Carlos Alberto Ynoguti
Processamento Digital de Sinais Conversão A/D e D/A Prof. Dr. Carlos Alberto Ynoguti Introdução A maioria dos sinais encontrados na natureza é contínua Para processá-los digitalmente, devemos: Converter
Transformada de Fourier. Theo Pavan e Adilton Carneiro TAPS
Transformada de Fourier Theo Pavan e Adilton Carneiro TAPS Análise de Fourier Análise de Fourier - representação de funções por somas de senos e cossenos ou soma de exponenciais complexas Uma análise datada
i) Filtragem ii) Amostragem e reconstituição cuja Transformada de Fourier (TF) é dada na Figura seguinte e que constitui a entrada de um SLIT S.
6ª Aula Prática de Sistemas e Sinais (LEIC Alameda) Sumário: i) Filtragem ii) Amostragem e reconstituição Exercícios Propostos Exercício 1: Considere o sinal x (t) cuja Transformada de Fourier (TF) é dada
AMOSTRAGEM. Larissa Driemeier
AMOSTRAGEM Larissa Driemeier LIVRO TEXTO Essa aula é baseada nos livros: [1] [2] [3] INTRODUCTION TO Signal Processing Sophocles J. Orfanidis Rutgers University http://www.ece.rutgers.edu/~orfanidi/intro2sp
I-11 Digitalização e Reconstrução
I-11 Digitalização e Reconstrução Comunicações ( de novembro de 017) ISEL - ADEETC - Comunicações 1 Sumário 1. Enquadramento em SCD Transmissão de sinal analógico sobre SCD. Teorema da Amostragem Ritmo
CONVERSÃO ANALÓGICA PARA DIGITAL
CONVERSÃO ANALÓGICA PARA DIGITAL CONVERSÃO ANALÓGICA PARA DIGITAL A maior parte dos sinais de interesse práticos são analógicos ( voz, biológicos, radar, sonar, comunicações ). Para processá-los por meios
Reconstrução de Sinais de Tempo Contínuo
Sistemas e Sinais Reconstrução de Sinais de Tempo Contínuo Teorema da Amostragem Reconstrução Ideal Reconstrução Prática Retentor de Ordem Zero Filtro Anti-Imagem Reconstrução de Sinais de Tempo Contínuo
Resumo. Sinais e Sistemas Amostragem. Introdução. Amostragem Periódica
Resumo Sinais e Sistemas Amostragem [email protected] Instituto Superior écnico Representação da Amostragem no Domínio da Frequência Reconstrução do Sinal Amostrado Processamento em empo Discreto de Sinais
Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 5
Introdução ao Soluções dos Exercícios Propostos Capítulo 5. Considere a sequência ( π ) x[n] = cos 4 n encontre todos os sinais contínuos que poderiam gerar essa sequência e as respectivas taxas de amostragem.
A Transformada de Fourier
A Transformada de Fourier Disciplina: Tópicos em Computação (Processamento Digital de Imagens) 1 / 30 A Função Impulso Fundamental no estudo dos sistemas lineares e da transformada de Fourier; Um impulso
Exercícios para Processamento Digital de Sinal - Folha
Exercícios para Processamento Digital de Sinal - Folha 1 Interpolação Exercício 1 Suponha que uma sinusóide de frequência angular π/4 foi aplicada na entrada de um bloco expansor que aumenta a frequência
MODULAÇÃO POR CÓDIGO DE PULSO PCM
Instituto Federal de Santa Catarina Curso Técnico Integrado em Telecomunicações PRT- Princípios de Telecomunicações MODULAÇÃO POR CÓDIGO DE PULSO PCM Prof. Deise Monquelate Arndt Fontes: Princípios de
Conversores A/D e D/A
Conversores A/D e D/A Walter Fetter Lages [email protected] Universidade Federal do io Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica Programa de Pós-Graduação em Engenharia Elétrica
Representação de Fourier para Sinais 1
Representação de Fourier para Sinais A representação de Fourier para sinais é realizada através da soma ponderada de funções senoidais complexas. Se este sinal for aplicado a um sistema LTI, a saída do
Teoria das Comunicações Prof. André Noll Barreto Prova 1 Gabarito
Prova Gabarito Questão (4 pontos) Um pulso é descrito por: g t = t e t / u t u t, a) Esboce o pulso. Este é um sinal de energia ou de potência? Qual sua energia/potência? (,7 ponto) b) Dado um trem periódico
SEL Processamento Digital de Imagens Médicas. Aula 4 Transformada de Fourier. Prof. Dr. Marcelo Andrade da Costa Vieira
SEL 0449 - Processamento Digital de Imagens Médicas Aula 4 Transformada de Fourier Prof. Dr. Marcelo Andrade da Costa Vieira [email protected] Jean Baptiste Joseph Fourier 2 Exemplo: Função Degrau 3 Exemplo:
Aula 22. Conversão Sigma-Delta (continuação)
Aula 22 Conversão Sigma-Delta (continuação) A estrutura mostrada na figura A.22.1 é chamado modulador Sigma-Delta (Σ- ). Esta estrutura, além de ser mais simples, pode ser considerada como uma versão suavizada
Parâmetros importantes de um Analisador de Espectros: Faixa de frequência. Exatidão (frequência e amplitude) Sensibilidade. Resolução.
Parâmetros importantes de um Analisador de Espectros: Faixa de frequência Exatidão (frequência e amplitude) Sensibilidade Resolução Distorção Faixa dinâmica Faixa de frequência: Determina as frequências
Transformada de Fourier Discreta (DFT)
UNIVERSIDADE FEDERAL DA PARAÍBA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA Transformada de Fourier Discreta (DFT) Prof. Juan Moises Mauricio Villanueva [email protected] 1 Transformada de Fourier
Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica
Propriedades das Representações de Fourier Sinais periódicos de tempo contínuo ou discreto têm uma representação por série de Fourier, dada pela soma ponderada de senoides complexas com frequências múltiplas
Processamento de sinais digitais Aula 3: Transformada de Fourier (Parte 1)
Processamento de sinais digitais Aula 3: Transformada de Fourier (Parte 1) [email protected] Tópicos Definição da Transformada de Fourier (TF) Propriedades importantes (ex: linearidade e periodicidade)
TRANSFORMADA DE FOURIER EM TEMPO DISCRETO (DTFT) E TRANSFORMADA DISCRETA DE FOURIER (DFT) Larissa Driemeier
TRANSFORMADA DE FOURIER EM TEMPO DISCRETO (DTFT) E TRANSFORMADA DISCRETA DE FOURIER (DFT) Larissa Driemeier LIVRO TEXTO Essa aula é baseada nos livros: [1] [2] INTRODUCTION TO Signal Processing Sophocles
Mudança de taxa de amostragem. 2 Redução da taxa de amostragem por um fator inteiro
PSI 42 - Processamento de Áudio e Imagem Mudança de taxa de amostragem Vítor H. Nascimento de novembro de 27 Introdução É comum ser necessário trocar a taxa de amostragem de uma sequência. Uma razão é
Analisador de espectros por FFT
Analisador de espectros por FFT A transformada de Fourier (FT) é uma ferramenta matemática utilizada essencialmente para decompor ou separar uma função ou forma de onda em senóides de diferentes frequências
Análise de Sinais Dep. Armas e Electronica, Escola Naval V1.1 - Victor Lobo Capítulo 3. Transformadas de Fourier e Fourier Discreta
Capítulo 3 Transformadas Fourier e Fourier Discreta Bibliografia (Cap.3,4 Louretie)(Cap.3,6 Haykin)(Cap.3 Ribeiro) 1 1 Domínio da frequência Qualquer sinal (1) po ser composto numa soma exponenciais complexas
Princípios de Telecomunicações. PRT60806 Aula 19: Modulação por Código de Pulso (PCM) Professor: Bruno Fontana da silva 2014
1 Princípios de Telecomunicações PRT60806 Aula 19: Modulação por Código de Pulso (PCM) Professor: Bruno Fontana da silva 2014 Bloco de Comunicação Genérico Emissor sinais analógicos x sinais digitais Sinais
TRANSMISSÃO DE DADOS
TRANSMISSÃO DE DADOS Aula 2: Dados e sinais Notas de aula do livro: FOROUZAN, B. A., Comunicação de Dados e Redes de Computadores, MCGraw Hill, 4ª edição Prof. Ulisses Cotta Cavalca
TRANSFORMADA DE FOURIER. Larissa Driemeier
TRANSFORMADA DE FOURIER Larissa Driemeier TESTE 7hs30 às 8hs00 Este não é um sinal periódico. Queremos calcular seu espectro usando análise de Fourier, mas aprendemos que o sinal deve ser periódico. O
Processamento de sinais digitais
Processamento de sinais digitais Aula 1: Filtros digitais [email protected] Tópicos Definição de um filtro digital Anatomia de um filtro digital Descrição no domínio da frequência de sinais e sistemas
Teoria das Comunicações Prof. André Noll Barreto Prova /02
eoria das Comunicações Prova 1-1/ Aluno: Matrícula: Instruções A prova terá a duração de h3 A prova pode ser feita a lápis ou caneta Não é permitida consulta a notas de aula, todas as fórmulas necessárias
Sílvia Mara da Costa Campos Victer Concurso: Matemática da Computação UERJ - Friburgo
Convolução, Série de Fourier e Transformada de Fourier contínuas Sílvia Mara da Costa Campos Victer Concurso: Matemática da Computação UERJ - Friburgo Tópicos Sinais contínuos no tempo Função impulso Sistema
Aquisição rápida de sinais no tempo
Universidade Federal do Paraná Dep. De Engenharia Elétrica PPGEE Disciplina: Eletrônica Avançada Eletrônica Avançada 1 O processo de conversão de sinais analógicos no domínio do tempo para valores digitais
Introdução ao Processamento Digital de Imagens. Aula 6 Propriedades da Transformada de Fourier
Introdução ao Processamento Digital de Imagens Aula 6 Propriedades da Transformada de Fourier Prof. Dr. Marcelo Andrade da Costa Vieira [email protected] Uma linha de uma imagem formada por uma sequência
Transformada Discreta de Fourier
Processamento Digital de Sinais Transformada Discreta de Fourier Prof. Dr. Carlos Alberto Ynoguti Jean Baptiste Joseph Fourier Nascimento: 21 de março de 1768 em Auxerre, Bourgogne, França Morte: 16 de
Processamento Digital de Sinais. Conversão A/D e D/A. Prof. Dr. Carlos Alberto Ynoguti
Processamento Digital de Sinais Conversão A/D e D/A Prof. Dr. Carlos Alberto Ynoguti Introdução A maioria dos sinais encontrados na natureza é contínua Para processá los digitalmente, devemos: Converter
Transformada Discreta de Fourier
Processamento Digital de Sinais Transformada Discreta de Fourier Prof. Dr. Carlos Alberto Ynoguti Jean Baptiste Joseph Fourier Nascimento: 21 de março de 1768 em Auxerre, Bourgogne, França Morte: 16 de
Parte 02 Multiplexação Analógica e Digital no STFC. Prof. Rafael Saraiva Campos 2013/1
Parte 02 Multiplexação Analógica e Digital no STFC Prof. Rafael Saraiva Campos 2013/1 Multiplexação STFC (1/2) 1. Multiplexação Definição 2. Multiplexação no STFC Linhas Tronco Linhas de Assinante (em
Aula de Processamento de Sinais I.B De Paula. Tipos de sinal:
Tipos de sinal: Tipos de sinal: Determinístico:Sinais determinísticos são aqueles que podem ser perfeitamente reproduzidos caso sejam aplicadas as mesmas condições utilizadas sua geração. Periódico Transiente
Osciloscópio Digital. Diagrama em blocos:
Osciloscópio Digital Neste tipo de osciloscópio, o sinal analógico de entrada é inicialmente convertido para o domínio digital através de um conversor A/D rápido, sendo em seguida armazenado em uma memória
Lista de Exercícios GQ1
1 a QUESTÃO: Determine a Transformada Inversa de Fourier da função G(f) definida pelo espectro de amplitude e fase, mostrado na figura abaixo: 2 a QUESTÃO: Calcule a Transformadaa de Fourier do Sinal abaixo:
Processamento de sinais digitais
Processamento de sinais digitais Aula 2: Descrição discreta no tempo de sinais e sistemas [email protected] Tópicos Sequências discretas no tempo. Princípio da superposição para sistemas lineares.
04/03/2013. Transmissão de dados. Transmissão por rádio Frequência
Transmissão de dados Transmissão por rádio Frequência 1 Fundamentos de Rádio freqüência Toda a transmissão e recepção de sinais no mundo wireless se baseia em Rádio Freqüência (RF). Esses sinais são então
Princípios de Telecomunicações AULA 1. Elementos de um sistema de comunicações. Prof. Eng. Alexandre Dezem Bertozzi, Esp.
Princípios de Telecomunicações AULA 1 Elementos de um sistema de comunicações Prof. Eng. Alexandre Dezem Bertozzi, Esp. COMUNICAÇÃO TRANSMISSÃO DE INFORMAÇÃO DE UM PONTO A OUTRO, ATRAVÉS DE UMA SUCESSÃO
Nesse item as frequências de vibrações obtidas pela modelagem numérica são comparadas com as frequências obtidas de soluções analíticas.
7 Resultados 7.. Modelagem numérica Nesse item são calculadas as frequências de vibrações obtidas através da formulação apresentada nos capítulos 3 e 4. As rotinas programadas em Mathcad são apresentadas
Sinais e Sistemas - Lista 3
UNIVERSIDADE DE BRASÍLIA, FACULDADE GAMA Sinais e Sistemas - Lista 3 7 de novembro de 0. Calcule a Transformada de Fourier dos seguintes sinais: a) x[n] = ( n ) u[n ] b) x[n] = ( ) n c) x[n] = u[n ] u[n
Um filtro digital é uma implementação de um filtro através de operações matemáticas aplicadas em um sinal amostrado (e quantizado);
Filtros Digitais Filtros Digitais Um filtro digital é uma implementação de um filtro através de operações matemáticas aplicadas em um sinal amostrado (e quantizado); São usados para dois propósitos básicos:
Exercícios para Processamento Digital de Sinal. 1 Transformada e Série de Fourier
Exercícios para Processamento Digital de Sinal Transformada e Série de Fourier Exercício Considere o seguinte sinal x(t) = sin 2 (0πt). Encontre uma forma aditiva para este sinal e represente graficamente
Aula 11 Sinais de tempo contínuo amostrados
Processamento Digital de inais Aula Proessor Marcio Eisencrat março Aula inais de tempo contínuo amostrados Bibliograia OPPENHEIM, A V; CHAFER, R W Discrete-time signal processing, 3rd ed, Prentice-Hall,
Transformada Z. Transformada Z
Semelhante ao apresentado anteriormente, entre a relação das transformadas de Fourier e de Laplace, será visto que a generalização da representação senoidal complexa de um sinal de tempo discreto pela
Sinais e Sistemas. Luis Henrique Assumpção Lolis. 21 de fevereiro de Luis Henrique Assumpção Lolis Sinais e Sistemas 1
Sinais e Sistemas Luis Henrique Assumpção Lolis 21 de fevereiro de 2014 Luis Henrique Assumpção Lolis Sinais e Sistemas 1 Conteúdo 1 Classificação de sinais 2 Algumas funções importantes 3 Transformada
Senoides Complexas e Sistemas LTI
Representação de Fourier para Sinais A representação de Fourier para sinais é realizada através da soma ponderada de funções senoidais complexas Se este sinal for aplicado a um sistema LTI, a saída do
Redes de Computadores
Introdução Redes de Computadores Transmissão de Informações nálise de Sinais ula 03 camada de nível físico define Características físicas das interfaces e dos meios (ex. conectores, pinagem, semântica
Modulação por Pulsos
Modulação por Pulsos Propriedades Amostragem de sinais Modulação por amplitude de pulso (PAM) Modulação por pulso codificado (PCM) Modulação por largura de pulso (PWM) Modulação por posição de pulso (PPM)
Aula 07 Propriedades da resposta ao impulso
Aula 07 Propriedades da resposta ao impulso Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Sinais e Sistemas, a edição, Pearson, 00. ISBN 9788576055044. Páginas 6-69. HAYKIN, S. S.; VAN VEEN, B. Sinais e
Processamento Digital de Sinal Aula 9 4.º Ano 2.º Semestre
Instituto Superior Politécnico de Viseu Escola Superior de ecnologia de Viseu Curso de Engenharia de Sistemas e Informática Processamento Digital de Sinal Aula 9 4.º Ano 2.º Semestre, Eng.º 1 Programa:
Introdução a filtros digitais. Theo Pavan e Adilton Carneiro TAPS
Introdução a filtros digitais Theo Pavan e Adilton Carneiro TAPS Filtro anti-aliasing Com um sinal já digitalizado não é possível distinguir entre uma frequência alias e uma frequência que realmente esteja
Processamento Digital de Sinais
Processamento Digital de Sinais Carlos Alexandre Mello Carlos Alexandre Mello [email protected] 1 Sinais Digitais Um sinal pode ser entendido como uma função que carrega uma informação Sinal de voz O sinal
Sistemas Lineares e Invariantes
Universidade Federal da Paraíba Programa de Pós-Graduação em Engenharia Elétrica Sistemas Lineares e Invariantes Prof. Juan Moises Mauricio Villanueva [email protected] www.cear.ufpb.br/juan 1 Sistemas
Teoria das Comunicações Profs. André Noll Barreto / Judson Braga. Prova /2 (16/10/2014)
Prova 014/ (16/10/014) Aluno: Matrícula: Instruções A prova consiste de quatro questões discursivas A prova terá a duração de h00 A prova pode ser feita a lápis ou caneta Não é permitida consulta a notas
Sinais Representação e Manipulação
Exper. 1 Sinais Representação e Manipulação Objetivo Esta prática descreve como utilizar o Matlab para representar e manipular alguns sinais elementares: Criação e armazenamento de sinais em Matlab Amostragem
O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir:
Sistemas e Sinais O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir: 1 Sistemas e Sinais O bloco conversor A/D converte o sinal
REDES DE COMPUTADORES. Comunicação de Dados
Sinais Uma das funções mais importantes da camada física é converter informação em sinais eletromagnéticos para poder enviá-los num meio de transmissão. Sejam estas informações uma sequência de 1s e 0s
Disciplina: Processamento Digital de Sinais Aula 01 - Introdução aos Sinais e Sistemas Digitais
no de Disciplina: de Aula 01 - aos e Sistemas Digitais Prof. ([email protected]) Departamento de Engenharia Elétrica Universidade Federal da Bahia Conteúdo no de 1 2 no 3 4 de 5 no de Definição: O
Sinais e Sistemas - Lista 3 Gabarito
UNIVERSIDADE DE BRASÍLIA, FACULDADE GAMA Sinais e Sistemas - Lista Gabarito 7 de novembro de 05. Calcule a Transformada de Fourier dos seguintes sinais: a) x[n] = ( n ) u[n ] b) x[n] = ( ) n c) x[n] =
SEL 0412 Tecnologia Digital Teoria
SEL 0412 Tecnologia Digital Teoria Aquisição de Dados Profa. Tania Regina Tronco Conceito É a coleta de informações para fins de análise dos dados e consequente controle e monitoramento de um processo;
A TRANSFORMADA Z. Métodos Matemáticos I C. Prof. Hélio Magalhães de Oliveira, Texto por R. Menezes Campello de Souza
A TRANSFORMADA Z Métodos Matemáticos I C Prof. Hélio Magalhães de Oliveira, Texto por R. Menezes Campello de Souza Notação x(t) é o sinal analógico x(nt) = x[n], n inteiro, é a seqüência T é o período
Espaço de Fourier. Processamento de Imagens Médicas. Prof. Luiz Otavio Murta Jr. Depto. de Física e Matemática (FFCLRP/USP)
Processamento de Imagens Médicas Espaço de Fourier Prof. Luiz Otavio Murta Jr. Depto. de Física e Matemática (FFCLRP/USP) 1 Representação de Fourier - O teorema da amostragem de Nyquist diz que devemos
Teoria das Comunicações
1 - Introdução Enlace de um Sistema de Comunicação fonte mensagem transdutor Transmissor Modulador canal ruído receptor transdutor destino mensagem (estimada) sinal de entrada sinal com distorção sinal
MEDIDAS DINÂMICAS. Figura 1: Classificação de sinais
MEDIDAS DINÂMICAS INRODUÇÃO A medição é uma operação, ou conjunto de operações, destinadas a determinar o valor de uma grandeza física. O seu resultado, acompanhado da unidade conveniente, constitui a
SUMÁRIO BACKGROUND. Referências 62 MATLAB Seção B: Operações Elementares 62 Problemas 71
SUMÁRIO BACKGROUND B.l Números Complexos 17 B.l-l Nota Histórica 17 B.I-2 Álgebra de Números Complexos 20 B.2 Senóides 30 B.2-1 Adição de Senóides 31 B.2-2 Senóides em Termos de Exponenciais: A Fórmula
Processamento Digital de Sinais. Aplicações da DFT. Prof. Dr. Carlos Alberto Ynoguti
Processamento Digital de Sinais Aplicações da DFT Prof. Dr. Carlos Alberto Ynoguti Aplicações da DFT Nesta seção iremos apresentar três aplicações bastante comuns da DFT: 1) Análise espectral de sinais
Conceitos Básicos de Áudio Digital
Aula 07 Conceitos Básicos de Áudio Digital Diogo Pinheiro Fernandes Pedrosa Universidade Federal do Rio Grande do Norte Departamento de Ciências Exatas e Naturais Ciência da Computação Som Conceitos Iniciais
Modulação SSB e Transmissão Digital
Modulação SSB e Transmissão Digital 1 Modulação em SSB Vimos que na modulação AM, a portadora é mantida e o sinal modulante produz dois sinais laterais com a informação que estamos transmitindo. Fig. 1
Processamento Digital de Sinais. Notas de Aula. Análise Espectral Usando a DFT
Análise Espectral Análise Espectral Análise Espectral Usando a DFT Processamento Digital de Sinais Notas de Aula Análise Espectral Usando a DFT Uma das principais aplicações da DFT é a análise do conteúdo
Sistemas Lineares. Aula 9 Transformada de Fourier
Sistemas Lineares Aula 9 Transformada de Fourier Séries de Fourier A Série de Fourier representa um sinal periódico como uma combinação linear de exponenciais complexas harmonicamente relacionadas. Como
Capítulo 6 Filtragem, Amostragem e Reconstrução
Capítulo 6 Filtragem, Amostragem e Reconstrução 6. Filtragem 6.2 Amostragem e reconstrução de sinais Capítulo 6 Filtragem, Amostragem e Reconstrução 6. Filtragem 6.2 Amostragem e reconstrução de sinais
Transformada Discreta de Fourier (DFT)
Transformada Discreta de Fourier DFT) Processamento de Sinais 5/6 Engenharia Aeroespacial Sinais periódicos Seja x[n] um sinal periódico com período x[n + r] = x[n] para r Z) O sinal x[n] é determinado
vam =Vp sen (2 π fp t) + (M / 2) Vp cos (2 π (fp - fm) t ) - (M / 2) Vp cos (2 π (fp+fm) t) portadora raia lateral inferior raia lateral superior
Modulação AM 20 Definições: Modulação : variação de um parâmetro de uma onda portadora senoidal, de maneira linearmente proporcional ao valor instantâneo do sinal modulante ou informação. Portadora : Onda
Sinais e Sistemas. Tempo para Sistemas Lineares Invariantes no Tempo. Representações em Domínio do. Profª Sandra Mara Torres Müller.
Sinais e Sistemas Representações em Domínio do Tempo para Sistemas Lineares Invariantes no Tempo Profª Sandra Mara Torres Müller Aula 7 Representações em Domínio do Tempo para Sistemas Lineares e Invariantes
Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas
Sinais e Sistemas Série de Fourier Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Lembremos da resposta de um sistema LTI discreto a uma exponencial complexa: x[ n] z,
